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SHIMURA AND SHINTANI LIFTINGS OF CERTAIN
CUSP FORMS OF HALF-INTEGRAL AND
INTEGRAL WEIGHTS

By
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Abstract. In [4], W. Kohnen constructed explicit Shintani lifts from
the space of cusp forms of weight 2k on T'o(N), which are mapped
into the plus space S, /2(F 0(4N)), where N is an odd integer.
This lifting is adjoint to the (modified) Shimura map defined by him
with respect to the Petersson scalar product. Using this construction
along with the theory of newforms on S, /2(F0(4N )) (where N is
an odd square-free natural number) developed in [3], he derived ex-
plicit Waldspurger theorem for the newforms belonging to the space
A /2(F0(4N)). Further in this work, Kohnen considered the +1
eigen subspaces corresponding to the Atkin-Lehner involution and
showed that the intersection of this + spaces with the corresponding
newform spaces are isomorphic under the Shimura correspondence.
A natural question is whether a similar result can be obtained for the
intersection of this (+1) subspaces with the space of oldforms. In this
direction, S. Choi and C. H. Kim [2] considered the case where N is
an odd prime p and constructed similar Shimura and Shintani maps
between subspaces of forms of half-integral and integral weights. The
subspaces considered by Choi and Kim are nothing but +1 eigen-
space under the Fricke involution. In this paper, we generalise the
work of Choi and Kim to the case where N is an odd square-free
natural number.
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1. Introduction

Let T'o(N) denote the congruence subgroup of the full modular group
SL,(Z). The work of G. Shimura [6] in 1973 gave the foundation of the theory
of modular forms of half-integral weight and also a correspondence between the
spaces of modular forms of half-integral weight and integral weight. Later in
1975, T. Shintani [7] used theta kernel to construct a modular form of half-
integral weight from a given modular form of integral weight. These are referred
to in the literature as the Shimura and Shintani correspondences. In [3], W.
Kohnen constructed a canonical subspace of Si,>(I'0(4N)) (the C-vector space
of all cusp forms of weight k +1 on I'g(4N)), when N is an odd positive integer.
This subspace is called the plus space, denoted by S, | /2(F0(4N )), which consists
of cusp forms f € Si1/2(I'0(4N)), whose n-th Fourier coefficients ay(n) satisfy the
condition that ay(n) # 0 implies that (=1)*n=0,1 (mod 4). Following Kohnen,
we also denote the plus space S;+1/2(F0(4N)) simply by Sj;1/2(N). When N is
odd, Kohnen [3] defined a modified Shimura lift on Sj;/>(N), which is mapped
into the space Sy (N), the vector space of cusp forms of weight 2k on I'¢().
In that work he also developed an analogous theory of newforms on Sj;/(N),
when N is odd and square-free and showed that the subspaces spanned by new-
forms in the respective spaces Si;i/2(N) and Sy (N) are isomorphic under a
linear combination of the modified Shimura lifts.

By constructing a kernel function, Kohnen [4] constructed Shintani liftings
from the space Sy (N) into the plus space Sji.i/2(N), when N is odd. Moreover,
by construction, these Shintani liftings are adjoint (with respect to the Petersson
scalar product) to the modified Shimura lifts defined by him. The W-operators
(introduced by Atkin and Lehner in [1] in the case of integral weight modular
forms) play a crucial role in the study of the theory of newforms in the space
of modular forms (of integral and half-integral weights). In [3], Kohnen intro-
duced analogous WW-operators in the space Si.1/2(N), which we define below.
Let p be a prime dividing N (since N is odd and square-free, p is an odd prime
and p? ) N). Then the Atkin-Lehner W-operator in the space Sy ;2(N) is de-
fined by

wy = p AU (pyW (p), (1)

where U(p) is the usual U-operator defined by U(p):>,.,a(n)e*™ —
> p=q a(np)e™™ and W(p) is the operator defined in a similar manner as the
Atkin-Lehner W-operator in the case of integral weight. Kohnen showed that
the operator w, is a hermitian involution and characterised its +1 eigenspaces
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in terms of certain properties of the Fourier coefficients of the forms. In fact,
for a prime p|N, the +1 subspace corresponding to the W-operator w, is de-
fined as

St A (N) = {f € Sk1p(N) | flwp = £} 2)

In [3], Kohnen showed that

k

SEhA(N) = {f € Seetp (V) |ay() = 0, if <( ij ) - 11} ()
and proved that S;7} ,(N) and S5 (N) (respective subspaces generated by new-
forms) are isomorphic under a linear combination of the modified Shimura lifts.
Further, he proved that the intersection of the newforms space with the above =+,
p subspace is also isomorphic via the (modified) Shimura correspondence to the
subspace Si"(N) N Sy?(N), where Si”(N) = {F € Sy (N)|F|W, = +F} (here
W, is the Atkin-Lehner operator in the space S»(N) for p|N). A natural ques-
tion is whether such a correspondence via the Shimura maps can be given for the
intersection of the W-operator eigenspace with the old class. In 2017, S. Choi and
C. H. Kim [2] considered this problem when N is an odd prime and showed that
one can use the kernel function constructed by Kohnen [4] to define a new kernel
function for the required mappings for the old class.

