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48 DIMENSIONAL EVEN UNIMODULAR NEARLY
EXTREMAL LATTICES.

By

Michio OzEek1

Abstract. In this paper we introduce the notion of an even
unimodular nearly extremal lattice in the case of 48 dimension.
We prove two basic properties of such lattices L. First we prove that
any nearly extremal lattice L is generated by the vectors of norm 4
and norm 6 in L. Next we prove that the Siegel theta series of degree
2 associated with an even unimodular nearly extremal lattice is
determined by the Fourier coefficients which are connected with the
vectors of norm 4.

1. Introduction

An even unimodular 48 dimensional lattice with the least non-zero mini-
mumal norm 6 is called an even unimodular extremal lattice of dimension 48.
Only four such lattices are known (c.f. [22]).

In the present paper we consider a class of the even unimodular lattices of
dimension 48 with the least non-zero minimal norm 4. We call such a lattice as
a nearly extremal lattice. Later we will discuss some basic arithmetical properties
of such lattices. Then we study some examples of such lattices.

Our first result is that any 48-dimensional even unimodular nearly extremal
lattice L is generated by the norm 4 vectors and the norm 6 vectors in L.
(Theorem 3.7). This result is showed by using the extension of our previous
method [27], [28].

Our second result is that the Siegel theta series of degree 2 associated
with an nearly extremal 48-dimensional lattice is determined by the Fourier
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coefficients that are connected with the norm 4 vectors in the lattice
(Theorem 5.10).

The present author has a strong feeling that the generating subsets with the
minimal norms of an even unimodular lattice would determine the Siegel theta
series completely for past ten years. As evidences for such an expectation we
collect some results.

In [15] Leech constructed the even unimodular 24-dimensional lattice with
the minimal vectors of norm 4. From his paper the fact that the norm 4 vectors
generate the full lattice can be read off. By the works of Niemeier [23] and
Venkov [40] we observe that any 24-dimensional even unimodular lattice is gen-
erated by the vectors of norm 2, 4 and 6. In degrees 1, 2 and 3 we computed
some Fourier coefficiens of the Siegel theta series that are associated with the
even unimodular overlattices of the root lattices of type Eg”, Doy, Ary, E7® Ay,
D¢, Ec ® D7 ® Ayy. The set M(g,k) of all Siegel modular forms of degree g and
even weight k forms a linear space of certain dimension. The set of Siegel cusp
forms of degree g and weight k forms a linear subspace S(g, K) of M(g,k). In the
Appendix we briefly give a description of M(g,k), S(g,k) with g > 3, k =12, 16.
In these cases we only need to use the Fourier coefficients that are connected with
the vectors of norm 2 and norm 4. In [31] the present author has showed that the
Fourier coefficients of the Siegel theta series of degrees up to 5 associated with
the Leech lattice can be computed in principle. The computations are restricted to
the case when the index 7 of the Fourier coefficients a(7, L) come from the norm
4 vectors in the Leech lattice L. But the method is easily extendable to more
general types of indices 7.

In [41] Venkov has proved that any even unimodular 32-dimensional
extremal lattices is generated by the minimal vectors (norm 4). In [24] Oura-Ozeki
have showed that any even unimodular 32-dimensional extremal lattice has the
identical Siegel theta series of degrees up to 3.

In [27] the present author has showed that any even unimodular 40-
dimensional extremal lattice is generated by the minimal norm vectors (of
norm 4) and the next minimal vectors of norm 6. In [28] the present author has
showed that any even unimodular 48-dimensional extremal lattice is generated by
the minimal vectors of norm 6. Later other people take interests in this line
of research. In [13] Kominers and Abel has showed the same kind of result in
40, 80, 120 dimensions. See also [5]. In [14] Kominers extends the same kind of
results in dimensions 56, 72 and 96.

In [33] Salvati Manni showed that the Siegel theta series of degree up to 3
associated with the even unimodular 32 dimensional extremal lattices is unique
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and that the difference of the two Siegel theta series of degree 4 associated with
the two non-isometric extremal lattices is a constant multiple of the square J> of
the Shottky modular form J of the Siegel cusp form of degree 4 and weight 16.
In [24] Oura and the present author have showed that the Fourier coefficients of
such series are in principle computable (some of them are given there). In the
same article we showed that the Fourier coefficients of the Siegel theta series of
degree 4 associated with such lattices L are computable if we could determine
one peculiar Fourier coefficient a(7, L), where the index T is connected with the
vectors of norm 4 in L. In [25] we developed a method to compute a(7, L) for
the peculiar 7" in the cases that the lattices come from the binary extremal self-
dual codes, which are classified by [2], [3]. The same kind of results are given in
[30] for the 40 dimensional case and in [32] for the 48 dimensional case. In the
treated cases we confined ourselves to the Siegel theta series of low degrees. Our
conviction would be that the generating subsets of small norms determine the
Siegel theta series of higher degrees also.

The present article is a trial to show that the two trends of researches
described above may collaborate.

2. Some Preliminaries

2.1. Some Definitions from Lattice Theory. Let Z be the ring of rational
integers and Q the field of rational numbers. A finitely generated Z-module L in
QY with a positive definite metric is called a positive definite quadratic lattice.
Since we treat only the positive definite quadratic lattices, we shall omit the
adjectives “‘positive definite quadratic”. A lattice L is integral if L satisfies
(x,y) € Z for any x,y € L where (,) is the bilinear form associated to the metric.
Two integral lattices L, and L, are said to be isometric if and only if there exists
a bijective linear mapping from L; to L, preserving the metric. The dual lattice
L# of L is defined by

L*={yeL®;Q|(x,y)eZ, VxeL}.

A lattice L is called even if it holds that (x,x) =0 (mod 2) for all xe L, and L is
unimodular if L = L#. The maximal number of linearly independent vectors over
Q in L is called the rank of L. It is known that the rank of an even unimodular
lattice is divisible by 8. A lattice L is even if any element x of L has even norm
(x,X).

Even unimodular lattices exist only when n =0 (mod 8). The minimal norm
of a lattice is Min(L) = minye ) {0} (X, X).
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When L is even unimodular of rank » it holds that (conf. [18])

n

Min(L) < 2[24

[+2
A lattice which attains the above maximum is called an extremal lattice.

In the case that the dimension is 48 the extremal even unimodular lattice
satisfies Min(L) = 6. We say that an even unimodular lattice L is called nearly
extremal if it satisfies the condition Min(L) = 4.

In an even lattice L, for the non-zero vector x € L the inner product (x,X) is
an even integer, and we say that x is a 2m-vector if (x,x) = 2m holds for some
natural number m. Let Ay, (L) be the set defined by

(2.1) Aom(L) = {x € L|(x,x) =2m}.

2.2. Some Definitions from Coding Theory. We confine ourselves to the
binary codes. For the codes over other finite fields or rings one may refer to [17].

Let F, = GF(2) be the field of 2 elements. Let ¥ = F} be the vector space
of dimension n over F,. A linear [n,k] code C is a vector subspace of V of
dimension k. An element u in C is called a code word of C. In V, the inner
product, which is denoted by u-v for u, v in V, is defined as usual. Two codes
are said to be equivalent if after a suitable change of coordinate positions the
code words in the two codes coincide. The dual code C* of C is defined by

Ct={ueV|u-v=0, YveC}.
The code C is called self-orthogonal if it satisfies C C C*, and self-dual if it
satisfies C = C*. Self-dual [n,k] codes exist only if n =0 (mod 2) and k = g

Let u = (u,up,...,u,) be a vector in V. The Hamming weight wt(u) of the
vector u is defined to be the number of i’s such that u; # 0. The Hamming
distance d(u,v) on V is defined by d(u,v) = wt(u — v). The minimal distance d(C)
of a code C is defined by

d(C) = Minu,veC.uiv d(“v V)
= MinueC,u#O Wl(ll).

A binary [n, k] code with the minimal distance d is called a binary [n, k, d] code.

2.3. Code Construction of Lattices. We confine ourselves to the binary
code construction of even unimodular latties. For the construction of even
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unimodular lattices by the codes over ring one may refer to [4], [38] or
[29].

Let C be a binary self-orthogonal [, k| code. We recall the construction B,
for the lattices (c.f. Conway-Sloane [4], Chap. 5). Let

p: 1" — Fj

denote the reduction modulo 2. Then

M(C) ﬁ{x (X],XQ,...,Xn) epil(c)

Zx,- =0 (m0d4)}

i=1

defines an even lattice. Suppose that C is a doubly even self-dual binary (not
necessarily extremal) [n,n/2] code. The so-called doubling process is as follows.

Put
y:{

(1,...,1,=3) if n=38 (mod 16),
(1,...,1,1)  if n=0 (mod 16).

S-S

Then
N(C) = M(C)U (y+ 4(C))

is an even unimodular lattice of rank n for n > 8, n =0 (mod 8). Minimal norm
of the obtained lattice depends on the minimal distance of the code.

2.4. Theta Series Associated with the Even Unimodular Lattice. We collect
two important facts about theta-series associated with the lattice. Before doing so,
we need some preliminaries.

