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PARAHOLOMORPHIC COHOMOLOGY GROUPS

OF HYPERBOLIC ADJOINT ORBITS

By

Nobutaka Boumuki and Tomonori Noda

Abstract. For a paracomplex manifold, we construct certain coho-

mology groups. The main purpose of this paper is to clarify a link

between such cohomology groups of hyperbolic adjoint orbits and

the de Rham cohomology groups of real flag manifolds. That

establishes relation between a paraholomorphic invariant and a

topological invariant.
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1. Introduction

In 1952 Libermann [10] has introduced the notion of paracomplex manifold,

and a paracomplex manifold M is a di¤erentiable manifold endowed with a

paracomplex structure I . Since the paracomplex structure I has properties like

those of a complex structure, we can naturally formulate the real vector space

Aðr; sÞðMÞ of di¤erential forms of type ðr; sÞ on M, and get two kinds of

linear operators q : Aðr; sÞðMÞ ! Aðrþ1; sÞðMÞ and q : Aðr; sÞðMÞ ! Aðr; sþ1ÞðMÞ
such that d ¼ qþ q, q2 ¼ 0, ðqÞ2 ¼ 0 and q � qþ q � q ¼ 0. Setting WrðMÞ :¼
fa A Aðr;0ÞðMÞ j qa ¼ 0g, we see that WðMÞ :¼ 0y

r¼0
WrðMÞ forms a cochain

complex with respect to q (see Subsection 2.3 for detail), which enables us to

construct cohomology groups

H0ðMÞ;H1ðMÞ;H2ðMÞ; . . .

of the paracomplex manifold ðM; IÞ. Similarly, one obtains H0ðMÞ;H1ðMÞ;
H2ðMÞ; . . . from WsðMÞ :¼ fb A Að0; sÞðMÞ j qb ¼ 0g. Remark here that these

groups H�ðMÞ, H�ðMÞ are invariant under paraholomorphic di¤eomorphisms.

Now, let G be a connected real semisimple Lie group, and let S be a hyper-

bolic element of g (see Definition 3.1 for the definition of hyperbolic element).

The adjoint orbit Ad GðSÞ ¼ G=L of G through S is called a hyperbolic adjoint

orbit and G=L is a homogeneous paracomplex manifold of G. Furthermore, it

is related with a real flag manifold G=Q�. Taking this relation into account,

we clarify a link between the cohomology groups H�ðG=LÞ of G=L and the de

Rham cohomology groups H �ðG=Q�Þ of G=Q�, which is the main result in

this paper (see Theorem 4.1). For example, a hyperboloid F 2 of one sheet is

a hyperbolic adjoint orbit, a circle S1 is a real flag manifold and F 2 is related

with S1. Theorem 4.1 tells us that

dimR H0ðF 2Þ ¼ dimR H1ðF 2Þ ¼ 1; dimR HkðF 2Þ ¼ 0 if kb 2

(ref. Example 4.13), where we consider an SLð2;RÞ-invariant paracomplex struc-

ture ISLð2;RÞ of F 2 ¼ SLð2;RÞ=SðGLð1;RÞ � GLð1;RÞÞ and such paracomplex

114 Nobutaka Boumuki and Tomonori Noda



structures are unique up to sign G.

This paper is organized as follows. In Section 2 we recall the definition of

paracomplex manifold, and give some lemmas, propositions and so on. Then

we construct cohomology groups H�ðMÞ, H�ðMÞ of a paracomplex manifold

ðM; IÞ. In Section 3 we first recall the definition of hyperbolic element and

observe that a hyperbolic adjoint orbit G=L is related with a real flag manifold

G=Q�. Next, we construct a G-invariant paracomplex structure IG of G=L; fur-

thermore we fix a paraholomorphic structure SG=L ¼ fðOg;cgÞgg AG on ðG=L; IGÞ
and a di¤erentiable structure SG=Q� ¼ fðOþ

g ;c
þ
g Þgg AG on G=Q�. Finally in Sec-

tion 4 we establish Theorem 4.1 and demonstrate it by investigating relation

between SG=L and SG=Q� . As an appendix, we deduce that F 2 ¼ ðF 2; ISLð2;RÞÞ and
a circular cylinder S1 � R ¼ ðS1 � R; IS 1�RÞ are di¤eomorphic, but neither para-

holomorphically nor anti-paraholomorphically di¤eomorphic to each other, from

the following data on cohomology groups:

dimR H1ðF 2Þ ¼ 1; dimR H1ðF 2Þ ¼ 1;

dimR H1ðS1 � RÞ ¼ 1; dimR H1ðS1 � RÞ ¼ 0:

�

Here IS 1�R is a paracomplex structure of S1 � R naturally defined by

ðIS 1�RÞðp;xÞðuþ vÞ :¼ u� v for ðp; xÞ A S1 � R and u A TpS
1, v A TxR.