In this paper, we generalise the work of Choi and Kim to the case of odd
and square-free level N. More precisely, we construct Shimura and Shintani maps
corresponding to the subspaces of Sy 1,>(N) and Sx(N), consisting of cusp forms
which are eigenforms (with +1 eigenvalue) for the operator [], 5w, and [[,y W)
respectively. We first decompose this +1 eigen subspace into a direct sum of com-
ponent subspaces and we shall be deriving our mapping properties via these com-
ponent subspaces. After presenting the necessary preliminary details we describe
our main results in §2 and in section 3 we give a proof of our results.

2. Statement of Results

Throughout this paper N > 1 denotes an odd square-free natural number and
we assume that N is a product of v prime divisors, i.e., v(N) =v.

As mentioned in the introduction, we use the notation Siyi(N) for the
Kohnen plus space S, /2(F0(4N)). Let w, be the Atkin-Lehner W-operator
defined by (1) (due to Kohnen). The +1 eigen subspace (in Sji;;/2(N)) corre-
sponding to each of the primes p dividing N is denoted as Sli’l’ /2(N ) (Eq. (2)).
We now define the following subspaces of Si;1/2(N) and Sy (N), which are +1
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eigen subspaces with respect to the product of the W-operators:

St n(N) =2 feScapnW) AT we ==/ (4)
PIN
SspN(N) = F e Su(N) | FI[[ W, = +F 3. (5)
pIN

It is to be noted that in the case of integral weight, the Fricke involution Hy =

N 0
leN Wp on SZk(N>.
The spaces Siy1/2(N) and Sy (N) are decomposed as orthogonal direct sums

0 -1\ . . .
( ) is equivalent to the product of all the W-operators. i.e., Hy

(with respect to the Petersson scalar product) of these + subspaces as follows:

Seatp(N) = S5, (N) @ .11, (N),

(6)
Su(N) = S5 (V) @ Sy (V).

In this paper we shall be constructing the required correspondences between the
spaces Slj +'11V/2(N ) and S;,(’N (N). In order to get our construction of the maps,
we need to further decompose these spaces as follows. As per our assumption,
N is a product of v primes and so we consider the (+, p) subspaces correspond-
ing to each of the v primes and consider their intersection. Totally there are
2" subspaces consisting of forms in Sj.i»(N) which are eigenfunctions with
respect to all the w, operators, p|N with +1 eigenvalues. Let us assume that f €
Sk+1/2(N) is an eigenfunction with respect to w, with +1 eigenvalue for » number
of primes (say pi,p2,...,p,) and with —1 eigenvalue for s number of primes
(say q1,92,--.,4s), with r 4+ =v. The notation to keep the primes as p; and g;
are only local and we do not assume these in the general situation. i.e., when
we have a partition r+ s = v, r, s are non-negative integers, we assume that the
r primes are py, p2,...,p, and the s primes are ¢i,...,qs. So, when we vary the
numbers r, s in the partition of v, the number of primes in each group will also
vary corresponding to the partition. Then it is clear that such an f belongs to
S,j 4{\’/2(N ) (resp. S, jr]lv/z(N)) only when s is even (resp. s is odd). Moreover, the
number of such subspaces is equal to (z) Let us denote the subspace as defined
above for a given partition (r,s) of v as SIE'J:I>/2
negative integers such that r+ s = v. Then we define

S (N) = { € Sk o(N) | flwy = ££, pIN,s = #{p: flwy = ). (7)

(N). To be precise, let r, s be non-
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It follows that when s is a non-negative integer, then

k+1/2

St (V) if s is odd.

S

S;mN (N) if s is even,
ii1/2(V)

We denote by SV (N) (resp. %% (N)), the subspace S!"¥. (N) with s even

k+1/2 k+1/2 k+1/2
(resp. s odd). From the construction of these spaces it is clear that the spaces
Skiflv/z(N ) are decomposed as follows:

v
+,N o (r,s),
Sii1p(N) = g—%‘.@” Seirp (V)
s

v

- N _ (r.5),
Sk+1/2(N) - 7}6‘)@ Do Sk+l/2(N)'
s
In the second direct sum, o runs over all the (%) choices of s with 2|s and ¢’ runs
over similar choices when s is odd. Correspondingly we also decompose the space

S (N) in a similar fashion as follows:

SN = @ @, 8 (N),
5s=0,2ls
Y)‘+0_§:1‘J

v
SNy = @D @0 Sy (),
s=1,s odd
r+s=v
where SZ(L’S)"(N ) (resp. SZ(ZS)”(N )) is the subspace of Sy (N) consisting of forms
F with the property the F|W, = £F, p|N and r number of primes p with +1
eigenvalue and s number of primes with —1 eigenvalue such the s is even (resp.
odd) and r+ s = v. In the above direct sums, ¢ and ¢’ have the same property as
in (8).