Let L be an even unimodular lattice of rank 8k, then the (ordinary) theta
series for L is defined by

(2.2) 9(z,L) = exp(xi(x,x)z)

xelL

where z is a complex variable with positive imaginary part. This series is re-
written as

o0
(2.3) Za (2m, L) exp(2nimz),

m=0

where a(2m,L) = |Ay,(L)| and |X] is the cardinality of a set X.
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2.5. Modular Forms of Degree 1. Let $;, ={z=x+ yie C|y >0} be the
complex upper-half plane. A complex valued function f(z) on &, is called a
modular form of (even) weight 2/ belonging to the full modular group SL,(Z)
if it is holomorphic on $, satisfying

(i) f<jjiz)(cz+d)2hf(z), with (j Z)eSLz(Z),

(ii) f(z) is holomorphic at infinity.

The condition (ii) means that when f(z) is expanded as a Fourier series (this
expansion is guaranteed by the condition (i)):

n=+oo

(2.4) f(2) =" au(f) exp(2minz),

n=—0o0

then the terms ), ,a,(f) exp(2ninz) vanish.

The set M(1,k) (k=0 (mod2)) of the modular forms of weight k and
degree 1 forms a finite dimensional linear space over the field C of complex
numbers and the dimension of M(1,k) is also well-known. For the precise
development of the theory we may refer the books [35] and [36], and for the theta
series with spherical function we refer to [34] and [9].

A modular form f(z) e M(1,k) whose Fourier series expansion such as (2.4)
satisfies @p = 0 is called a cusp form of weight k. The set S(1,k) of the cusp
forms of weight k& forms a vector subspace of M(1,k).

Theta series with the spherical function is defined by

(2.5) 9(z, Py, L) =Y Py(x;a) exp(mi(x,X)z),

xel

where o is any vector in R with 8k = rank(L). This series is rewritten as

(2.6) Iz, Py, L)=>" " Py(x;a) exp(2nimz).
m=1xeAy,(L)

We quote a well-known result without giving the proof as a proposition.

PrROPOSITION 2.1. Let L be an even unimodular lattice of rank 8k. Then it
holds that

(i) 9(z,L) e M(1,4k), and

(i) 9(z,P,,L) e S(1,4k +v).
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We give some well-known modular forms:
E4(z) = 1 4 240q + 2160g> + 6720¢° + 17520¢* + --- € M(1,4),
Es(z) = 1 — 504q — 16632¢* — 122976¢° — 532728¢* + --- € M(1,6),
Ana(z) = q — 24¢% +252¢° — 14724 + -- - € S(1,12).

Here we use the convention ¢ = exp(27iz).

2.6. Siegel Theta Series. A Siegel theta series of degree g (g > 2) attached
to the even unimodular lattice L is defined by

0y(Z,L)= Y exp(mio([xi,...,x,]2)),

where Z is the variable on the Siegel upper-half space of degree g, [xi,...,X,] is a
g by g square matrix whose (i, j) entry is (X;,X;) and o is the trace of the matrix.

The Siegel theta series is a class of Siegel modular forms of degree g. We do
not go into the full detail of Siegel modular forms of degree g. Concerning this
the readers may refer the book by Freitag [8]. Later we will need the linear space
of the Siegel modular forms of degree 2 and the weight &, which is denoted by
M2, k).

The Siegel theta series of degree g can be expanded to

0,2z, L)= > a(T, L)%,
Te? (L)

Here ?f;(Z) is the set of positive semi-definite semi-integral symmetric square
matrices of degree ¢, and a(7T,L) = {<x1,...,X,0 € LY|[xy,...,X,] =2T}|. An
element 7 of @;(Z) is called an index for the Fourier coefficient a(T,L).

We shall say that 27 is represented by the lattice L if a(7T,L) # 0.

We quote one importatn property of a(T,L) above as a proposition:

PropoSITION 2.2. Let a(T,L) be a Fourier coefficient of the Siegel theta
series of degree g. Then we have

a(UTU',L) = a(T, L),

where U is a unimodular matrix of size g and U' is the transpose of U.

For the proof of this we refer to [37], formula (48).
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3. Some Basic Properties of Nearly Extremal Lattices

3.1. Relations among the Fourier Coefficients. Let %, be any one of 48
dimensional even unimodular nearly extremal lattices. By Proposition 2.1 we have
9(z, %) € M(1,24). Since dime M(1,24) = 3 we take ES(z), E; (2)A1n(z), AL (2)
as a basis of M(1,24). The Fourier expansions of ES(z), E;(z)A1(z), Al (z) are
given by

ES(z) = 1 4 1440q + 876960¢> + 2920723204 + 57349833120¢*
+6660135541440¢° + - - -,
E} (2)A1a(2) = g+ 696¢% + 16225247 + 12831808¢* + 34188270¢° + - - -,
A% (z) = ¢* — 4847 + 1080¢* — 15040¢° + - -

For the lattice %,. by noting that a(2,%,.) =0 the theta series is written
as

Nz, L) = 1+ a(4, Zu0)q* + a(6, Loe)q® + a(8, Zue)q* + a(10, Le)g® + -+ -
= EJ(2) + a B (2)An(2) + A} (2),
with some constants ¢; and c¢;. By comparing the coefficients we have
¢y = —1440, a(4, %) = co — 125280,
a(6, %) = 292072320 — 1440 - 162252 — 48 - ¢;.

By rewriting the above relations we have

PrOPOSITION 3.1.  The Fourier expansion of the theta series 3(z, %) is com-
pletely determined by the value a(4, %,.) and other values a(2n, %,.) n >3 are
explicitly expressed by a(4, %,.).

For instance we have

(3.1) a(6, L) = 52416000 — 48a(4, L),
(3.2) a(8, Z,.) = 39007332000 + 1048 - a(4, %),
(3.3) a(10, Z,.) = 6609020221440 — 15040 - a(4, ).

3.2. Inner Product Relations. By Proposition 2.1 the series 3(z, P2, %) €
S(1,26). Since dimc S(1,26) =1 and it is spanned by E}(z)Es(z)A1a(z), we
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have the equality

= ¢3E{(2)Es(2)Ana(2)
= c3(q — 48¢% — 195804¢° — - - ).

Since A, = ¢, we have ¢3 = 0. From this it follows that

ProPOSITION 3.2.

Z Py(x;a) =0 for n>2.

XEAZH
By rewriting these equations we have

ProrosiTION 3.3. Let the notations be as above. Then we have

2n
(3.4) > (x0) = 13900 L) (o,0), n=2.

xX€eAy,

Similarly we have

o0

9z Po, Zoe) =D > Pa(x;a)q”

n=1 xeAy,
= e ES(2)A12(2) + csEs(2)A,(2)
= c4(g + 93697 + 3314524 + 53282368¢" + 3468981150¢° + - - )

+es(q? + 192¢° — 8280¢* + 147200¢° — - ),

o0

9z Po, Loe) = D > Po(x;a)q"

n=1 xe Ay,
= ¢6E; (2)Es(2)A12(2) + c1E6(2) AL, (2)
= c6(q + 1924 — 2051644¢° — 80642048¢* — 92177422504 — - --)

+ ¢1(¢> — 552¢° + 8640¢* + 116000¢° — - - ),
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= E} (2)An(2) + o E; (2)A(2)
= ¢5(q + 1176¢% + 5582527 + 134859328¢* + 169789932304 + - - -

+ eo(g? + 4324 + 399604 — 14185604° + - -,

SZPK), ZZP]OX(Z

n=1 xeA,,
= c10E{ (2)Es(2)A12(2) + en Ea(2) Es(2) ATy (2)
= c1o(q + 432¢” — 1569244° — 1294599684 — 29013680250¢° — - - -)

+ c11(q? — 312¢% — 1216804¢* + 10040004° + - - -),

with some constants ca, s, ..., c11. From these equations we get (infinitely) many
identities among ) _ Pu(x;@)’s. We will use the following identities.

PropPOSITION 3.4. Let %, be any one of even unimodular 48 dimensional
nearly extremal lattices, and Ay, k = 4,6, ... be the set of norm k vectors in %y,.
Then we have

(i) D Pa(x;a) =192 > Pu(x;a),

XEA@ XEA4

(i) > Pe(x;@) =552 Pe(x;a),
xeAg xeAy

(i) > Ps(x;a) =432 Ps(x;a),
XeAg XeAy

(iv) > Pulxa)=-312) Py(xa),
xeAg XeAy

(v) Z Py(x;a) = —8280 Z Py(x;0),
XEAg XEA4

(vi) ) Pe(x;a) =8640 > Ps(x;a),
xXeAg xeAy

(vii) > Ps(x;a) = 39960 Py(x;a),

x€Ag xeAy
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(viii) > Pio(x;a) = —121680 Y Pio(x; a),

xeAg xeAy

(ix) Y Pa(x;ia) = 147200 )  Ps(x;a),
xeAj xeAy

(x) > Ps(x;a) = 116000 > Pg(x;a),
XEA[() XEA4

(xi) Y Pg(x;a) = —1418560 Y Ps(x;a),
xeAjo xeAy

(xii) > Pio(x;a) = 1004000 »  Pio(x; a).
xeAw xeA4

Proor. From A; = J and the ¢ expansion of ¥(z, P4, %) we have

Xz, Py, L) = Z Py(x;a)q + Z P4(x; a)q2 + Z Py(x; a)q3 + ..

xeA; xXeAy xeAg
S IXNTTED SYANT RN
xeAy xeAg

= c4(q +936¢% + 331452¢° + 53282368¢* + 53282368¢° + - - -)

+es(q* + 192¢° — 8280g* + 147200¢° — - --).