Notation. Throughout this paper, for a Lie group G we denote its Lie

algebra by the corresponding Fraktur small letter g; besides we always assume

the di¤erentiability of class Cy and utilize the following notation, where M is a

di¤erentiable manifold:

(n1) TpM: the tangent vector space of M at a point p A M,

(n2) XðMÞ: the real Lie algebra of vector fields on M,

(n3) DkðMÞ: the real vector space of di¤erential forms of degree k

on M,
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(n4) F �o 0: the pullback by a di¤erentiable mapping F : M ! M 0 of a form

o 0 A DkðM 0Þ,
(n5) ml n: the direct sum of vector spaces m and n,

(n6) f jV : the restriction of a mapping f to a set V ,

(n7) Zb0: the set of non-negative integers,

(n8) Ad, ad: the adjoint representation of G, g,

(n9) CGðSÞ :¼ fg A G jAd gðSÞ ¼ Sg for an element S A g,

(n10) NGðmÞ :¼ fg A G jAd gðmÞ � mg for a vector subspace m � g,

(n11) G0: the identity component of G,

(n12) ZðGÞ: the center of G,

(n13) tg: a di¤eomorphic transformation of a homogeneous space G=H de-

fined by tgðaHÞ :¼ gaH for aH A G=H, where g A G.
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The authors would like to express their sincere gratitude to Professor Shin

Kato for his valuable suggestions. Many thanks are also due to the referee for

his important advice and instructive comments on an earlier version of this

paper.

2. Cohomology Groups of Paracomplex Manifolds

2.1. Definitions of Paracomplex Manifold and Local Paraholomorphic Coor-

dinate System. First of all, the definition of paracomplex manifold is as follows:

Definition 2.1 (cf. Libermann [10, p. 2518]). Let M be a di¤erentiable

manifold, and let I be a tensor field of type ð1; 1Þ on M. With this setting,

(I) I is said to be an almost paracomplex structure of M, if

(c1) I 2 ¼ id (considering I as a linear transformation of vector fields),

(c2) dimR Tþ
p M ¼ dimR T�

p M for all p A M, where TG
p M :¼ fv A TpM j

Ipv ¼Gvg.
In this case, ðM; IÞ is called an almost paracomplex manifold.

(II) I is said to be a paracomplex structure of M, if the conditions (c1), (c2)

above and

(c3) ½IX ; IY � � I ½IX ;Y � � I ½X ; IY � þ ½X ;Y � ¼ 0 for all X ;Y A XðMÞ
hold for I . In this case, ðM; IÞ is called a paracomplex manifold.

In order to give the definition of local paraholomorphic coordinate system,

we first show Lemma 2.2 which can be found, with some slight modifications, in
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Kaneyuki-Kozai [5, p. 82, Proposition 1.1]. Here we note that a non-empty open

subset W � M is always an almost paracomplex manifold whenever M is an

almost paracomplex manifold.

Lemma 2.2. Let ðM; IÞ be an almost paracomplex manifold of dimR M ¼ 2n,

and let

XGðMÞ :¼ fA A XðMÞ j IA ¼GAg:

Then, the following three items hold:

(1) For a given X A XðMÞ, there exists a unique ðA;BÞ A XþðMÞ � X�ðMÞ
such that X ¼ Aþ B.

(2) For any point p A M, there exist an open neighborhood V of p and 2n

vector fields Ai, Bi on V such that, for each x A V , fðAiÞxg
n
i¼1 and

fðBiÞxg
n
i¼1 are real bases of Tþ

x M and T�
x M, respectively.

(3) ðM; IÞ is a paracomplex manifold, namely the condition (c3) in Definition

2.1 holds if and only if ½XþðMÞ;XþðMÞ� � XþðMÞ, ½X�ðMÞ;X�ðMÞ� �
X�ðMÞ.

Proof. (1) follows from I 2 ¼ id, XþðMÞ \ X�ðMÞ ¼ f0g and

X ¼ 1

2
ðX þ IX Þ þ 1

2
ðX � IXÞ:

(2) Since M is a manifold, there exists a coordinate neighborhood ðW ; f ¼
ðx1; . . . ; x2nÞÞ of M containing the point p. Putting

Xl :¼
1

2

q

qxl
þ I

q

qxl

� �
; Yl :¼

1

2

q

qxl
� I

q

qxl

� �

for 1a la 2n, we deduce that Xl A XþðWÞ, Yl A X�ðWÞ and q=qxl ¼ Xl þ Yl,

so that Tþ
p M and T�

p M are generated by ðXlÞp and ðYlÞp, l ¼ 1; . . . ; 2n, respec-

tively (because fðq=qxlÞpg
2n
l¼1 is a basis of TpM and TG

p M � TpM). Therefore

there exist ll
i ; m

l
i A R such that f

P2n
l¼1 l

l
i ðXlÞpg

n
i¼1 and f

P2n
l¼1 m

l
i ðYlÞpg

n
i¼1 are

bases of Tþ
p M and T�

p M, respectively. Then, it turns out that Ai :¼
P2n

l¼1 l
l
i Xl A

XþðWÞ, Bi :¼
P2n

l¼1 m
l
i Yl A X�ðWÞ for all 1a ia n, and fðAiÞpg

n
i¼1

S
fðBiÞpg

n
i¼1

is a basis of TpM ¼ Tþ
p MlT�

p M. Accordingly we can get the conclusion

by changing the W for a su‰ciently small open neighborhood V of p A M (if

necessary).

(3) A direct computation, together with (1) and (c3), enables us to con-

clude (3). r
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Lemma 2.2 leads to Proposition 2.3 whose statement is similar to that of

Proposition 1.2 in Kaneyuki-Kozai [5, p. 83]. See Proposition 2 in Cortés-Mayer-

Mohaupt-Saueressig [2, p. 11] also.