Using the above decompositions, it is clear that in order to get the required
correspondences between S, i?l/z(N ) and SZ‘;C’N(N ), it is enough to construct the
mappings between the spaces S,ETI)/Z(N) and S{"”(N) when s is even. For this
reason, from now onwards we shall be assuming the following:

Assumption. Let r, s be non-negative integers such that r+s=v with
2|s.
Due to the above assumption that 2|s, to simplify the notation, we shall

remove the subscript ‘¢’ and write the subspace as S,E:?/Z(N)
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Kernel Function Constructed by Kohnen. We first describe the kernel
function introduced by Kohnen, which will be used for our construction. Let
D denote the set of all discriminants, i.e.,

D={deZ|d=0,1 (mod4)}.

For d € D, let us denote by Q, y, the set of all integral binary quadratic forms
O(x, y) = ax? + bxy + cy* with N|a and b> —4ac =d. Since N divides a, it is
to be noted that Q, y is an empty set unless d =[] (4N). The meaning of this
symbol is that d is a square modulo 4N. We make use of this symbol from now
onwards. For an integer k > 2 and D,D’ € D with DD’ > 0, define a function
denoted by Fi y(z;D,D’) as follows.

Fen(zD. D)= >

, (10)
QeQppr n Q(Z7 l)k

z e H, the upper half-plane. In the above definition, wp(Q) denotes the gen-
eralised genus character whose value is equal to (2), if (a,b,¢,D) =1 and Q
represents r with (r,D) =1 and takes the value zero otherwise. The series
converges absolutely and uniformly on compact sets and it defines a cusp form
of weight 2k on I'¢(N). Moreover, it is non-zero only when DD’ =[] (4N).
For D e D with (—1)*D > 0, let Py, n;\p|(t) denote the |D|-th Poincaré series

in the space Si;1/2(N), characterised by

{5 Prvsipy = c(|D])ag(|DI), (11)
where f € Si.1/2(N) and

1 T(k—1/2)
c(|D)) = iy ———=. 12
(D) = il o (12)
The kernel function constructed by Kohnen is defined as follows. For a fun-
damental discriminant D e D with (—1)*D >0 and for z,7e H, let

Qi n(z,7;D) = iNc,;ID Z mk=1/2
m>1
(=D m=0 (4)

D .
X Zﬂ([)(7>lk_]Fk,N/,([Z;D7(—])km) e2mim (13)

tIN
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where

_ 2k —2
Cp = (_1)[k/2]|D| k+l/27_[< 1 )23k+2’ (14)

and iy denotes the index of To(N) in SLy(Z). Since Fi y(z; D, (—1)*m) belongs
to Sy (N), it follows that Q y(z,7; D) belongs to Sy (N) with respect to the z
variable (for a fixed v € H). In Theorem 1 of [4], Kohnen showed that the omega
function defined above can be expressed in terms of the Poincaré series in
Sk+1/2(N). We give below the theorem proved by Kohnen.

THEOREM A ([4, Theorem 1]). The function Qi n(z,7; D) defined by (13) has
the Fourier development

> = — D minz
Qun(zD) =ine o Y n > (g)( /)Py x.o iy () | €2 (15)

n>1 d|n
with respect to z, where
(16)
In particular, for a fixed ze M, Qi n(z,7;D) is a cusp form in Si,i(N).

In the following, we make use of the above kernel function defined by
Kohnen to construct the required kernel function for our liftings. For D € D with
(=1)*D >0, set

orn(z,7) = Z m*12F y(z; D, (—l)km)ezm’m- (17)

m>1
(-)rm=0 4

As remarked earlier, the function Fi y(z; D, (—1)*m) is non-zero only when |D|m
is a square modulo 4N. Therefore, we have

pen(z =Y, m T PE (D, (<) m)e (18)

m>1
|[Dim=0 (4N)

Our first result is to show (using Theorem A) that the function ¢ y(z,7)
belongs to the Kohnen plus space with respect to the t variable.
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ProOPOSITION 1. For a fundamental discriminant D € D with (—l)kD >0, the
Sunction ¢ y(z,-) belongs to the space Sii1/2(N) for a fixed z € H.