Thus we have ¢4 =0 and

Z Py(x;a) =192 Z Py(x;0a).

xeAg xeAy

The equations (ii),...,(xil) are proved in the same way. O

In the next subsection we will use the explicit form of the spherical functions

P,(x;a). Concerning this functions the reader may refer to [9], Formulas (79) and
(80) and [28]. We give here some.

Pai) = () - 0@
3 x) (e, )"

Pa(x;a) = (x,0)* o (%, - (x,x) (. 0) 4 20

52
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Pro(xia) = (x,a)0 _ H% )’ (x,x) (a,0)  630(x,0)° (x,x)*(a, @)’

64 64 - 62
~ 3150(x, o)t (x,x)°(a,a)’ n 4725(x,0)* - (x,x)*(a,@)*
64 - 62 - 60 64 - 62 -60 - 58

945 (x, x)’(a, )’
64-62-60-58-56

3.3. First Results. Let %, be a 48 dimensional even unimodular nearly
extremal lattice, and %4 ¢ be the sublattice of %, generated by the subsets A4
and Ag. We are going to prove that

(3.5) 6= Lre.

To attain this goal we need some preliminary steps. We assume that the condi-
tion (3.5) does not hold. Then there should be a vector xg € %,.\- %4 6. Among
such vectors we consider a vector xo with the least norm (xo,Xp). We call this
vector as a least obstruction vector for the condition (3.5). We remark that by
the definition of the least obstruction vector we know that (x¢,Xo) >8. We
prove

Lemma 3.5. (i) If the least obstruction vector Xy has the norm (Xg,Xo) = 8,
then it holds that

(3.6) |(x0,X)| <2 for any x € Ay,
and
(3.7) [(xo, )| <3 for any y € As.

(i) If the least obstruction vector Xy has the norm (Xo,Xo) > 10, then in
addition to (3.6) and (3.7) it holds that

(3.8) |(x0,W)| <4 for any we As.

ProOF. Proof of (i). Without loss of generality we may restrict to the case
when (xg,x) > 0. Suppose that (xg,x) >3 holds for an x € A4. Then we have

(X — X0,X — Xo) = (X0,X0) +4 — 2(X0,X) < (X0,X0). And X — X9 = —x¢ mod %4 .
This contradicts to the minimality of the obstruction vector Xy. This proves
(3.6).

Other inequalities are proved likewise. O
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When the least obstruction vector xo has the norm (x¢,xo) > 8 by Lemma
3.5,(1) we put
Ni:#{X€A4|(X07X):i}7 l:O;iLiz,
and

Alj':#{yEA6|(X0ay):j}a ]:Ovilai27i3

It is easy to show that N_; = N; and M_; = M;.
We write the sum Y, (X0,X)" (1=2,4,...) by using Ns.

(3.9) > (x0,%)" =2-Ny +2-2'N,.

xeAy

We have also

(3.10) > (x0,¥) =2 M +2-2'My+2-3'M;.
YeAs

We now introduce the shortened notations of the right-hand sides of (3.9) and
(3.10) respectively to save the space later:

Z X0, X ZZ i'N;,

xeAy

2 (0.’ 22 i'H,

YeAs

Then as the special cases of (3.4) we have (under the condition that

o= Xo)
2
(311) Z i = _a(4 gne)(XmXO)
and
3 6
(3.12) Z = 2346, Ze) (X0, X0).

Since we use (Xg,Xo) frequently we set m = (xg,Xq). The lefthand-side of
Proposition 3.4,(i) is
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5 Patrixo) = Y [0l = (v wmlyxn)® 4 5575 (v

yeAs yEAs
3 4 62
:;2 s ——m22 52 50" (0 L)

The right-hand side of Proposition 3.4,(i) is

192 Z Py(x;x9) = 192 Z {x X0)" — 6 m(x xX)(x,X0)? + 52350 (x, x)zmz]

XEA4 X6A4

2

2
4
_ AN —
_192l;2 i*N; mZZ 52 5" (4,%)}.

Thus we have a linear condition on N;, Ny, My, M,, M3 and a(4, %)

6-6-m
52 j=1

3. 62 2
52-50

3 . .
(3.13) > 27 M- 2 M+ a(6, %)

4. ,42. 2
:192{21,212-1’4N,-—6 - 1,212-i2Ni+35245;7)qa(4,$ne)]~

In the same way from Proposition 3.4,(ii) we have

Sy ey 15 6em 4 45 62
(314 D2/, 72/ 2 M+ Z/ 2 M
56 .54

15-6%-m3
56-54.52

4582 P~y o, 1543
b AN, T g )
5658 212 TN~ Sgsg 5 ’g”")]

a(6, Lpe)

From Proposition 3.4,(iii) we have

3 ) 28 -6 - ni=3 ) 210 - 62 - m? <3 )
(3.15) ijlz-]gz\@—izj:lz-ﬁzwﬁiz_ 2. j*M;

60 60 - 58 j=1
420- 63 -m? 3 s 105 - 64 . m*
" 605856 212 T Mt G 5556 50 L)
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78 .4.
=432 [Zzzl 2-1°N; _¥Z; 21N

21042 - m? 2 420 - 4% . m3 2
- - 7 24N -
60 - 58 D2 60 - 58 - 56 Li-1
105 - 4% - m* «
60-58 - 56 - 54

2. i%N;

4V3aa}.

From Proposition 3.4,(iv) we have

3 ) 456 - m =3 ) 630 - 62 - m? 3 )
(316) N2 10M =m0 My 2P TN 0oy

64 j=1"" 64 - 62 j
3150 - 6° - m> =3 4725 - 6% - m* 3
— DI Y Y A 2.2M;
64-62-60 j=1-"J "+64-62-60-58 j—12 M
65,5
945-6° -m a6, L)

C64-62-60-58-56

45. 4.
= _312{251 211N, _%Z; 2-i°N;

64 - 62 =17 646260 L—i-l
AT 4w
64-62 - 60 - 58 L—i-1
945 .45 . m’ (
64-62-60-58 56"

2-i%N;

]

The equations (3.1),(3.11),...,(3.16) allow us to express a(4, %), N1, Na, Mj,
M;, M3 in terms of rational functions with integer coefficients of m. We simply
give the results as a proposition.

ProposITION 3.6. Let %,. be an even unimodular nearly extremal lattice
of dimension 48. Suppose there exists an obstruction vector Xy with the norm
m = (Xo,Xo) = 8 for (3.5). Let a(4, %), N1, N2y, My, My, M3 be the quantities
discussed above. Then we have the following expressions.

4320(43m* — 903m> + 6832m?> — 21580m + 22880)

a4, L) = (m —2)(m—4)(m—6)(m—9) ’

N_:QM«OMP—%&M+9%MP—6HﬂmL+UD@m—1@%@
' (m = 2)(m —4)(m — 6)(m — 9) ’
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~ 3m(30m* — 425m* + 1703m — 1300)

N
2 (m—4)(m—9) ’
num
M, =
YT m=2)(m—4)(m—6)(m—9)’
v —288m(15m° — 630m°> + 9305m* — 62763m> + 203339m> — 294866m + 145600)
L =

(m—2)(m—4)(m—6)(m—9) ’

 16m(45m° — 1080m* + 9355m® — 35581m? + 5651 1m — 29250)
o (m—4)(m—6)(m—29) '

3

Here num is given by

num = 144m(75m°® — 3870m> 4 81805m* — 844293m> + 4342159m>

—10375456m + 8875100).
We now prove

THEOREM 3.7. Let %, be an even unimodular nearly extremal lattice of
dimension 48. Then (3.5) holds.

Proor. The proof is not straightforward. We divide the proof into three
steps.

Step 1. We assume that the condition (3.5) does not hold. Let x( be the least
obstruction vector against the condition (3.5). We suppose that m = (xo,Xo) > 8.
Let Ny, N,,..., M5 the five quantities introduced above. Then by Proposition
3.6 these quantities are expressed as a rational functions of m. By our setting
a(4, %,.) and other five quantities should be all non-negative integers. By a simple
estimation we can show that the rational expression for M, is negative if m > 50.
For even m which are between 8 and 48 at least one of the rational expressions
for a(4, %), N1, N3, ..., M3 has the value that is not integer or negative except
for two cases.

The parameters of the two exceptions are

Case 1. m =10, a(4, %,.) = 388800, N; = 97400, N, = 16150, M| = 8200800,
M, = 2732400, M3 = 218400.

Case 2. m = 12, a(4, %) = 236976, N; = 59832, N, = 14664, M| = 9575592,
M, = 3821664, M3 = 657624.

Step 2. We will briefly show that the parameters of the case 1 can not pass
a further test.



48 Dimensional even unimodular nearly extremal lattices 161

Since the possibility of the least obstruction vector xo with m = (x¢,X¢) = 8
against the condition (3.5) is denied. We suppose that the norm of xg is m =
(x0,X0) = 10. Then we have a(4, %,.) = 388800, Ny = 97400, N, = 16150, M, =
8200800, M, = 2732400, M; = 218400.