Proposition 2.3.

(A) For an arbitrary 2n-dimensional paracomplex manifold ðM; IÞ, there exists

an atlas fðOa;ca ¼ ðx1
a ; . . . ; x

n
a ; y

1
a ; . . . ; y

n
a ÞÞga AA of M such that on each

Oa,

I
q

qxi
a

� �
¼ q

qxi
a

; I
q

qyi
a

� �
¼ � q

qyi
a

ð1a ia nÞ:ðaÞ

(B) From the above condition (a) it follows that on Oa \Ob,

qx
j
b

qyi
a

¼ 0 ¼
qy

j
b

qxi
a

ð1a i; ja nÞðbÞ

whenever Oa \Ob 0q ða; b A AÞ.
(C) Conversely, let us consider the case where a di¤erentiable manifold M

admits an atlas fðOa;ca ¼ ðx1
a ; . . . ; x

n
a ; y

1
a ; . . . ; y

n
a ÞÞga AA which the above

condition (b) holds for. In this case; if one defines a tensor field Ia on each

Oa by Iaðq=qxi
aÞ :¼ q=qxi

a, Iaðq=qyi
aÞ :¼ �q=qyi

a for 1a ia n, then we can

get a tensor field I on the whole M ¼
S

a AA Oa by setting I jOa
:¼ Ia for

a A A, and ðM; IÞ is a paracomplex manifold.

Proof. (A) Lemma 2.2-(2), (3) implies that both M C p 7! TG
p M are

involutive distributions on M. By Frobenius’s theorem, there exists an atlas

fðOa;ca ¼ ðx1
a ; . . . ; x

n
a ; y

1
a ; . . . ; y

n
a ÞÞga AA of M which the condition (a) holds

for.

(B) Taking Iðq=qxi
aÞ ¼ q=qxi

a, Iðq=qx j
bÞ ¼ q=qx

j
b, Iðq=qy j

bÞ ¼ �q=qy
j
b and

q

qxi
a

¼
Xn
j¼1

qx
j
b

qxi
a

q

qx
j
b

þ
qy

j
b

qxi
a

q

qy
j
b

 !

into account, one has qy
j
b=qx

i
a ¼ 0. In a similar way, we have qx

j
b=qy

i
a ¼ 0.

(C) For each a A A, let us define a tensor field Ia of type ð1; 1Þ on Oa as

follows:

Ia
q

qxi
a

� �
:¼ q

qxi
a

; Ia
q

qyi
a

� �
:¼ � q

qyi
a

ðcÞ
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ð1a ia nÞ. Then we see that on Oa \Ob 0q,

Ib
q

qxi
a

� �
¼ Ib

Xn
j¼1

qx
j
b

qxi
a

q

qx
j
b

þ
Xn
j¼1

qy
j
b

qxi
a

q

qy
j
b

 !
¼ Ib

Xn
j¼1

qx
j
b

qxi
a

q

qx
j
b

 !
ð9 ðbÞÞ

¼
Xn
j¼1

qx
j
b

qxi
a

q

qx
j
b

ð9 ðcÞÞ

¼
Xn
j¼1

qx
j
b

qxi
a

q

qx
j
b

þ
Xn
j¼1

qy
j
b

qxi
a

q

qy
j
b

ð9 ðbÞÞ

¼ q

qxi
a

and Ibðq=qyi
aÞ ¼ �q=qyi

a for all 1a ia n. This implies that one can get a tensor

field I on M ¼
S

a AA Oa by setting I jOa
:¼ Ia for a A A. Needless to say, this I

is an almost paracomplex structure of M. From (c) and Frobenius’s theorem it

follows that both ½XGðMÞ;XGðMÞ� � XGðMÞ hold for I . Therefore, the I is a

paracomplex structure of M by Lemma 2.2-(3). r

Remark 2.4 (cf. Cortés-Mayer-Mohaupt-Saueressig [2, p. 11, Example 3]).

Let N1 and N2 be di¤erentiable manifolds with dimR N1 ¼ dimR N2. Then, Prop-

osition 2.3-(C) ensures that one can define a paracomplex structure IN1�N2
of the

product manifold N1 �N2 by

ðIN1�N2
Þðp1;p2Þðu1 þ u2Þ :¼ u1 � u2

for pi A Ni and ui A TpiNi, i ¼ 1; 2. Hence, for example, a 2n-dimensional

Euclidean space R2n ¼ Rn � Rn and a circular cylinder S1 � R are paracomplex

manifolds.

Let us give the definition of local paraholomorphic coordinate system.

Definition 2.5. Let ðM; IÞ be a paracomplex manifold, and let

fðOa;ca ¼ ðx1
a ; . . . ; x

n
a ; y

1
a ; . . . ; y

n
a ÞÞga AA

be an atlas of M which the condition (a) in Proposition 2.3 holds for. Then

we say that ðOa;ca ¼ ðx1
a ; . . . ; x

n
a ; y

1
a ; . . . ; y

n
a ÞÞ is a paraholomorphic coordinate

neighborhood of ðM; IÞ, and that ðx1
a ; . . . ; x

n
a ; y

1
a ; . . . ; y

n
a Þ is a local paraholo-

morphic coordinate system on Oa.
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2.2. Paraholomorphic Mappings. We recall the definition of paraholo-

morphic mapping, and state some topics related to paraholomorphic mappings.