Next, we use the following definition to choose the fundamental discriminants
for the purpose of Shimura and Shintani liftings.

DEerFINITION 1. For a fixed partition r + s = v with r, s non-negative integers,
and for an integer a, we say that a = [, ; (mod 4N), if a = [1(4) and the number
of primes p|N for which a is a quadratic residue mod p is equal to r and the
number of primes p|N for which a is a quadratic non-residue mod p is equal to s.
In other words, a € D is such that r = #{p\N : (%) = 1}, s = #{p|N : (%) = —1}
and r+s=vo.

ReEMARK 1. Using the characterisation (3), obtained by Kohnen, we see

that the space st

ol /2( ) can be defined in terms of the Fourier coefficients as

follows.

SEVA(N) = {f € Sia1ja(N) [ay () = 0 unless (—1)*n =, ; (mod 4N)}.  (19)

For a fixed pair (r,s) as chosen above with 2|s and r+s=uwv, let D be
a fundamental discriminant with (—1)*D > 0 satisfying the condition D = (P
(mod 4N). The genus character has the following property for the action of the
Atkin-Lehner operators W,, t|N, where W, =1][,, W, (see [4, p. 243]):

wp(Qo W) = (?) (). (20)

Further, Qpp' y (where D,D’ e D, DD’ > 0) is invariant under the action of
the W-operators. Therefore, it follows that for D = [, ; (mod 4N), the function
Fi.n(z D, (=1)"m) belongs to the space SZ(Z‘Y)(N). So, the function ¢ y(z,7)
defined by (17) (which is equivalent to (18)), is indeed a function (with respect
to the z variable) belonging to the space Sz(,r("s) (N). Hence, for a fundamental
discriminant D with (—1)*D > 0 and D = O, s (mod 4N), we consider the func-
tion ¢, y(z,7), defined by (18) which belongs to the space Si(N) (due to our
choice of D) as our kernel function with respect to the z variable.

By Proposition 1, ¢, y(z,7) belongs to Si,i/2(N) and the space is decom-
posed as follows:

Skr12(N) = S A (N) @ SN, (21)



Shimura and Shintani liftings 199

where the above is an orthogonal direct sum with respect to the Petersson
scalar product. So, for a fixed zeH as a function of 7, we project the func-

(r,s)

tion ¢, y(z,7) onto the subspace s\ (N) and write it as ¢, \/(z,7). So, we

k +1 /2
have

Pen(z,7) = ol (2,0) + 0w (2,0 (22)

To make it uniform, we denote our kernel function as go,(:}y (z,7) and as a

function of z, it is nothing but (18). In fact, as a function of z, (p,ﬁr’[f,u(z 7) = 0.
Using this kernel function, we define the required Shimura and Shintani maps.
Let DeD be a fundamental discriminant with (—1) D >0 and assume that

D =[], (mod 4N). Then the |D|-th Shimura map %p (., on Sk+1/2( ) and the
|D|-th Shintani map on S{"”(N) are defined as follows.
f|yD.(r,S)(Z) = <f7 ( Z, )>ra (23)
%.p
feSki;/z( ), and
* iN s -
F|y ;s)( ).:C*_<F7¢k_’N('77T)>:7 (24)
k, D
F e S{"(N), where the constant ¢;.p is defined by
cip = (=1)¥2ke p, (25)

with ¢ p as in (14). In the above {-,-», and <-,->. denote the inner products
with respect to 7 and z respectively. The following mapping property follows from
the fact that the function (o,(C N) (z,7) belongs to S,EL?/Z(N ) as a function of 7 and
belongs to S{¥(N) as a function of z:

(26)
S50 S (N) = ST (V).
In the following theorem we give the properties of the Shimura and Shintani
maps as defined above.

THEOREM 1. Let r and s be non-negative integers such that r+s=v and
2ls. Assume that DeD is a fundamental discriminant with (—1)*D >0 and
D =0, (mod 4N). Then the Shimura and Shintani maps defined by (23), (24)
satisfy the following properties.
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(@) We have the following explicit description of the Shimura map in terms of
the Fourier coefficients.

— D ¢ Tinz
Mg =tc| X 0|5 (3l ey (Pl aetuliplfa?) |
n>1 d\n,
(nﬁ):l (d,]lf):l
D k—1 k—1
£ (D)
tIN nxl1
t#1
D k r,s 2nintz
S (B0 s P | @)
d|n
(d.Nl/t)zl

where Oy is the constant defined by (16) and c(o) is defined by (12). (For
the definition of P;"\.,(t), we refer to §3.3.)