We note that

Ny = #{xe Aq4|(X,X0) = 1} =97400, and
N2 = #{X€A4 | (X,Xo) = 1} = 16150.

By (3.9) we can compute the values

(3.17) D (x0,x)" =2-97400 + 2 - 2'16150.

XeAy

By reckoning in Lemma 3.5,(ii) we put
Rj:|{ZEA8|(X072):j}|7 J:07i17i2ai3ai4

Similarly to Eqns. (3.9) and (3.10) we have

(3.18) > (x02) =2 Ri+2-2'Ry+2-3'Ri+2-4'Rs.

Ze/\g

As before we employ a short hand notation:

4
Z (x0,2)" = 22 “i'R;.
p

zeAg

First from (3.4) we obtain

4
8 5
3.19 2-i’R; = —a(8, %, =Za(8, %)
(3.19) ; PRy = 12 d(8, Zie) (X0, %0) = 3a(8, Zic)
We use Proposition 3.4,(v),...,(viii) to obtain further linear equations on

Ry, ..., R4y. By Proposition 3.4,(v) we know

D Py(xia) = —8280 Y Py(x;a).

xeAg XeAy

We take x¢o =o in the above equation and also in the equations (vi), (vii)
and (viii) in Proposition 3.4. We note that the right-hand sides of the equations
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(V),...,(vill) can be computable numerically by Eqn. (3.17). For instance, the
summation at the right-hand side the equation (v) can be transformed to

102
Z Py(x;%0) = Z {(x, xo)* — 5—62(X, X)(xo,xo)(z,xo)2 + %(x,}n{)z(xo,xo)2

xeAy xeAy

=2-97400 + 2 -2*16150 — 6 22 10 (297400 + 2 - 2%16150)
3.42.102
@
5250 <4 7o)
= —66000.

In the same way >\ 1, Pi(X;X0), kK = 6,8,10 can be computed numerically, and
we only give the resulting values:

> Pg(x;xo) = —1968000/91,

xXeAy

> Ps(x;xo) = 542840029,

X€A4

> Pio(x;x0) = 75918750/31.

XeAy

As to the left-hand sides of (v) in Proposition 3.4 we have

(3.20) me P4(z;%0) = ZZGAS [(z,xo)‘* _5%(17 7) (X, Xo) (2, X0)*

3.100 ,
+ ﬂ (sz) (X07 XO) :|

Ry a4 6-8-10 4 2
_Zi:12'1R"_ 52 Zi:lz'lR"

3.82-10°
52-50

= —8280 - (—66000).

a(8, L)

By Eqns. (3.2), (3.19) and (3.20) we have

4
(3.21) 372 R, = 315864835200.
i=1
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From Eqn. (vi) we have

. 4 6 15-8-10 4 4
(3.22) ZzeAx Po(z;xo) =Y . 2 iR —————> " 2-i*R,

56
4582 .10% 4 P 15-83-10°
Ts658 2t TR sy A8 )
= 8640 - (—1968000/91).
By Eqns. (3.19), (3.21) and (3.22) we have
4
(3.23) 32 iR = 31681640160000/13.
=1
Since Ry, ..., R4 are all non-negative integers Eqn. (3.23) implies that Case 1 is
impossible.

Step 3. It remains to show that m = (x¢,X¢) = 12 is impossible.

Suppose for an obstruction vector X, against the condition (3.5) with m =
(x0,X9) = 12. Then some parameters are detined by those in Case 2. Namely
a(4, %) = 236976, Ni = 59832, N, = 14664. This time we may note that

Ny = #{xeA4|(x,X9) = 1} =59832, and
Ny = #{x e Ag|(x,x0) = 1} = 14664.
By (3.9) we can compute the values
(3.24) D (x0,x)" =2-59832 42214664
XeAq
By Lemma 3.5,(ii) we may set
Uy =#{weAp|(xo,w) =/}, j=0,£1,+2,+3 +4.
We easily see that U_; =U;, j=1,...,4. We put
4
(325) > (xo,W)' =2-Uj+2:2'U,+2-3'Us+2-4'Uy =Y 2-i'Us.
weAl i1

From (3.4) we obtain

4
10 5
2 _ _
(3.26) ;:1 2-i7U; = a3 a(10, %) (X0, X0) = Ea(l(), Dre)-
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We put xp = o and use Proposition 3.4,(ix), ... (xi) to obtain further linear equa-
tions on Uj,...,Us. From Eqn. (ix) we have

D Pa(yixo) = 147200 > Py(x;Xq).

YeAm xeAy
The right-hand sides of the equations (ix), ..., (xii) can be computable numerically
by Eqn. (3.24). For instance we see that

5 Palxixo) = 3 (xxo)* = (xox) s 50 55755 060030

xXeAy xeAy 2
6-4-12

=2-59832 +2-2%14664 — (2-59832 +2-2%14664)

+3-42~122
5250

= —2339472/25.

a(4, Le)

In the same way » . 5, Pk(X;Xo), kK = 6,8 can be computed numerically, and

we only give the resulting vlues:

> Ps(x;x0) = 4536816/91,

XeAy

Z Pg(x;X0) = 123418992/145.

XE/\4

(3.27) Zyemo Py(y; xo) = Zye,\w |:(y7 x0)* - % (¥, ¥) (X0, X0) (¥, X0)

3 2 2
+ 37.50 (¥,¥)" (X0, Xo) }

_6-10-12

=37 2, Tz;z.izm

3-10%-122
52-50

= 147200 - (—2339472/25).

a(10, %)

By Eqns. (3.26) and (3.27) we have

4
(3.28) 324U = 118884435032064.
i=1
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From Proposition 3.4 Eqn. (x) we have
N - P 15-10 - 12 4 9
(3.29) ZyeAw Po(y;xo) =) . 2-i U,-—?Zi:lz-z U

45.10%- 122 4 15-10% - 123
- - = 2.0 ——————
56 - 54 D2 56-54-52

= 116000 - (4536816/91).

a(10, %)

By Eqns. (3.27), (3.28) and (3.29) we have

4
(3.30) 32 iU; = 1371465442675200.
i=1

From Proposition 3.4, Eqn. (xi) we have

(3.31) ZyeAmPg(y,xo) = 2 UﬁTzizlz.z U;

210102 - 12% 4
b e 2.i4U;
60 - 58 Zi:l !

420-103 1284 ., ,
T 605856 2wt P

105 - 104 - 12*

——a(10, %,
5058365410 L)

— — 1418560 - (123418992/145).

By Eqns. (3.26), (3.28), (3.30) and (3.31) we have

4
(3.32) 328U = 21326995936257024.
i=1

The linear conditions (3.26), (3.28), (3.30) and (3.32) on Uj,..., Us are enough
to solve them. We solve

U, = —1458949248672, U, = 2348888715456,
U = —288817699680, Uy = 182473363248.

These values show that m = (x¢,Xo) = 12 is impossible. We have proved the
theorem. |
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REMARK 3.8. In the proofs of Steps 2 and 3 of Theorem 3.7 there are more
than one way to show the impossibilitity of the parameters m, Ny,..., M3. The
point is that there are a lot of conditions for Ry,..., R4 (or Uy,..., Us) that will
lead to the contradiction.

4. Examples of Nearly Extremal Lattices

4.1. First Example. An orthogonal sum of two copies of the Leech lattice.
Let Leech be the 24-dimensional even unimodular extremal lattice. We form
an orthogonal sum of the two copies of Leech: ¥ = Leech @ Leech. Since the
minimal non-zero norm of Leech is four, ¥ is a nealy extremal 48-dimensional
even unimodular lattice. Leech has a minimal vector basis, and so does ;. The
lattice % has thus a finer basis than Theorem 3.7. Since |A4(Leech)| = 196560,
we compute that |A4(Z))| =2 - 196560 = 393120. By Eqns. (3.1) and (3.2) we
have

IA6(£))| = 33546240, |Ag(L))| = 39419321760.

4.2. Second Example. Lattice constructed from an orthogonal sum of the
binary Golay code %»4 of length 24. Let C|, = %4 @ %24 be an orthogonal sum
of the two copies of %4. C; is a doubly even binary self-dual [48,24, 8] code of
length 48. Since the homogeneous weight enumerator Wy, (x, y) of the Golay

code is given by Wa,,(x,y) = x** 4+ 759x10p8 + 2576x12p12 + 759x8p16 4~ 324 the
homogeneous weight enumerator of %y @ %»4 is computed to be

(4.1) Wy, @a,(x,p) = x* + 1518x%)% + 515257y 1% 4 577599x72p 10
+3910368x%%y?0 + 7787940x%4y** + .- ..
Let
R Z48 N FgS
be the reduction modulo 2 map. We set
4

8
in EOmOd4}7

i=1

%(C]) \}i{x (Xl,XQ,...,X4g) ep’l(Cl)

y=-1(1,...,1) e R*®, and

Sl

Ly = M(C)U (y+.4(Cy)).
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%, is an even unimodular nearly extremal lattice. We examine A4(%,) and
Ne( %) precisely.
A4(&,) consists of the two subsets A4 1 (%) and Ay 2(%») that are given by

Ag 1 (D) = {((£V2)?,0%)},

Ay 2(P) = { (xX1,x2,...,X48) € Ag(&) |i's (x; #0) come from C((8),

i=1

Zx, = 0 mod 4}.