Throughout Subsection 2.2, M ¼ ðM; IÞ and M 0 ¼ ðM 0; I 0Þ are paracomplex

manifolds.

Definition 2.6. A di¤erentiable mapping F : M ! M 0 is said to be para-

holomorphic (resp. anti-paraholomorphic), if

I 0FðpÞ � ðdFÞp ¼ ðdFÞp � Ip ðresp: I 0FðpÞ � ðdFÞp ¼ �ðdF Þp � IpÞ

for all p A M, where ðdFÞp stands for the di¤erential of F at p.

One mentions the following:

Lemma 2.7. For a given di¤erentiable mapping F : M ! M 0, it follows

that

(i) F is paraholomorphic if and only if ðdFÞpðTþ
p MÞ � Tþ

FðpÞM
0, ðdFÞpðT�

p MÞ
� T�

FðpÞM
0 for all p A M;

(ii) F is anti-paraholomorphic if and only if ðdF ÞpðTþ
p MÞ � T�

FðpÞM
0,

ðdFÞpðT�
p MÞ � Tþ

FðpÞM
0 for all p A M.

Proof. Trivial. r

From Lemma 2.7 it is easy to see

Corollary 2.8. For any di¤eomorphism C : M ! M 0, it is paraholomorphic

(resp. anti-paraholomorphic) if and only if its inverse C�1 is paraholomorphic (resp.

anti-paraholomorphic).

We end this subsection with

Remark 2.9. Let ðO;c ¼ ðx1; . . . ; xn; y1; . . . ; ynÞÞ be a paraholomorphic

coordinate neighborhood of ðM; IÞ, and let IRn�R n be the paracomplex structure

of R2n given in Remark 2.4. Then, c : ðO; IÞ ! ðcðOÞ; IR n�R nÞ is a paraholo-

morphic di¤eomorphism.

2.3. Construction of Paraholomorphic Cohomology Groups. Our main goal

in this subsection is to construct cohomology groups of a paracomplex mani-

fold. Remark here that our approach is a little di¤erent from Krahe’s [9]; and
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that Angella-Rossi [1] deals with D-Dolbeaut cohomology groups H �;�
q ðX ;RÞ and

D-complex subgroups H �G
I ðX ;RÞ of the de Rham cohomology groups of a

compact D-complex manifold X , but these groups H
�;�
q ðX ;RÞ, H �G

I ðX ;RÞ are

di¤erent from our cohomology groups.

2.3.1. Cohomology Groups H�ðMÞ. We introduce the notion of di¤erential

form of type ðr; sÞ.

Definition 2.10. Let ðM; IÞ be a paracomplex manifold, and let o A

DrþsðMÞ. We say that o is of type ðr; sÞ, if for each p A M there exists a

paraholomorphic coordinate neighborhood ðO; ðx1; . . . ; xn; y1; . . . ; ynÞÞ of ðM; IÞ
such that

(1) p A O,

(2) o is expressed as

o ¼
X

i1<���<ir; j1<���<js

oi1���ir j1���js dx
i15� � �5dxir5dy j15� � �5dy js

on O.

Remark 2.11. Here are comments on Definition 2.10.

(i) The property that o is of type ðr; sÞ does not depend on the choice of

local paraholomorphic coordinate system ðx1; . . . ; xn; y1; . . . ; ynÞ on O,

due to (b) in Proposition 2.3.

(ii) A di¤erential form of type ð0; 0Þ on M is a di¤erentiable function on M.

(iii) If o is a di¤erential form of type ðr; sÞ, then opðv1; . . . ; vrþsÞ ¼ 0 for

vectors v1; . . . ; vrþs A TpM of which more than r belong to Tþ
p M or more

than s belong to T�
p M.

Let us denote by Aðr; sÞðMÞ the real vector space of di¤erential forms of type

ðr; sÞ on a paracomplex manifold ðM; IÞ, and show Lemma 2.12, Lemma 2.13

and Corollary 2.14 which enable us to construct cohomology groups.

Lemma 2.12. The following three items hold:

(1) Aðr; sÞðMÞ5Aðr 0; s 0ÞðMÞ � Aðrþr 0; sþs 0ÞðMÞ for all r; r 0; s; s 0 A Zb0.

(2) dðAðr; sÞðMÞÞ � Aðrþ1; sÞðMÞlAðr; sþ1ÞðMÞ for all r; s A Zb0.

(3) Aðr; sÞðMÞ ¼ f0g if r > n or s > n.

Here dimR M ¼ 2n.
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Proof. We prove (2) only, since (1) and (3) are immediate from Definition

2.10. Suppose that an o A Aðr; sÞðMÞ is expressed as

o ¼
X

i1<���<ir; j1<���<js

oi1���ir j1���js dx
i15� � �5dxir5dy j15� � �5dy js

in terms of a local paraholomorphic coordinate system ðx1; . . . ; xn; y1; . . . ; ynÞ.
Then, it follows that

do ¼
Xn
k¼1

X
i1<���<ir; j1<���<js

qoi1���ir j1���js
qxk

dxk5dxi15� � �5dxir5dy j15� � �5dy js

þ ð�1Þr
Xn
k¼1

X
i1<���<ir; j1<���<js

qoi1���ir j1���js
qyk

dxi15� � �5dxir5dyk5dy j15� � �5dy js ;

and the 1st (resp. 2nd) term of right-hand side belongs to Aðrþ1; sÞðMÞ (resp.