(b) The Shimura and Shintani liftings defined above commute with the action
of Hecke operators. Indeed, if ({/,N) =1, then for feS,Ei‘;)/z(N) and
Fe Sz(;;‘s)(N), we have

F1p,59|T() = SIT(¢*)|SD,1.9),

2 28)
F|‘¢D*,(r,s)|T(f ) = F|T(/)|yD*,(r,s)

The next theorem is concerned about the nature of the intersection of the

space S,Ei’fl')/z(N ) with the old class. We show that exactly half of the oldforms

(in terms of the dimension of the space) belong to the space S, +’]1V/2(N ). We prove

this fact by producing explicit generators for the old class with respect to the

component spaces Sz&?/z (N).

Tueorem 2. Let SVoM(N) =8N (N)N S (N), where the space

k+1/2 k+1/2 k+1/2
S,ffl /2(N ) is the orthogonal complement of the space of newforms S;¢| /2(N ) in
Si+1/2(N). Then the dimension of the space S,;:';V/;zold(N) is given by
. 1
: ,Nsold .
dim Ski]lv/zo (N) = 3 dim S,;’fl/z(N). (29)

REMARK 2. In the proof of the above theorem (presented in §3.4), we have

given explicit description of the generators for the space S j;]lv/;z”ld(N ).
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3. Proofs of Theorems

3.1. Proof of Proposition 1. Using the kernel function Q; x(z,7; D) defined
by (13), it follows that the function ¢, y(z,7) given by (18) can be expressed as
follows.

(/’k,N(Z» T) = il;lckyDQk.N(Za 7; D)

72# < ) Z mkfl/sz’N/,(tZ;D7(—l)km)ezmmr

{|N m>1

1#1 [Dlm=0 (mod 4N)
= iy'er pQu n(z,7; D) Z,u ( ) (pk nytz, 7). (30)
N
)

Now we use induction on the number of prime factors of N. If N =p is
a prime, then the second part in the last line of the above equation has only
one term which is (%)p"’1¢k71(pz, 7). But ¢, ,(z,7) is nothing but (upto a con-
stant) Q 1(z,7; D) which is an element of Sy />(1) and @ ,(z,7; D) € Sii1/2(p).
Therefore, ¢, ,(z,7) € Si11/2(p). Hence, by induction (on the number of prime
factors) we see that ¢ ,(z,7) € Sgi12(?) for each ¢|N, ¢t < N, from which the
proof follows.

3.2. Proof of Theorem 1(a). In order to get the required property, we
need the following properties of the Poincaré series in Sy, /2(N). For a natural
number n with (=1)*zn =0 (4), we have the n-th Poincaré series Py y.u(7) in
Sk+1/2(N). As per the assumptions of the theorem, let us take the pair (r,s)
where r and s are non-negative integers such that r+s=v and 2|s. We
consider the projection of Py n.,(r) onto the space Skﬁ/z(N), denoted by
P,LJNH(T) Further, one also has the n-th Poincaré series in S,E +1)/2(N)’ de-
noted by P *(r), characterised by the property {f,P,*) = c(n)as(n), for fe
Sl£'+1>/z(N ). The following proposition gives some properties of these Poincaré

series.

PROPOSITION 2. Let aeN, (—1)*a =01 (4). Then for fixed non-negative
integers r, s with r+ s =wv, 2|s, we have the following properties.
() If (~1)*a=0,, (mod4N), then Py, =Py As (a,N) =1, we also
havePkNa—PkNa ’
(i) If (-1) 2 O, (mod 4N), then Py, =0
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Proor ofF ProrosiTION 2. We write the Poincaré series Pj y.,(7) as

r,s s
P via(T) = Pk',N;a(T) + Plic,N;oc(T)’

where P,’cﬁz(r) belongs to the orthogonal complement (with respect to the

Petersson scalar product) of S,ETI)/Z(N) in Sii1/2(N). Using (19), we write the
Fourier expansion of P (7) as

P]Z:A;V;oc(f) = Z Clp,:j“"v:’((/)€2m/r.
¢>1,(-1)*¢=0(),
(-)*/=0,, (mod 4N)
Then for each /e N with (=1)/ =0), (-1)/ =0, (mod 4N), we have

ap(2)e(@) = CPJY Priad =PI, Py >

=Py P77 = c(l)aprs, (£), (31)
where ¢(«) is defined by (12). This implies that
aps (£) _ g wi(x) =0, unless (—1)*a =0, (mod 4N)
Piva ) () RN T = s '
since P)* e S,(N). This implies that if (—1)*a# [, , (mod4N), then
P.’y., =0, which proves (ii). To prove (i), consider
ap(@)e(a) = CPL*, PLYS = CPEL Iy = (g (7). (32)