Here non-zero coordinates of an element in Ay (%) place at the two coordiates
out of the 48 coordinates, and C;(8) is the subset of C; consisting of the
codewords of weight 8.

We observe that A4(%) = A4 1(£) U A4 (%) and

(42)  |A4(L)] = |Ag1(DL)] + |Ag2(25)| = 4512 4 1518 - 27 = 198816.

As to the set Ag(%,) there are some efforts to consider.

Let 0 #ueC;, then there are vectors x e (%p“(u)) N %, with various
norms. Among such X’s there are the vectors with the least norm Jwi(u). We
write

Min(u, %5) = {x € <%pl(u)> NS (x,x) = %wt(u)}.

In the set Min(u, %) there is a unique vector %p#(u), where non-zero coor-
dinates of p#(u) are all 1. Other vector ye Min(u, %) is described by the
difference vector /2 :\/%p#(u) —y. Here the coordinate values of 0 are de-
termined as follows. Let i(v/2y) (resp. i(d) be the i-th coordinate of /2y (resp. o)
for 1 <i <48, then we see that

a1 i(V2y) =~
1(5){0 if i(v2y)=1 or 0.

We will use two notations. When a vecor v has integer coordinates whose entries
consist of 1I’s and 0’s, then we use supp(v) to denote the set of coordinate
positions at which v has | as the entry. This type of vector v will be called a (0,1)
vector. Let v; and v, be two (0,1) vectors of the same size. We write v; C v,
if the inclusion relation supp(v) C supp(vy) holds. In this sense we may write

d C p*(u).
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REMARK 4.1. We remark that |Min(u, %3)| = 2"~ for wt(u) < 24.

LemmA 4.2. Let y:%p#(u) — /26 € Min(u, %,). Then a neccesary and
sufficient condition for y —y belongs to A¢(%>) is that 6 = 0.

Proor. We see that

(y—%y—w<;7ﬁ@%—¢%,1pWM—v6%

G
B 2(\%,)#@ V3, y) + (1)

_ (9,9
=" +6.

Therefore we conclude that

(y=»y—7) =6<0=0. ]

By Lemma 4.2 we obtain some subsets of Ag(%>).

Mool #) = LS5 =) [ue i)},
Aart) =L (S5 —7) [ue i)},
Maat) = [+ (S5 =7 ) [ueciz},
Aost#2) = {(J5w =7 ) [uecio .
Aos ) ={#( 5" —») luecian)},
Aost2) ={ (5@ ) [uecia}

REMARK 4.3. It is easy to see that the set {—(%p#(u) —y) ‘ueC1(8)}

equals the set {(%p#(u‘) —y)’uCeC2(40)}. The same arguement also ap-

plies to the pair (C;(12),C,(36)), the pair (C;(16),C;(32)) and the pair
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(C1(20),C;(28)). On the other hand {—(\/Lip#(u) —y) ’ueC1(24)} is identical
with {(%p#(u) - y) ’ ue C1(24)}.

Besides the above six subsets of Ag(.%>) there are at least two subsets. One is

A66 gz U Mll’l
ueC;(12)

Another subset of A¢(%) is

Ne1(L2) = U {x—ylxe Min(u, £2),y € A4 1(L2), (x,y) = 1}.
ueCl(S)

As to the cardinality of the set Ag 7(%>) we treat it as a lemma.

LEMMA 4.4. Let A¢7(%2) be as above. Then it holds that
|Aq.7(%5)| = 1518 -27 - 80 = 15544320.

Proor. Let ue Ci(8), x= %p#(u) — V25 € Min(u, %), and ye Aq1(2)
such that (x,y) =1. Then x —y can be written as

X—y= 75'0#(“) —V26' + V20,

where ', ¢ are both (0,1) vectors that satisfy the relations
o' Cp*(w), |supp(d')| = |supp()| £ 1, o & p*(w), |supp(o)| = 1.

For each fixed u e C;(8) there are 27 - 80 such x — y’s in number. From this the
lemma follows. |

LEMMmA 4.5. Let the notations be as above. Then we have

Ne( L) = U Ag,i(ZL2).

0<i<7

Proor. It is obvious that

As(Z) 2 U N, i( L),

0<i<?7

and the righthand side is a disjoint union. Therefore we have the inequality

7
IAs(L2)] = ) |Aei(2L2)].
i=0
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By the shape of homogeneous weight enumerator .#(C;) we can count |Ag (%)l
0 <i<7. Indeed we have

A6o(L)| =2, |Ae1(L)|=2-1518, |Ag2(2)|=2-5152,
[Ag 3 (L) = 2577599,  |Aga(L)| =2-3910368, |Ag (L) = 7787940.

As to |Ag (%) by reckoning in Remark 1 we compute that |Age(%3)| =
5152211,
By Lemma 4.4 we know that |A¢ 7(%>)| = 15544320. In all we have
7
As(£2) = D 1A6i(L2)|
= 42872832.

On the other hand from Eqns. (3.1) and (4.2) we have |A¢(%,)| = 42872832, This
implies that the lemma should hold. O

REMARK 4.6. The present lattice is connected with the Golay code of length
24. But it is irreducible and is not generated by A4(%,) only. Actually y can
not be expressed as a linear combination of the elements in A4(%,) with integer
coefficients.

4.3. Third Example. The lattice constructed from the doubly even binary
self-dual code C, = [48,24,12]. The homogeneous weight enumerator of C, is
given by

We, (x, ¥) = x® 4+ 17296x*0y1? + 535095x*216 + 3995376782

+ 7681680x%y** + ...
We employ several notations from the second example. Let
p: 2 B
be the reduction modulo 2 map. We set
4

8
in = 0 mod 4}7

i=1

%(Cz) = \}z {X = (xl,xz, .. ,X48) Epil(CQ)

y:\/i.(l,...,l)eR“S, and

oo

L= W(Cz) @] (ZV + %(Cz))
We desribe A4(%3) and Ag(¥3) briefly.
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Since minimal weight of C; is 12, there is no norm 4 vector coming from the
codeword. We see that

Aa(L3) = {((£V2)%,0%)}.

Lemma 4.2 is valid if we replace %5 instead of .%,. By Lemma 4.2 we obtain

Aaa(2) = {#( ") —7) luec:0)}
Aoat ) ={( 5w - ) [ue i .
Noat#) ={ (5" - jue ca16)},
Nost ) ={+( 5" -7 lue a0},
st ={ (gt |necion}

Besides the above subsets we have

A6(, 33 U Mll’l

ueC,(12)

By the shape of homogeneous weight enumerator .#(C;) we can count |Ag ;(%)],
0 <i<7. Indeed we have

A6 1 (L) =2, |Ae203)| =2-17296, |A63( L) =2-535095,
|A6.4(L5)| = 23995376, |Ass(L3)| = 7681680, |Age(L3)| = 1729621
We see that
6
As(L3) 2, Aai(23),
and
6
A6(Z3)| = > |Aei(Z3)| = 52199424
i=1

Since a(4, %) = |A4(F3)| = 4512 and a(6, %) is obtained from Eqn. (3.1), we
have a(6, %) = 52199424. Thus we conclude that

A6($3) = Uz’6:1 Aé,i(=-g3)~
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4.4. Fourth Example. By [16] there are exactly two non-equivalent ternary
self-dual codes Q,4 and P4 with minimum distance 9. Both codes lead to the
unique even unimodular 24 dimensional extremal lattice, namely Leech lattice.
From these two codes we may form three non-equivalent ternary self-dual
[48,24,9] codes: Qo @ Qr4, O @ Pra, Prg @ Poy. Since the complete weight
enumerator %o, (x,y,2) = #p,(x, y,z) is known ([19]) to be

WQM(X,_)/,Z) — X24 + y24 + 224 + 2024(x]5y623 +X15y3Z6 +x3y15z6

Fx0)3215 4 xOp15,3 4 y3)6515)
FA6(x 1212 4 12212 4 12,12
+10120(x'2p%2% + x12)32° 4 x%p1223
03212 3120 4330212
+111320(x°y2° + 2702 + x%y°2%)
- 41492(x12y020 4 1226 4 6y 0212),
we obtain #p,, @0, (X, y,z). Here we give some beginning terms.
Wou@on = X% +4048(x7p 20 + x¥02%) + 82984x7y 02
+20240(x 2" 4+ x¥972%) + 92(x¥p"2 4 x0217) 4

Let C3 = Q24 ® Oz and
¢ 2% — F

be the reduction modulo 3 map. We set

A (Cs) :L{X = (x1,Xx2,...,X48) € ¢_1(C3)

V3

147,(=5)) e R®, and

i=1

48
Zx,- = 0 mod 6},

— 1
V= \/T(
Ly = %/(C3) U (V—|— f(C3))

%y is an even unimodular nearly extremal lattice. According to [29] from each

codeword of weight 9 there arise 9 vectors in A4(%4) and from each codeword
of weight 12 there arises one vector in A4(.%s). Therefore we have

|A4(Ls)| = 4048(9 + 9) + 82984 + 20240 - 2 + 92 - 2 = 196512.
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By Eq. (3.1) we have a(6, %) =42983424. At present it is hard to com-
pute the arithmetical properties of the lattices constructed from the ternary
codes.