Aðr; sþ1ÞðMÞ). This assures (2). r

For every o A Aðr; sÞðMÞ, its exterior derivative do decomposes into a sum of

di¤erential forms of types ðrþ 1; sÞ and ðr; sþ 1Þ, which we denote by qo and

qo, respectively (cf. Lemma 2.12-(2)). With this notation we assert

Lemma 2.13. The following four items hold:

(i) d ¼ qþ q.

(ii) q : Aðr; sÞðMÞ ! Aðrþ1; sÞðMÞ and q : Aðr; sÞðMÞ ! Aðr; sþ1ÞðMÞ are linear

mappings for all r; s A Zb0.

(iii) q2 ¼ 0, ðqÞ2 ¼ 0 and q � qþ q � q ¼ 0.

(iv) For all r; r 0; s; s 0 A Zb0, o A Aðr; sÞðMÞ and h A Aðr 0; s 0ÞðMÞ, it follows

that

qðo5hÞ ¼ ðqoÞ5hþ ð�1Þrþso5ðqhÞ;

qðo5hÞ ¼ ðqoÞ5hþ ð�1Þrþso5ðqhÞ:

Proof. We only confirm (iii). For any o A Aðr; sÞðMÞ, one obtains

0 ¼ dðdoÞ ¼ qðqoÞ þ ðq � qþ q � qÞoþ qðqoÞ

from 0 ¼ d 2 and (i). Hence, we can conclude qðqoÞ ¼ 0, ðq � qþ q � qÞo ¼ 0 and

qðqoÞ ¼ 0 by virtue of (ii), qðqoÞ A Aðrþ2; sÞðMÞ, ðq � qþ q � qÞo A Aðrþ1; sþ1ÞðMÞ
and qðqoÞ A Aðr; sþ2ÞðMÞ. r
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Two Lemmas 2.12 and 2.13 lead to

Corollary 2.14. For an r A Zb0, we set

WrðMÞ :¼ fa A Aðr;0ÞðMÞ j qa ¼ 0g ð¼ kerðq : Aðr;0ÞðMÞ ! Aðr;1ÞðMÞÞÞ:

Then, the following five items hold:

(1) WrðMÞ is a real vector space for each r A Zb0.

(2) Let ðO; ðx1; . . . ; xn; y1; . . . ; ynÞÞ be a paraholomorphic coordinate neigh-

borhood of ðM; IÞ, and let a A WrðMÞ. Then, a is expressed as

a ¼
X

i1<���<ir

ai1���ir dx
i15� � �5dxir ; ai1���ir ¼ ai1���irðx1; . . . ; xnÞ

on O. Here, ai1���ir ¼ ai1���irðx1; . . . ; xnÞ means that the function ai1���ir is

independent of the variables y1; . . . ; yn.

(3) qðWrðMÞÞ � Wrþ1ðMÞ for all r A Zb0.

(4) WrðMÞ5Wr 0 ðMÞ � Wrþr 0 ðMÞ for all r; r 0 A Zb0.

(5) WrðMÞ ¼ f0g if r > n.

Here dimR M ¼ 2n.

Let WðMÞ be the direct sum of real vector spaces WrðMÞ, r A Zb0. Lemma

2.13-(iii) and Corollary 2.14-(3) allow one to regard WðMÞ ¼ 0y
r¼0

WrðMÞ as

a cochain complex with coboundary operator q. We denote by H rðMÞ the

r-dimensional cohomology group of this cochain complex—that is, for r A Zb0

we set

ZrðMÞ :¼ fa A WrðMÞ j qa ¼ 0g;
BrðMÞ :¼ fqb j b A Wr�1ðMÞg ðr > 0Þ; B0ðMÞ :¼ f0g;

�
ð2:15Þ

and HrðMÞ :¼ Z rðMÞ=BrðMÞ (the quotient linear space). With this setting, one

can demonstrate the proposition below, because Corollary 2.14-(4) and Lemma

2.13-(iv) yield

ZrðMÞ5Zr 0 ðMÞ � Zrþr 0 ðMÞ; ZrðMÞ5Br 0 ðMÞ � Brþr 0 ðMÞ ðr; r 0 A Zb0Þ:

Proposition 2.16. Let ðM; IÞ be a 2n-dimensional paracomplex manifold.

Then,

(1) dimR H0ðMÞ is equal to the number of connected components of M.