Combining (31) and (32), we get P, = P,°, which proves the first part of

(i). Since (—1)*a =0, (mod 4N) it follows  that (, N) = 1. For o, f with
(=1)*a =0, (mod 4N) and (—1)*g =0, (mod 4N), we have
CPrw Pivpy = <Pinia — Py, Peneg — P>
= c(B)ap, ., (B) = {Punsus P> = CPL*, Pinig) + (P PR
= c(B)ar y..(B) — c(0)apr+(2) — c(B)apy () + c(Bapy+(B)
= c(p)(ap, ., (B) — ap;+(B)) (using (32))
= c(Baprs ().

k,N;a

Therefore, we have the following:

c(Blap (B) = c(@)ap (). (33)

k,N;o k,N:p
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Now, consider

<P/€A,N;C<’P1::‘;\#/)’> = <P1’;;V,O( + Pl'c ;éa’PIZ ;éﬂ>

rysL rsL
= <Pk,1v;w k,N; ﬁ>

= c(B)aprs (B)

k,Nso

= c(t)aprst (o) (using (33))

kN:

=0 since(—1)ku= [, s (mod 4N) by our assumption.

(In the above, we have used the fact that (P, ,’c;é ﬂ> =0, which follows
from (21).) This shows that aprs (,8) =0 for all g with (=1)*p = O,y (mod4N),
i.e., whenever (— l)koc =0, (mod 4N) and (o, N) = 1, the Poincaré¢ series Py .,
behaves like a Poincaré series in the (r,s) space. This implies that Py y., = P.*
and completes the proof of Proposition 2. O

Now we return to the proof of 1(a). Using inductive arguments, it follows
from (30) that the function ¢ y(z,7) can be expressed as follows.

Pk n(2,7) = iv ek pQu n(z,7; D) +Z( ) li];}tck,DQk,N/,(tz, ;D). (34)

t|IN
t#1

Now using Theorem A, we can express the omega functions in terms of the half-
integral weight Poincaré series. Explicitly, we have the following expression for

¢k,N(va):

D nz
pen(zT) =0 Y n Y (3) (n/d)* Py, .2 piyja>(7) | €

nx>1 dln,

(d,N)=1
(@)
{IN nx1
t#1

X

Z (§>(n/d)kpk,N/t;n2D/dZ(T) pminiz | (35)

d|n,

(d,N/1)=1
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As a function of the 7 variable, we project the above function onto the space
S,Ei‘?/z(N ) and obtain the following expression.

TS D ninz
() =0 Y on (d)(”/d) Py vy () | €

n>1 d|n,

(d,N)=1
@)
1N nx1
t#1

|2 <§> (/D) P ooy () | €| (36)
(d,]{\if‘/rl;):l
Since D =0, ; (mod 4N), by Proposition 2, the first part of the above expres-
sion is non-zero only when (n, N) =1. Moreover, in this case the projected
Poincaré series coincides with the Poincaré series in the space (Proposition 2 (i))
and hence we get the following expression for the Fourier expansion of the
Shimura map.

N =dc) 2 ; @ (n/d)"a; (n*|D|/d*)c(n?|D|/d?) | ¥
(n, /V) 1 (d,N);l
DY\ i k-1
FE (D)
{N nx>1
1#1
( n/d) Py oy (0 €77 (37)
d|n
le/t:
where J; and c(a) are constants as defined before. This completes the proof

of 1(a).

3.3. Proof of Theorem 1(b). In this section, we prove the required com-
mutative properties with respect to the Hecke operators. For a positive integer
¢>1 with (/,N)=1, the Hecke operators T(/*) and 7(/) on the spaces
Sk+1/2(N) and Sy (N) are hermitian with respect to the Petersson scalar product.
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Further, we have the following orthogonal decomposition (with respect to the
Petersson scalar product) of the spaces:

Ser12(N) = S{,(N) @ SV (N,
ol (r,s)L
Sk (N) =S, (N) @ Sy, 7~ (N).

The first decomposition is already given by (21) and the second decomposition is
the analogous one for the integral weight case. Therefore, the Hecke operators
T(/?) and T(/) preserve the respective subspaces. Thus, we have the following
lemma.

LemMa 3. Let (/,N)=1. Then one has

(PN T(2)™ = gy T(£2),

and
(e NIT()" = NI T ().

In the following we shall be using the inner products in both the spaces of
half-integral and integral weights. To distinguish this, we use the notation (-, >,
for the inner product in Sy;/>(N) and the notation <-,-», for the inner product
in S5 (N). Also, we denote the D-th Shimura map on Sj.i/(N) defined by
Kohnen [3] as % y.