5. Siegel Theta Series of Degree 2

5.1. Relations among the Fourier Coefficients. One strong motivation for
conceiving the concept of the nearly extremal lattices is to construct explicit
lattices which are comparatively tractable in computing the Fourier coefficients
of the Siegel theta series.

For a e Ay(%,) we put

vi = |[{x € Aa(Ze) | (x, @) = i},

W= [{x € A¢(ZLhe) | (x,0) = j}I,

where we remark that i can only take the values i=0,+1,42,+4 and that
j can only take the values j=0,+1,+2,4+3. This fact can be shown in a
similar way to that of Eqns. (3.6) and (3.7). It is easy to see that v_; =,
Vg = V4 = 1.

For a € A¢(%) we put

A =y € Ae(Ze) | (v, @) = K}

We note that k& can only take the values k = 0,+1,4+2 +3,+4 4+6. We note that
Aok =k, A¢ = 46 = 1. We may use the symbol v;(a) instead of v; to emphasize
the role of a at certain occasions.

We specify the Siegel theta series, which is introduced in Section 2.6, to
g=2

®(Z L)= > a(T, L)%,
TeP(Z)

We pick up some peculiar indices Te@zs. In Tables 1, 2 and 3

r= (c;lz Cf) e

is expressed by T = (a,b,c). We are going to discuss the Fourier coefficients
a(T, %) of the Siegel theta series ®,(Z, %,.) of degree 2 associated with a lattice
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Ze. In the following proposition 7; denotes the numbered binary matrix of size 2
given in Tables 1, 2, 3. We prove

PrROPOSITION 5.1.  Let a € Ay(Z,.) and t be a positive even integer. Then it
holds that

(51) Z Z (Xva)[ :2'4ta(4a gne)+2'2[a(T17$18) +2a(T2,$m,)-
aeNs(Le) XEAL(Le)

Let a € A¢(%ye) and t be a positive even integer. Then it holds that
(5.2) S Y xa)' =2-3"(Ty, L) +2-2'a(Ty, L) + 2a(Ts, Lre),
a€Ae(Lne) XEA4(Lre)

and

(53) Z Z (yaa)l :2'6161(6; gne) +2'4ta(T47$n8) +2'3fa(T7agne)
aeN6(Le) YEA6(Lre)

+2- 2ta(Tg, gne) + 2a(T9, gne)-
ProOF. Proof of Eqn. (5.1). Let a € As(%e). Then we have

Z (x,0) =2-4"+2-2', +2v.
xeA4(Ze)

From this we obtain

YooY xe)'= D (24422 +2w)

aeAy(Le) xeAy(Le) acAy( L)

=2-4a(4, L) +2-2" Y > 1

aeNs(Le) XEN4(Le), (X, 0)=2

22 >
aeAy(Le) XeN4( L), (x,0)=1

=2-4"a(4, L) +2-2'a(Ty, Lne) +2a(Ty, Lre)-

Eqns. (5.2) and (5.3) are similarly proved, but in the course of transformation
we must use Proposition 2.2. O
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The following propositions give the relations among the values of a(7;, %),
1 < j<10. To save the space we use r; instead of a(7}, %,.). Further we use
21([) =2 4’61(4, c.(fm,) + 21+171 + 21y, Ez(l) =2- 3’r2 +2- 2’7’4 + 2rs and 23(1) =
2-6'a(6, Le) +2-4'r4 +2-3'r74+2-2'rg + 2r9 for the short notations.
ProposITION 5.2. We have

(i) =i(2) = %a(4, Le)?,

(i) £2(2) = %a(4, L)a(6, o),

i) 224) - 80 30) 2 ga6. 210
= 12fnw - S e+ L a5,
() 52(6) - 200 e B ) B e g6 %)
- —552{21 (6) — 1557'64221 (4) + %21 (2) - %'44_65261(4, i”ne)z},
) na() -0 ) 2O Hy ) S )
+ %a@, Ze)a(6, Lre)
= 432{21(8> - 285—'64221 (6) +% 1(4) - 76332;‘65621@

105 - 48 )
a4 .
T50-58- 5658 ’g”")}

PrROOF. Proof of the equation (i). We start from Eqn. (3.4) with a € Ay:

S (60 = a4, L) (a,a)

1
= 5“(47 B?ne)-

From this and by Eqn. (5.1) we have
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S (xa) =2-4a(4, L) + 2a(T1, L) + 2a(T2, Zre)

aceAygxeN,y

-5 ()

acAy

1
=344, L)’
The proof of the equation (ii) is similar to that of the equation (i) and we
omit it.

The proof of the equation (iii). We begin with Eqn. (i) in Proposition
3.4

. . 2 . 2
N e =

_ s 6-4aa), 5 3.4 (a0
1922“1\4[()(,(1) 5 (x,0)" + 5350 .

We take a sum over @ € A4 at the both sides in the above equation,

. 6-6(a,a) 5 362 (a,0)’
Z(IEA4 ZyeA(, l y,a 52 (yﬂl) + 52-50

6-4(a,a 3.42. (a,a)’
=192 ZaeA4 er/\4 [(X, a)4 a 5(2 ) (X7 a)2 T 52 (50 ) ] '

By changing the role of @ and y in Eqn. (5.2) the left-hand side of the equation
(¥) can be written as

2-3%(Ty, Lpe) +2-2%a(Ty, o) + 2a(Ts, %)

2,
6 {2 32a(Ty, Lpe) + 2 - 22a(Ty, L) + 2a(Ts, o)}
(242
352675361(4, L )a(6, L)
624 3.62.42
= 22(4) - 52 2( ) + W“(“’a 216)0(6, gne)-

By using Eqn. (5.1) many times the right-hand side of the equation (x) is
transformed into
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192{ (2-4%(4, L) +2 - 2%a(Ty, L) + 2a(Ty, L))

62 -4
3 (2-4%a(4, Lpe) + 2 - 2%a(Ty, %) + 2a(Tr, Z0e))

+3-42-42
5250

6-4-4 3.44
= 192{21(4) — TEI(Z) + ﬂd(‘l, gne)z}.

4.}

Thus the equation (iii) is proved. The proofs of the equations (iv) and (v) are
similar to that of (iii), and we omit them. O

The above equations (i) to (v) are linear conditions on ry, r, rs, rs and we

have basic relations.

ProrosITION 5.3.
r=—16-a(4, L) —4-a(T1, L) +éa(4, Le)?
4
re = 484416 - a(4, L) +216 - a(Ti, Z,) — 5 a(4, re)?

49
rs = 11166480 - a(4, ) — 828 - a(T1, Zoe) — ¢ al4, 2.

ProroSITION 5.4. We have

() %3(2) =al6, %)’

(i) = (4)_6_32 (2)+3'—64a(6 Le)?
3 5273 50.50 e

. . . 2 . 2
- 192{&(4) 0y )+ 2 s, %)}

52 52-50
15-62 45 . 64 15-6° 2
i) 23(6) — ——33(4) + ——33(2) = —— -~
(i) 25(6) — - T5(4) + g 33(2) — s e al6, L)

15-4-6 45.42 .62

15-43.6°

— mﬂ(‘h ,,Z’,,C)a(6, gne)}-
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ProOF. Proof of (i). Again we start from Eqn. (3.4) with a € Ag:

3o (X0 = a6, Z3)(00)

3
= Za(6, gne).

By this equation and Eqn. (5.3) we have

SN () =2-6'a(6, %) +2-4'a(Ty, Lue) +2-3'a(T7, Zre)

acAgxelAg

+2- Zta(TSa gne) + 2(1(T9, gne)

5o

aeNg
3
= 10(67 ane)z'

Proof of (ii). The starting point is the same as that of (iii) in Proposition
5.2.

-6(a,a 62 (a,a)*
2 ens [W)“ ) +%}

_ s 6-4(a,a) »  3-42.(a,0)’
= 1922:“[\4 l(x, a) 5 (x,0)" + 5350 .