(2) dimR H rðMÞ ¼ 0 if r > n.
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(3) HðMÞ :¼ 0y
r¼0

HrðMÞ forms a real algebra with respect the following

product:

½a� � ½g� :¼ ½a5g� for ½a� A HrðMÞ; ½g� A Hr 0 ðMÞ:

2.3.2. Cohomology Groups H�ðMÞ. In the preceding paragraph we have

constructed the cohomology group HrðMÞ of a paracomplex manifold ðM; IÞ.
Now, let

WsðMÞ :¼ fb A Að0; sÞðMÞ j qb ¼ 0g ðs A Zb0Þ:

In a similar way, one can see that WðMÞ :¼ 0y
s¼0

WsðMÞ is a cochain com-

plex with coboundary operator q, and define the s-dimensional cohomology

group H sðMÞ of this cochain complex. Here ZsðMÞ :¼ fb A WsðMÞ j qb ¼ 0g,
BsðMÞ :¼ fqg j g A Ws�1ðMÞg ðs > 0Þ, B0ðMÞ :¼ f0g and HsðMÞ :¼ Z sðMÞ=
BsðMÞ. Note that HðMÞ :¼ 0y

s¼0
H sðMÞ similarly forms a real algebra, and

that HrðMÞ is irrelevant to HsðMÞ in general, because we can prove

Theorem 2.17. Let N1 and N2 be connected di¤erentiable manifolds with

dimR N1 ¼ dimR N2. For the paracomplex structure IN1�N2
of N1 �N2 given in

Remark 2.4, it follows that

dimR HkðN1 �N2Þ ¼ dimR HkðN1Þ; dimR HkðN1 �N2Þ ¼ dimR HkðN2Þ

for all k A Zb0. Here HkðNjÞ stands for the k-dimensional de Rham cohomology

group of Nj.

Proof. We fix coordinate neighborhoods ðU ; ðx1; . . . ; xnÞÞ of N1 and

ðW ; ðy1; . . . ; ynÞÞ of N2. Then, ðU �W ; ðx1; . . . ; xn; y1; . . . ; ynÞÞ is a paraholo-

morphic coordinate neighborhood of ðN1 �N2; IN1�N2
Þ. Any a A WrðN1 �N2Þ and

b A WsðN1 �N2Þ are expressed as

a ¼
X

i1<���<ir

ai1���ir dx
i15� � �5dxir ; ai1���ir ¼ ai1���irðx1; . . . ; xnÞ;

b ¼
X

j1<���<js

bj1���js dy
j15� � �5dy js ; bj1���js ¼ bj1���jsðy

1; . . . ; ynÞ

on U �W , respectively (cf. Corollary 2.14-(2)). Therefore one may assume

that a and b belong to DrðN1Þ and DsðN2Þ, respectively; and conversely, any

o A DrðN1Þ and h A DsðN2Þ belong to WrðN1 �N2Þ and WsðN1 �N2Þ, respec-
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tively. Furthermore, on this assumption we have

Wrþ1ðN1 �N2Þ C qa ¼
Xn
k¼1

X
i1<���<ir

qai1���ir
qxk

dxk5dxi15� � �5dxir ¼ da A Drþ1ðN1Þ;

Wsþ1ðN1 �N2Þ C qb ¼
Xn
k¼1

X
j1<���<js

qbj1���js
qyk

dyk5dy j15� � �5dy js ¼ db A Dsþ1ðN2Þ:

Consequently we deduce that dimR H rðN1 �N2Þ ¼ dimR HrðN1Þ for all r A Zb0,

and that dimR HsðN1 �N2Þ ¼ dimR HsðN2Þ for all s A Zb0. r

Theorem 2.17 enables us to compute cohomology groups H�ðMÞ, H�ðMÞ in
some cases.

Example 2.18. For a circular cylinder S1 � R,

dimR H0ðS1 � RÞ ¼ dimR H1ðS1 � RÞ ¼ 1; dimR HkðS1 � RÞ ¼ 0 if kb 2;

dimR H0ðS1 � RÞ ¼ 1; dimR H jðS1 � RÞ ¼ 0 if jb 1:

�

cf. Remark 2.4.

2.4. Paraholomorphic Di¤eomorphisms and Cohomology Groups. The fol-

lowing proposition is easy to prove, but we confirm it for the sake of com-

pleteness (see (2.15) for ZkðMÞ, BkðMÞ):

Proposition 2.19. Let ðM; IÞ and ðM 0; I 0Þ be paracomplex manifolds, and

let C : M ! M 0 be a paraholomorphic di¤eomorphism. Then,

(i) C�ðAðr; sÞðM 0ÞÞ ¼ Aðr; sÞðMÞ for all r; s A Zb0.

(ii) q �C� ¼ C� � q and q �C� ¼ C� � q.
(iii) C�ðWkðM 0ÞÞ ¼ WkðMÞ and C�ðWkðM 0ÞÞ ¼ WkðMÞ for all k A Zb0.

(iv) For every k A Zb0, C�ðZkðM 0ÞÞ ¼ ZkðMÞ, C�ðBkðM 0ÞÞ ¼ BkðMÞ,
C�ðZkðM 0ÞÞ ¼ ZkðMÞ and C�ðBkðM 0ÞÞ ¼ BkðMÞ.

Therefore the mapping HrðM 0Þ C ½a 0� 7! ½C�a 0� A HrðMÞ is a linear isomor-

phism for every r A Zb0, and moreover it induces an algebra isomorphism of

HðM 0Þ onto HðMÞ. Similarly, HsðM 0ÞGH sðMÞ and HðM 0ÞGHðMÞ via

C�.