For a positive integer #|N, let f € Si;1/2(¢). Then

Q2,1 D)T(2))e = LfIT(0), Qo =2, D).
= fIT(1*) Sy,
= f19p.T()
= <f5Qk,t(7Za 2 D)>‘L’|T(/)
= <f7Qk,t(_Za T7D)|T(/)>‘E

In the above we used the fact that the Shimura map %}, commutes with Hecke
operators. Therefore, the above computation shows that for each ¢|N,

Qi (2,7, D)|T(/2) =Q (—Z,7; D)|T (7). (38)

In particular,
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Q. nyi(—12,1D)|T(?) = Qe n (=2, 7 D)|T(£7)|B(2),
=Q nyu(=Z,7;D)|T(/)|B(t). (by (38))
= QkﬁN/,(—tZ,z;D)|T(/) (since (/,N)=1),

where B(t). is the operator which maps a function /(z) into 4(zz). Now, pro-
ceeding as done in [2, p. 312], it is easy to see that the following commuting rule
holds.

f|‘¢D7 (r,S)|T(/) = f|T(ZZ)|‘yD, (r,8)9 (39)

where f € S,Er:l)/z (N). In a similar way one can prove that for F € Sy (?), t|N, one
has

<Fan,r<'a _7_'-; D)‘T</)>: = <F7 Qk,t<'7 _7_'-; D)|T(/2)>z7 (40)
from which it follows that

FIS5 .| T(£%) = FIT(0)| 95 ;.- (41)

3.4. Proof of Theorem 2. The case N = p was already considered by Choi
and Kim in [2, Lemma 4.1]. So, we assume that N has at least two prime factors.
We first consider the case N = pp,, p1 # p> and then discuss about the general
case. When N = p;p,, the oldforms in Sii>(p1p2) consists of 3 eigenclasses,
namely, Sii12(1), Sy /z(p,-), i =1,2. By the theory of newforms developed by
Kohnen, it is enough to determine forms belonging to each eigenclass in the
projected space S, +"/1V/2(N). In this case the pairs (r,s) are given by (2,0), (0,2)
and (1,1), of which we need to consider the first two cases where s is even.
Note that the pair (1,1) corresponds to the two subspaces (+,—), (—,+), the +1
subspaces corresponding to the primes p;, p,. First we assume that (r,s) = (2,0).
i.e., the subspace consisting of forms which are eigenfunctions with respect to wy,,
i = 1,2 with eigenvalue +1. Let g be an oldform in the eigenclass generated by
forms in Sj1/,(1) such that g|w,, =g, i = 1,2. The function g can be written as
g = fi + f2|wp, + f3|Wp, + fa|Wp,p,, where f;, 1 <i <4 are cusp forms in Sy, /5(1).
We claim that f; = f, = f3 = fs. First, we use the fact that g|w, = g. Since wjl is
identity, this implies the following.

f1|Wp1 +f2 +f3|wp1p2 +f4|wp2 :fl +f2|WP1 +f3|wp2 +f4|WP1P27
(o= 1)+ (i = 2)wp, = (5 = fa)wps + (fa = f3)[Wpip,
=[5 = fa) + (fa = f3)|wp,] | wp,.
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In the last equation, the left-hand side is a function in the space Sj.i/2(p1),
whereas the right-hand side is a function in Sy ;/(p1p2), which is of the form
hlw,,, where h = (f3 — fa) + (fa — f3)|Wp, € Sk41/2(p1). This implies that the func-
tions on both the sides are zero. To get this, we use Eq. (44) of [3] to get h|w,, =

<571> py Y (=h|U(p3) + h|T(p3)). Using the Shimura correspondence and de-
2

noting the Shimura image of /& as H € Sy (p;1), we see that both H and H|U(p,)
belong to Sy (p1), from which it follows that A = 0 (this follows from [1, Lemma
16]). In other words /h = 0. Therefore, we have

fl _f2 = (fl _fé)|‘4}p17
Si—Ja=(fs=fa)lwp,-

Using the same argument as above (note that the LHS functions are in Sy />(1)
and the RHS functions are of the form /y|w,,, where A € Si.y/5(1)), we con-
clude that f; = f; and f; = f4. Repeating the above arguments by assuming that
g|wp,, =g, we obtain fi = f3 and f, = f4. Thus, fi = f> = f3 = f4 and g is written
as g = f + flwp, + fIwp, + f|Wpp,, Where f € Si,1/5(1). Similarly, for the case
(r,s) = (0,2), it follows that g takes the form g = f — f|wy, — f|Ws, + fIWp,pss
where f* is Hecke eigenform in Sy /»(1). Therefore, the contribution from

