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Non-Monotonic Implies Very Oscillatory

let £ be a measurable real function defined on a measurable

linear set E , and for each point Xy € E 1let

A(xy) = [x € B £0x) = £(x))]

A,(x) = [x ¢ B: (x = %) (£(x) - £(x5)) > 0} ,

A;(XO)

fx e B (x - x))7((x) - £(x,)) < 0} .

Knhinchin (5] called f asymptotically directed (we shall write AD)
at x, 1if one of the above sets (which are evidently measurable)

has density 1 at Xy - He showed that for almost all points Xq

at which A+(x0) or A;(xo) has density 1, x,

point of a compact set of positive measure on which f is strictly

is a density

monotonic; and f is approximately differentiable at almost all

points at which it is AD.

As regards the points X, € E at which £ 1is not AD, Good
(4] showed that at almost all of them at least one of the sets
A}(xo), A_(xo) has upper unilateral density 1 on both sides at
Xy + In Theorem 1 we improve "at least one" to "both", using
similar reasoning. (Related results of Csiszar [2] appear not quite
to imply this.) After drawing some conclusions about oscillatory

behaviour at non-AD points, we then discuss approximate maxima and

generalize a result recently given by Pu and Pu [7].

Theorem 1. At almost all points Xy € E at which f is not

AD, both of the sets A¥(x0), A_(xo) have upper unilateral density

1 on both sides at x0 .

Proof. There are only countably many values of a such that
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the set E = fx: £(x) = «] has positive measure, and f 1is AD at
almost all points of each set E (the density points). Hence we
may suppose that f +takes no value on a set of positive measure.
We may also suppose that E is compact and (by Iuzin's theorem)
that f 1is continuous. Under these conditions we have the
following result, which together with three similar results
(obtained by interchanging left, right and >, <) clearly implies

our theorem.

lemma. At almost all points X € E at which the set
fx: £(x) > f(xo)} has lower unilateral density greater than zero
from the right, the set f[x: £(x) < f(xo)} has unilateral density

1 from the left.

Proof of the lemma. Let B denote the set of points x ¢ E

such that

1

0<cn< o > uwllx, x+hnln [y £() > £ 0B . (1)

It is sufficient to prove the assertion for Bn ,» which is compact.

Teke any point Xj ¢ B, and 0< 3 < o' such that

0<n<s > m(lxg=h, x1NB)> (1 -0 h; (2).
almost all points of Bn have this property for some § .

Consider f on the compact set [xo -9, xd]l\ Bn ; its

supremum is attained, and I claim that it is attained at Xy For
suppose it is at a point x, # x, and f(x1) > f(xo) . Then by

(1) applied to the point x = x, ¢ B

| | 1

a(lx, 210yt 2) > 2N B (g =)« (3)
But no points of the set [x1, xo] N {y: £(y) > f(x1)§ can belong

to B, by the maximality of f(x1) . Hence by (3)
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-1 . .
m([x1, xb] N EB)-( (1 -n )(x0 - x1) . This contradicts (2) for

h=x0—x1 .

Hence the supremum is indeed attained at Xy and provided
Xy is e density point from the left of B, it is a density point

from the left of the set f{y: £(y) < f(xo)} , as required.

Remark. Our theorem shows that at almost all points X, € E

at which f 1is not AD, it is oscillatory, in the sense that at X,
the set A(xo) has density zero and both of the sets A4(xo), A;(xo)
have upper unilateral density 1 on both sides. It is easy to see
that almost all points X at which f 1is oscillatory divide
themselves ;nto two subclasses:

I. Those at which f has approximate derivative zero, and
the function f(x) + ax is AD at x, for every a £ 0 .

II. Those at which f 1is not approximately differentiable,
and each of the functions f£(x) + ax 4s also oscillatory.
We might call f weakly and strongly oscillatory in these two
cases. Only constant functions have approximate derivative zero

everywhere, so no function is everywhere weakly oscillatory on IR .

Now let f be an arbitrary real function defined on an
arbitrary linear set E , and let M = M(f) denote the set of points

X5 € E at which f has an approximate strict maximum, that is, for

which the set {x: f(x) < f(xo)} has density 1 at x,

respect to inner measure. Pu and Pu [7] showed, in the case when E

with

is the whole line, that if f is measurable then M has measure
zero, and if f is continuous then M is also meagre. Their first
conclusion can be regarded as a corollary of the results of Khinchin

and Good quoted earlier, and in fact Theorem 5.21 of €saszar [2]
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implies that it is valid without the measurability assumption. In
Theorem 2 we provide a slight generalization of this fact.

Theorem 2. For almost all points X,

there exist arbitrarily small intervals I containing X such that

€ E, for every € > O

n*[IN {x e E: £(x)2 f(xo)}] > (1 - e)m(T) .

Proof. Suppose not; then for some ¢ > 0, § > 0 there exists

a subset EO of E of positive outer measure such that

x.¢ E

W€ ENI&0< n(I) < & = w{IN {xe B: £(x) 2 £(x;)]] <(1=-e)m(T). (&)

Choose an interval I, with m(Io) < § , such that

m"'(E0 N IO) > (1 = e)m(Io) . (5)
Let A = inf{f(x): x € Ey N IOI and choose a sequence (xk) of
points of Ej N I, such that f(x1)> f(xz) 2 ...+ A . Now
m‘[Iol'\ {xe B: £(x)> A}1< l:Lmkm"‘[Ioﬂ {xe B: £(x)2 f'(xk)}] <
| <@ - e)m(Io) < m*(Eo N IO)
by (&) and (5), so
m‘[Eoﬂ I, N fxe B: f(x)< A}l >0
In view of the definition of A , this implies that the set
EygN IyN fx ¢ B: £(x) = A}
is of positive outer measure; but at any point Xq of th.i.s set at

which it has upper density 1 (with respect to outer measure), it is

clear that (4) is contradicted.

Remark. Various generalizations to r" have been proved in

(1], (3], [6], and [8], as a referee has pointed out. I am grateful

for comments from him and the editor.
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