Proof. (i) Let us take any o 0 A Aðr; sÞðM 0Þ and verify that C�o 0 A

Aðr; sÞðMÞ. From o 0 A DrþsðM 0Þ it is natural that C�o 0 A DrþsðMÞ. For each

p A M, there exists a paraholomorphic coordinate neighborhood ðO 0; ðx1; . . . ; xn;
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y1; . . . ; ynÞÞ of ðM 0; I 0Þ such that (1) CðpÞ A O 0 and (2) o 0 is expressed as

o 0 ¼
X

i1<���<ir; j1<���<js

o 0
i1���ir j1���js dx

i15� � �5dxir5dy j15� � �5dy js

on O 0. Since C : M ! M 0 is a paraholomorphic di¤eomorphism we set

V :¼ C�1ðO 0Þ; ui :¼ xi �C; vi :¼ yi �C ð1a ia nÞ;

and assert that ðV ; ðu1; . . . ; un; v1; . . . ; vnÞÞ is a paraholomorphic coordinate

neighborhood of ðM; IÞ containing the point p, and that

C�o 0 ¼
X

i1<���<ir; j1<���<js

ðo 0
i1���ir j1���js �CÞ dui15� � �5duir5dv j15� � �5dv js

on V . This implies C�o 0 A Aðr; sÞðMÞ.
(ii) For any o 0 A Aðr; sÞðM 0Þ, it follows from d ¼ qþ q and d �C� ¼ C� � d

that

qðC�o 0Þ þ qðC�o 0Þ ¼ dðC�o 0Þ ¼ C�ðdo 0Þ ¼ C�ðqo 0Þ þC�ðqo 0Þ:

This, combined with (i), qðC�o 0Þ;C�ðqo 0Þ A Aðrþ1; sÞðMÞ and qðC�o 0Þ;C�ðqo 0Þ A
Aðr; sþ1ÞðMÞ, assures that qðC�o 0Þ ¼ C�ðqo 0Þ and qðC�o 0Þ ¼ C�ðqo 0Þ.

(iii) comes from (i) and (ii).

(iv) comes from (ii) and (iii). r

By arguments similar to those in the proof of Proposition 2.19 we deduce

Proposition 2.20. Let ðM; IÞ and ðM 0; I 0Þ be paracomplex manifolds.

Suppose that there exists an anti-paraholomorphic di¤eomorphism X : M ! M 0.

Then,

(i) X�ðAðr; sÞðM 0ÞÞ ¼ Aðs; rÞðMÞ for all r; s A Zb0.

(ii) q � X� ¼ X� � q and q � X� ¼ X� � q.
(iii) X�ðWrðM 0ÞÞ ¼ WrðMÞ for all r A Zb0.

(iv) The mapping H rðM 0Þ C ½a 0� 7! ½X�a 0� A HrðMÞ is a linear isomorphism

for every r A Zb0.

Remark 2.21. Proposition 2.20-(iv) and Example 2.18 imply that for

the paracomplex structure IS 1�R of S1 � R given in Remark 2.4, there are

no anti-paraholomorphic di¤eomorphisms of S1 � R onto itself, because of

dimR H1ðS1 � RÞ0 dimR H1ðS1 � RÞ.
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3. Structures on Hyperbolic Adjoint Orbits and Real Flag Manifolds

3.1. The Definition of Hyperbolic Element. In this subsection we establish

Proposition 3.7 which will play a role later and is applicable to hyperbolic adjoint

orbits. Here, the definition of hyperbolic adjoint orbit is as follows:

Definition 3.1 (cf. Kobayashi [7, p. 5]). Let g be a real semisimple Lie

algebra, and let G be a connected Lie group with Lie algebra g. Then, an element

S A g is said to be hyperbolic, if ad S is a semisimple linear transformation of

g and all the eigenvalues of ad S in g are real. The adjoint orbit Ad GðSÞ ¼
G=CGðSÞ of G through a hyperbolic element S A g is called a hyperbolic adjoint

orbit.

Remark 3.2 (e.g. Helgason [3, p. 431, Theorem 7.2-(ii)]). An element X A g

is hyperbolic if and only if there exists a Cartan involution y� of g such that

y�ðX Þ ¼ �X .

From Lemma 3.3 we will generalize known facts and obtain Proposition

3.7.

Lemma 3.3. Let P be a Lie group, let Q be a closed subgroup of P, and let R

be a subgroup of P such that Q0 � R � Q, where R is not necessary closed in P.

Then,

(1) R is an open and closed subgroup of Q.

(2) R is a closed subgroup of P.

Proof. (1) It su‰ces to confirm that R is an open subgroup of Q (cf. the

proof of Proposition 1.93-(a) in Knapp [6, p. 84]). It is obvious that R is a

subgroup of Q. Let us prove that R is open in Q. Since R is a group and Q0 � R,

we see that xQ0 � R for all x A R. So, it follows from e A Q0 that

R ¼
[
x AR

xQ0;

where e is the identity element of P. By virtue of R � Q, the left translation

of Q by any x A R is a homeomorphism of Q onto itself. Therefore xQ0 is

open in Q because so is Q0. Consequently, R ¼
S

x AR xQ0 is an open subset

of Q.

(2) Q is closed in P, and R is closed in Q by (1). Thus R is closed in P.

r
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We want to state Proposition 3.7. First, let us fix the notation and setting

of the proposition. Let G be a connected real semisimple Lie group, let S be a

hyperbolic element of g, and let L be a subgroup of G such that CGðSÞ0 � L �
CGðSÞ. Then we set

gl :¼ fX A g j ad SðXÞ ¼ lXg for l A R;

uG :¼ 0
l>0

gGl; UG :¼ exp uG; QG :¼ LUG;

(
ð3:4Þ

where gl ¼ f0g in the case where l is di¤erent from the eigenvalues of ad S

and exp : g ! G is the exponential mapping. In addition, let y� be a Cartan

involution of g satisfying y�ðSÞ ¼ �S. Since the Lie group G is semisimple,

y� is liftable to G. We denote its lift by y, and define a closed subgroup K of

G by

K :¼ G y ¼ fk A G j yðkÞ ¼ kg:ð3:5Þ

Next, let us prepare for the proof of Proposition 3.7.