Sk+1/2(1) to the intersection S,;/lv/z( ) N SP H(N) is given by

<f+f|Wp| +f|sz +f|Wp|sz7f_f|Wp1 _f|sz +f|Wp1 wp, : f € Sk+1/2(1)>-

This shows that the (dimension) contribution of the space Siii/>(1) in the

subspace Sk i /2

tions from S} /2(p,-), i=1,2. An element in the old class will be of the form

(N) is exactly 2 dim Si/5(1). Next, we consider the contribu-

g=nhN+ Llwyp, N, fre S /2(1),-) are newforms. We need the properties that
glwp, =g, i =1,2. Arguing as before, this would lead to f; = f, = f (say) and
moreover, as f is a newform, we must have f|w, = f, in other words, g =
S+ fIwnp, f€ SkL’;‘z " (p;). The above discussion is for the case (2,0). Now,
similar arguments imply that the contribution from S’ ,(p;) (for the case (0,2))

k+1/2\P
is given by g=f— flwyn)p, [ eSk i /2 )1 (). Therefore, the contribution of
SEh /2( pi) in the subspace S, A /2(N) is given by

A fwngp f € SETR(N)).

Since S (p:) = SIP(p) @ S| k+1/2 "e“(p,-), we see that the (dimension)

k+1/2 k+1/2
contribution of the space S ,(p;) in S;7,,(N) is exactly dim Spt /2( pi). Thus,

k+1/2\P /+1/z
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we have

2
dim S, (N) N SP 5 (N) = 2 dim Siaajn(1) + Y dim S 5 (pr)
i=1

1

1
=3 dim S/?fl/z(N)-

Now we consider the general case. Let us consider the old class generated by
the space Sp'%"| (1), where 1[N, t < N. From the newform theory, it is known that
this old class has dimension equal to d(N/r) dim S;'¥ ,(¢), where d(n) is the
number of divisors of n. Note that as N is square-free, d(N/f) = 2%, where o is
the number of prime factors of N/z. We require that an old form g in this class
to be an eigenform with respect to the W -operators w,, where p|N/t. Note that
as the base functions are newforms in S| /z(t), they are already eigenforms with
respect to w,, for p|t. For each prime p|N/t, if we require the condition that g
is an eigenfunction with respect to w,, then the number of components in the
old class reduces by a factor of 2. We shall be repeating this process for each
prime p|N/t and so we will be repeating o times. So, finally in order that g is
an eigenfunction under each W-operator for p|N /¢, the number of components
becomes 2%/2* = 1. Therefore, for each Hecke eigenform (newform) in S;¢} /2(t),
there is a unique form which belongs to the space S,ffl /2(N): which is an
eigenform w.r.t all w,, p|N/t. Since we have to consider the (r,s) case, we shall
get into the precise contribution of a newform in the required old class. If p;,
1 <i<ris one of the primes dividing the level ¢, then the newform f € S| /2(t)
is an eigenfunction with respect to wy,, for p;|¢ with eigenvalue +1. Similarly, if
g; divides ¢, then f|w, = —f. For the rest of the primes p; and ¢; not dividing ¢,
we need to assume the respective eigenvalue (+1 or —1) and finally we will end
up with only one linear combination generated by a newform in S /2(t)> which
is described below.

9=+ fiw, (42)

IIN/t

where w; =[] 1 Wp and the sign in the linear combination is —1, if the number

p
of primes ¢; dividing / is odd. Now, we compute the dimension of the space
S+.N;01{1(N)
k+1/2 : o

Case (i): Let feSla’l’/";”(t). This implies that #{q;: 1 < j <s,¢;|N/t} is

even. As the number of prime divisors of N/¢ is «, the total contribution (in
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S+,N;ald(N)) from S+,t;n81v(t) is given by

k+1/2 k+1/2
% o
> <S) dim S 55" (0). (43)

s=0,s even

Case (ii): Let feS.;7/7"(¢). In this case, #{g;:1 < j<s¢IN/t} is odd.

The total contribution of S, ;i;;’;"'(t) in S +’]1V/;2"M(N ) is then given by

- o : —, t;new
> (S> dim S, 575" (0). (44)
s=0,s odd

. x o % o ..
Since Y. ( > = 3 ( ) =2*"! combining these two cases, we see

s=0,s even \S s=0,s odd \S
that the total contribution from S} ,(7) in the old class S, +’]1V/:'2"ld(N) is
oa—1 . +, t;new . —, t;new -1 . s
277 H(dim §7;7/5" (1) + dim S 777 (1)) = 2771 dim S 5 (2).

Therefore, we have

. . . 1 ..
dim S5 (N) = Y7 2% dim SP(0) = 5 dim SP (V). (4)
{|N, <N

Note that explicit description of the space S, J’JV/*;M(N) follows from (42). This
completes the proof of Theorem 2.

We remark that in [5, Theorem 5.11] a decomposition of the old class in
a general set up was given. In our proof we have not used this and carried out
the characterisation by only using the old class decomposition in terms of the

W -operators.
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