But this time we take a sum over a € Ag at the both sides in the above
equation,

o 6-6(a,a) , 3.6 (a,0)’
ZaeA6 Zvem [ y’ 52 (y7 a) + 5250

6-4(a,a 3.42. (g,0)’
=192 Zae/\6 erA4 [(X’ (1)4 o 5(2 ) (X’ a)2 T 52 (50 ) ] '

The disposition of the rest is similar to that of (iii) in Proposition 5.2 and we
omit it.
We also omit the proof of (iii). I

As a consequence of Proposition 5.4 we obtain
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PROPOSITION 5.5.  Let a(Tj, %), T < j <9 be the quantities considered above.
Then we have the following expressions for them.

r7 = 1931424768000 — 4721280 - a(4, o) + 11232 - (T, %) — 76 - a(4, Le)?
rg = 8000540992000 — 163026000 - a(4, Z,.) — 34848 - a(T}, Zye)

1760

+ a(4, %e)?

ro = 660902022144000 — 1200129408 - a(4, %pe) + 34848 - a(T\, %)

233

3 a(4, %)

As to a(Ts3, %), a(Ts, Le), a(Tho, %) we have

ProroSITION 5.6. It holds that

2a(T1, Ze) + 2a(To, L) + (T3, L) + 2a(4, L) = a4, L),
2a(Tz, %ne) + 2a(Ta, Lne) + 2a(Ts, Lne) + a(Te, Lne) = a(4, Lre)a(6, Le),
2a(6, %pe) + 2a(Ty, L) + 2a(T7, Lre) + 2a(Ts, Lre) + 2a(Ty, Le) + a(T10, Zre)
= a(6, L)
ProOF. We use an equation
2va(a) + 2v2(a) + 2vi(a) + vo(a) = |Aa(ZLe)l,

which counts the number of norm 4 vectors in .%,. in the both sides. a is any
element of A4(%,.). From this we have

Zaem(%) 2v4(a) + 2v2(a) 4 2vi(a) + vo(a)
- Zae/\4($m,) a(4, Zye)-
The lefthand side of the equation is
2a(4, Zne) +2a(T1, Zue) + 2a(To, L) + (T3, L),

and the righthand side is a(4,$w)2. Thus we showed the first equation.
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The last two equations are showed likewisely using the equalities

2us(a) + 2413() + 201 (@) + 10 (8) = [As( L), € Aa( L),
2%6(a) + 274(a) + 223(a) + 272(a) + 221 (a) + Jo(a)
=|A6(Le)l, @€ Ae(Lpe). O

PRrOPOSITION 5.7.

2
a(T3; gne) = 6a(T1; gne) + 30“(47 zze) + ga(4a gne)2>

88
a(Ts, L) = 1232a(Ty, L) + 29114240a(4, Z,0) — 3 a(4, L),

a(Tyo, Lpe) = —22896a(T1, Lpe) — 2297151456a(4, &) + 2840a(4, .,%6)2

+ 1245769080192000.

5.2. Some Results on the Siegel Theta Series. According to Igusa [10] the
graded ring of the Siegel modular forms of even weights is generated by the four
algebraiclly independent modular forms: &4(Z) Siegel Eisenstein series of degree 2
and weight 4, &5(Z) Siegel Eisenstein series of degree 2 and weight 6, x,,(Z) the
Siegel cusp form of degree 2 and weight 10, and y,,(Z) the cusp form of degree 2
and weight 12.

Let M(2,k), k =0 (mod 2) be the linear space of the Siegel modular forms
of degree g = 2 and even weights k. Then by [10] we know that dim¢ M(2,24) =
8 and M(2,24) has a linear basis

M(2,24) = [64(2)°, 64(2) 66(2)*, 66(2)* 110(2) 4(2)*66(Z), 112(2)64(Z)°
){12&(2)2,XIO(Z)2<§4(Z),)(12(Z)2].

We reconstruct another basis of M(2,24) which is easy to treat. We
put

V\(Z) = 0,(Z, E), U (Z) = Ox(Z, Zug), ¥3(Z) = 0y(Z, £1),
Ya(Z2) = Xlo(Z)&(Z)ng(Z)a Ys(Z) = Xlz(z)&(z)S, Ye(Z) :Xlz(Z)&(Z)za

¥4(2) :}(10(2)2@@4(2)7 Ys(Z) :Xlz(z)z-
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Here the lattice Es is the unique 8-dimensional even unimodular lattice and E¢ is
an orthogonal sum of six copies of Eg, s is any one of 48-dimensional even
unimodular extremal lattices, some of which are recorded in Nebe’s table [22] and
the Fourier coefficients of the theta series of degree 2 associated with Zg are
computed in [32]. The lattice .#; is described in Section 4. In [31] the Fourier
coefficients for the Siegel theta series associated with the Leech lattice of
degree two are given. Using this data we can compute the Fourier coefficients
of ®,(Z,.#). In the process of computation we utilized the computer algebraic
system [1].
We have

LemMmA 5.8.  The series Y \(Z),W5(2Z),...,Ys(Z) given above are linearly in-
dependent over C and therefore they are another basis of M(2,24).

ProoF. We consider the following linear combinations of ,(2),...,

Vs(Z2)
\Pl (Z) = ¢2(2)7
(Z) a(2)_2905(2)

Y,(Z) = 440 T 10 " 18900 — 6122881,(Z) + 3085152y5(Z)
n 383yy(Z)  T3ys(Z) 455y(2)
6 12 4
CUs(Z) n(2)  561295(Z)  8188y4(Z)
¥s(2) = 3933120_3923120_ 37 - 38 ’
Y, (Z) = > ‘”“6(2 ) + ¢52(42) + ‘p"éz ) _ 61488,(Z) — 8832y14(Z),
Yi(Z) = 7"”251(62 ) lp41(22 )4 “Z’féz )4 5616,(Z) — 4928y4(Z),
6(Z) s(Z)  243y5(Z) | 22Ty4(Z)
YD) =% " Tm -8 T8
¥y (Z) = 5!#76(2) +lﬁséZ)7

Some of the Fourier coefficients of the above obtained forms are given
by
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‘I‘,-\index S() Sl Sz S4 S5 S(, T1 T2
1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

For instance the Fourier coefficient of ¥(Z) at the index Sy = (0,0,0) is 1.
The blanks are all zeros. By this data it is appearent that W,(Z),..., ¥Ys(Z) are

linearly independent. Since these forms W¥;(Z),...,¥s(Z) are all linear combi-
nations of ¥ (2),¥,(Z),...,¥s(Z). Therefore y,(Z),¥,(Z),...,¥s(Z) are also
linearly independent. ]

REMARK 5.9. By the arguement in Lemma 5.8 ¥,(Z),¥,(Z),...,¥s(Z) is
also a basis for M(2,24). It is sufficient for the determination of an element f(Z)
in M(2,24) to know the values of the Fourier coefficients of f(Z) at the indices
So, Si, S», Su, Ss, Se, Th, To.

THEOREM 5.10. The Siegel theta series of degree 2 associated with an even
unimodular 48-dimensional nearly extremal lattice %, is determined completely by
the coefficients a(4, %) and a(T1, Lpe).

ProoF. By Lemma 5.8 and Remark 5.9 we have only to show that the
Fourier coefficients a(T, %,.) for T, which belong to seven indices Sy, S, Sz, S,
Ss, S¢, T1, T», are determined by the data a(4, %) and a(Ti, %p).

Since %, is nearly extremal, it obviously holds that a(Sp, %) =1 and
a(T, %) =0 for T =S5,S,,84,Ss,S. By Proposition 5.3 r, =a(T2, %) is
determined by a(4, %) and a(T), %,.). This shows that Theorem is true. []

ProposiTiON 5.11.  Let M,.(2,24) be the linear subspace of the Siegel
modular forms of weight 24 and degree 2 spanned by the Siegel theta series of
degree 2 associated with the even unimodular nearly extremal lattices of dimension
48. Then we have

3 < dime M,e(2,24) < 4.
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PROOF. Any 0,(Z, %,.) can be expressed as a linear combination of ¥;(Z),
Y3(Z), ¥7(Z) and Ws(Z), and therefore we have dime M,.(2,24) < 4. We take
three theta series of degree 2 ©,(Z, %), ©2(Z, %), Or(Z,%3). We show that
these three theta series are linearly independent. To show this we begin with the
expressions

@2(2, ffl) = “Pl(Z) -i-a(Sz, c.(fl) ‘P3(Z) +Cl(T1,$1) “P7(Z) —|—a(T2,££1) . \Pg(Z),
@2(2, gz) = lPl(Z) +a(Sz, gz) . ng(Z) + a(Tl, 32) lP7(Z) +G(T2,$2) . Tg(Z),

@2(2, 33) = \P](Z) +a(S2, 33) l1’3(2) + Cl(T], 33) ‘{’7(2) +a(T2,$3) . \Pg(Z)

Using explicit values of the Fourier coefficients we observe that

(5.4) 01(Z, L3) = W1(Z) + 9512W5(Z) + 830208¥;(Z),

(5.5) 02(Z, L) — ©,(Z, L) = 19304W;(Z) + 451562496%;(Z)
+ 4775215104%5(Z),

(5.6) @2 (Z, L1) — 205(Z, L) + 0,(Z, &5)

= 904396800%,(Z) + 8967094272%¥5(Z),

are linearly independent over C, and consequently ©,(Z, %)), ©,(Z, %),
0,(Z, #5) are linearly independent. Thus we have 3 < dimc M,.(2,24). O

We find a (possible) relationship between ©,(Z, %) and M,,.(2,24).

ProrosITION 5.12.  We have

dimc Mm;(2,24) =4 & @2(2, 348) € Mne(2724)-

ProoOF. Suppose that dimc M,,.(2,24) =4 holds. Then M,.(2,24) contains
Y, (2), Y3(Z2), ¥Y7(Z) and Ws(Z). By computation we verify that

(5.7) 02(Z, ) = Or(Z, Lug) + 198816%5(Z) + 452392704%4(Z)
+ 4775215104¥5(Z).
Thus @2(2, .,?43) € Mne(z, 24).

