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 On the Baire class of a mixed second derivative

 1 . Introduction. Let F(x, y) be a real-valued function of tmo real

 variables, and suppose that the second order partial derivative F (x, y)
 ^y

 exists everywhere. In [3]> G-. Petruska pointed out that F is then a
 xy

 Baire 3 function, and he answered M. Iaczkovich's question of whether F
 xy

 is always Baire 1 , by constructing an example in which F is Baire 2 but
 xy

 not Baire 1 . In the present note, after showing that a function constructed

 in [1] also leads immediately to such a counter-example , we give a simple

 proof that F^ must always be Baire 2 .
 2

 2. An example. Complementing a proof that if f: R -* R is separately

 approximately continuous then it must be Baire 2 , in [l] a separately

 approximately continuous function that is not Baire 1 was constructed. It is

 of the form

 fU, y) = , sJ.xieJ.j)

 where the Sn's are approximately continuous functions with values in [O, 1] ,

 having disjoint support. The following facts are easy consequences

 details are left to the reader, (i) For each fixed x , f is a bounded

 approximately continuous function of y . (il) For each x and y ,

 / f(x, v) dv = 2 " . ł(x)[J gn(v) dv] .
 0 0

 y

 (ill) For each fixed y , / f(x, v) dv is a locally bounded approximately
 0

 continuous function of x . (IV) For each x and y ,
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 -X y oo X y

 I C/ f(u, v) dv]àu = 2 1 j. [/ e (u) du][/ g (v) dv] . 0 0 n" j. 1 0 0 n
 X y

 (V) The function F(x, y) = / [/ f(u, v) dv] du is continuous, with
 0 0

 F = F equal to f everywhere and thus not Baire 1 . We have the desired
 y*

 example. It is interesting that in his construction, found quite independently,

 Petruska applied exactly the same Lemma 12 of Zahorski ([A-]; see also [2]) as

 I used in constructing the sequence of functions (g^) .

 3. Theorem. If F^ exists everywhere then it is a Baire 2 function.

 Proof . Because F exists everywhere, the function F(x, yn) U is continuous, A U

 for each fixed ^ y_ e E . It follows that the function $ (x, y) that we are ^ 0 . mn

 about to define is a continuous function of (x, y) . For m, n = 1, 2, ...

 let

 $ (x, ' - n' ) = 2m[F(x L v + m' n/ F(x v - -, m' - n' )] for k e Z , ' nur ' n' L v m' n/ v -, m' n' , '

 and for other values of y define $mr|(x, y) by linear interpolation with

 respect to y , that is, for 0 < À < 1

 i (x, 'n A.- + (1 * - A 'n )*C'1* ) ' = A .$ mnx (x, ' - xi' ) + (1 N - A ) ' .$ mnv (x, ' ^±-1) ' . nar 'n * 'n ' mnx ' xi' N ' mnv ' n '

 Consider the Baire 1 function

 $ (x, y) = lim $(x, y) .
 n m-* » nm

 Clearly $ (x, = F (x, for k e Z , while $ (x, y) is the
 n xi a xi xx

 corresponding linear interpolation for other values of y , that is, for

 0 < A < 1

 i (x, A- + ( N 1 - A )k"1" 1) = A .F xv (x, ' - ) + ( s 1 - A ) ' .F (x, ' 1) . n n N n xv ' n' s ' xv ' n

 The following function is necessarily also Baire 1 :
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 0n(x» y) = 2n[$n(x, y + ~) - $n(x, y - £)] i

 but it is easy to see that for all (x, y) we have

 "V. .9n(*' y) * VX' y) '
 and therefore F is Baire 2 .

 xy

 4* Problems. Several interesting questions raised by Petruska [3] still

 remain unanswered, in particular: if both and F^ exist everywhere,
 must they agree at some points ? Also, as he points out, F may be

 xy

 identically zero even for a nonmeasurable F (for example, F(x, y) = H(y) ,

 where H is nonmeasurable). It is therefore natural to ask whether, if F^

 exists everywhere, there necessarily exists a function G(x, y) with = F^
 which is 'smooth', in the sense of being measurable or even of low Baire class.
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