Conversely suppose that ©,(Z, %) € My(2,24) holds. Then by Eqn. (5.5)
we must have
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Table 1. Fourier coefficients of Siegel theta series of degree 2 for the three 48-dimensional

lattices.
D red. form Eg6 Lig D
0] S=(0,0,0) 1 1 1
0 S1 = (1,0,0) 1440 0 4512
0 S» =(2,0,0) 876960 0 3113376
0 S3 = (3,0,0) 292072320 52416000 785791872
3 Sy =(1,1,1) 80640 0 830208
4 Ss =(1,1,0) 1909440 0 18688704
7 Se = (1,2,1) 97597440 0 1095874560
8 S7=(1,2,0) 1063808640 0 11818425984
11 Ss = (1,3,1) 48317057280 0 395905440000
12 *So = (1,3,0) 321822247680 0 2730043534080
12 T =(2,2,2) 5025196800 0 70721268480
15 T, =(2,2,1) 107183278080 0 1322720593920
16 *Ts = (2,2,0) 544444943040 0 6904028416704
20 Ty = (2,3,2) 3827907590400 0 40673240668416
23 Ts = (2,3,1) 47740634634240 0 436829845985280
24 Ts = (2,3,0) 152782163124480 0 1488790303932672
27 *T7 =(3,3,3) 154205041501440 1931424768000 1448517720814848
32 Ts = (3,3,2) 2847471563157120 88000540992000 21294667534098048
35 To = (3,3,1) | 19149643452695040 660902022144000 | 132674797389046272
36 | *Tio=(3,3,0) | 40995846962035200 | 1245768975360000 | 306550760949545472

0, (Z, %)) — 01(Z, F3) = 19304¥5(Z) + 451562496¥7(Z) 4+ 4775215104¥5(Z)
€ My(2,24).
From Eqn. (5.6) we have that
904396800¥7(Z) + 8967094272¥5(Z) € M,(2,24).
And by Eqn. (5.7) we have
198816W5(Z) + 452392704Y(Z) + 4775215104¥5(Z) € M,,.(2,24).
We consider that the square matrix of degree 3 formed by

19304 451562496 4775215104
0 904396800 8967094272
198816 452392704 4775215104

It is easy to verify that the determinant of this matrix is not zero, and this implies
that the space M,.(2,24) contains ¥,(Z), ¥3(Z), ¥7(Z). Finally from Eqn. (5.4)
Y\ (Z) e M,.(2,24), and we conclude that dim¢ M,.(2,24) = 4. O
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Table 2. Table of Siegel cusp forms of degree 2 and weight 24.

D red. form Zlo‘gf& }{125”43 2’12‘9@52 )612054 1122
0 So = (0,0,0) 0 0 0 0 0
0 S1 = (1,0,0) 0 0 0 0 0
0 S, =(2,0,0) 0 0 0 0 0
0 S3 = (3,0,0) 0 0 0 0 0
3 Sy =(1,1,1) 1 1 1 0 0
4 Ss = (1,1,0) -2 10 10 0 0
7 Se = (1,2,1) —40 632 —1096 0 0
8 S7 = (1,2,0) 84 7068 —10212 0 0

11 Ss = (1,3,1) —196149 117195 310731 0 0

12 Sy = (1,3,0) 392128 1698496 2341312 0 0

12 Ty =(2,2,2) 71616 64704 61248 1 1

15 T, =(2,2,1) —283800 705480 1896072 —4 20

16 *Ts =(2,2,0) 424448 4271360 8867840 6 102

20 T, = (2,3,2) 16409640 28566840 —31761096 216 24

23 Ts = (2,3,1) —53687112 222751704 —644284392 —828 —2004

24 Ts = (2,3,0) 75122376 851066520 | —1688188008 1232 —2992

27 *T7 =(3,3,3) 1340083359 1330627743 350478495 11232 288

32 Ts = (3,3,2) 5241369600 14146776576 31195501056 | —34848 49632

35 Ty = (3,3,1) 5055327270 68612549670 | 162278554662 34848 | —77088

36 | *Tio=(3,3,0) | —23305987440 | 147671262000 | 333866773296 | —22896 386064

Table 3. Fourier coefficients of Siegel-theta series of degree 2 for the lattices .4,

b, L

dr red. form a(T, A) a(T, %) a(T, %)
0| So=(0,0,0) 1 1 1
0] $=(2,00) 393120 198816 4512
12| T =1(2,2,2) 1808352000 452392704 830208
15 T, =(2,2,1) 18517524480 4775215104 0
*16 | T3 =1(2,2,0) 113890795200 29072188608 18688704
20 | T4=1(2,3,2) 374979870720 141322739712 2337865728
23 | Ts=(2,3,1) 1630347264000 1522683346944 49529487360
24 Ts = (2,3,0) 9140008550400 5186242363392 131789094912
*27 | T7=(3,3,3) 8641511424000 3069920673792 1917900029952
32 Ts = (3,3,2) 51559732224000 63013026582528 87247980036096
35 | To=1(3,3,1) | 131992914493440 | 407335796736000 | 655500144279552
*36 | Tio=(3,3,0) | 740211875020800 | 890959504490496 | 1235443037110272

Here we give the three tables. It may be useful to assist for understanding
the present research. The asterisk * denotes that the matrix is not primitive. If
someone wants to study the Hecke operators in the theory of Siegel modular
forms f he or she will need much more the values of the Fourier coefficients
a(T, f) at non-primitive indices 7.
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6. Some Problems

The present author has tried to find some codes, but he could not find any
one of them. So he leaves them as the problems.

Problem 1: Is there an indecomposable doubly even binary self-dual [48, 24, §]
code?

Problem 2: Is there an indecomposable self-dual ternary [48,24,9] or
[48,24,12] code?

Problem 3: Is there a nearly extremal even unimodular lattice which is
constructed by a method other than coding theory.

7. Appendix

Let %4 be the class of 24-dimensional even unimodular lattices. Let L be a
member of %4 and we consider the subsets A,(L) and A4(L). We briefly show
that Siegel theta series ®,(Z, L) of degree g (¢ = 1,2,3) is completely detemined
by the Fourier coefficients a(7T,L), where T’s are associated with the vectors
in Ay(L) and A4(L). We take up the following Niemeier lattices: the overlattices
of the root lattices of Eg, Do, Ao, E1 ® Ay7. We name Ly, Lo, L3, Ly. As T’s
we take S;, where we append the third row and the third column for each S;
(i=1,2,4,5,6,7) in Table 1 to make three by three matices from two by two
matrices, and T'(2), T(3), T(4), T(5), T1(6), T»(6), T(7), T»(8) that are used
in [26]. We verify that ©3(Z, L), ©3(Z, L,), O3(Z,Ls), ©3(Z,Ls) are linearly
independent over C, which matches with fact dim¢(3, 12) = 4. We also verify that
of these ®y(Z,L;), ©,(Z,L,), ©:(Z,L3), ©,(Z,Ls) there are three linearly
independent theta’s. Note that @,(Z,L;) = ®(03(Z,L;) for 1 < j<4 and ® is
the Siegel operator. We find that

0:(Z,Ly) 0:(Z,L1)  Os(Z,L3) ©5(Z,Ls) _ 0
451584 46080 35280 112896 ’

and

03(Z,Ly) 03(Z, L) n 03(Z,L3) O3(Z,Ls)
451584 46080 35280 112896

_ e27zio(T(2)Z) + 1882711’5(T(3)Z) + 16462niJ(T(4)Z) _ 106e2ni0(T(5)Z) _ 40862711‘0(T1(6)Z)

— 5420(T2(6)Z) _ 9g()p2mio(T(1)Z) _ 1008e2mo(T2(8)2) 4 ...

The last series is a Siegel susp form of degree 3 and weight 12. This cusp form
is discussed in Miyawaki [20] along with a different context from the present
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one. He also obtained a large table of the Fourier coefficients of this cusp form
[21].

In the class of 32-dimensional even unimodualr lattices we select seven
lattices My,..., M; and we computed some Fourier coefficients of their Siegel
theta series of degrees up to 3. As a consequence we obtain three linearly in-
dependent Siegel cusp forms ¢,(Z), ¢,(Z), p3(Z) of weight 16 and degree 3. Here
we only give the beginning terms of their Fourier expansions:

” (Z) — Xria(T(2)2) + 18e%7io(T(3)Z) + 164¢27i0(T(4)2) n 134027i0(T(5)2)
— 168279(T1(0)Z) | 4266¢2m0(T2(0)2) 4 334()p27i0(T(7)Z)

— 100827 (T2(8)2) 1 ...

(02(2) — eZm'a(T(3)Z) + 2262ni(r(T(4)Z) + 27€2nir7(T(5)Z) + 13662711‘(7(T1(6)Z)

+ 66262711'(7(T2(6)Z) + 232862711'0'(T(7)Z) _ 232862711'(7(T2(8)Z) 4.

)

s (Z) — eZm'ﬂ(T(4)Z) + 1262ni(r(T1 (6)2) + 3262ni0(T(7)Z) + 36e2nia'(T2(8)Z) I

These examples may be consistent with the work of Tsuyumine [39], in which the
dimensions of the spaces of Siegel modular forms of degree 3 and the various
weights.
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