Lemma 3.6. With the setting (3.4) and (3.5); the following seven items

hold:

(i) L is a closed subgroup of G with l ¼ cgðSÞ ¼ g0.

(ii) g ¼ 0
l AR gl ¼ u� l ll uþ.

(iii) ll uþ ¼ 0
mb0

gm and ll u� ¼ 0
mb0

g�m.

(iv) Ad xðglÞ � gl for all ðx; lÞ A CGðSÞ � R.

(v) ½gl; gm� � glþm for all l; m A R.

(vi) y�ðglÞ ¼ g�l for all l A R.

(vii) Both uþ and u� are subalgebras of g such that Ad xðuþÞ � uþ,

Ad xðu�Þ � u� for all x A CGðSÞ, and y�ðuþÞ ¼ u�, y�ðu�Þ ¼ uþ.

Proof. (i) follows by Lemma 3.3-(2), CGðSÞ0 � L � CGðSÞ and (3.4).

(ii) Since the element S A g is hyperbolic, one obtains g ¼ 0
l AR gl from

(3.4). Hence, we can assert (ii) because 0
l AR gl ¼ u� l ll uþ is an easy con-

sequence of (3.4) and l ¼ g0.

(iii) is immediate from (3.4) and l ¼ g0.

(iv) One has (iv) by a direct computation and (3.4).

(v) comes from (3.4) and the Jacobi identity in g.

(vi) From y�ðSÞ ¼ �S and (3.4) we deduce y�ðglÞ ¼ g�l.

(vii) Since uG ¼ 0
l>0

gGl, (v) implies that ½uG; uG� � uG, and thus both uG

are subalgebras of g; moreover, (iv) and (vi) imply that Ad xðuGÞ � uG and

y�ðuGÞ ¼ uH, respectively. r
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Now, we are in a position to state

Proposition 3.7. With the setting (3.4) and (3.5); the following eight items

hold:

(1) U s is a simply connected, closed nilpotent subgroup of G whose Lie algebra

is us, and exp : u s ! U s is a di¤eomorphism, for each s ¼G.

(2) yðU�Þ ¼ Uþ and yðUþÞ ¼ U�.

(3) Qs ¼ LU s is a closed subgroup of G such that Qs ¼ LyU s ¼ U s zL

ðsemidirectÞ and qs ¼ ll us, for each s ¼G.

(4) Both the product mappings Uþ �U� � L C ðuþ; u�; xÞ 7! uþu�x A G and

U� �Uþ � L C ðu�; uþ; xÞ 7! u�uþx A G are embeddings whose images

are open subsets of G.1

(5) K is a connected closed subgroup of G, and G ¼ KQs for each s ¼G.

(6) The mapping K=ðK \QsÞ C kðK \QsÞ 7! kQs A G=Qs is a di¤eomorphism

for each s ¼G.

(7) If yðLÞ � L, then K \Qs ¼ K \ L holds for each s ¼G.

(8) The center ZðGÞ is finite if and only if all K , G=Qþ and G=Q� are

compact.

Proof. We investigate the case of s ¼ þ only.

Let us prepare for the proof. From y�ðSÞ ¼ �S, one can obtain a Cartan

decomposition g ¼ kl p with S A p. We fix a maximal Abelian subspace a in p

containing S, and denote by h¼hðg; aÞ the (non-zero restricted) root system of

g relative to a. Moreover, we define a lexicographic linear ordering of the dual

space a� such that aðSÞb 0 for all positive roots a. Let hþ be the subset of h

consisting of all positive roots relative to this ordering. Setting gb :¼ fX A g j
ad HðX Þ ¼ bðHÞX for all H A ag for b Ah and nþ :¼ 0

a Ahþ
ga, one has an

Iwasawa decomposition g ¼ kl al nþ; moreover it follows from g ¼ al ckðaÞl
0

a Ahþ
gGa, S A a and (3.4) that

uþ ¼ 0
l>0

gl � 0
a Ahþ

ga ¼ nþ � 0
mb0

gm ¼ ll uþ:ð3:8Þ

Denote by G ¼ KANþ the Iwasawa decomposition of G corresponding to the

g ¼ kl al nþ. On the one hand; we obtain A � CGðSÞ0 from a � cgðSÞ
and A ¼ exp a. On the other hand; since both nþ \ cgðSÞ and uþ are sub-

algebras of nþ and nþ ¼ ðnþ \ cgðSÞÞl uþ, one can see that Nþ ¼ exp nþ ¼

1 In case of L ¼ CGðSÞ this is called the Gel’fand-Naimark decomposition.
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expðnþ \ cgðSÞÞ exp uþ � CGðSÞ0Uþ by Lemma 6.2 in Kostant [8, p. 124]. Then,

it turns out that

A � CGðSÞ0; Nþ � CGðSÞ0Uþ:ð3:9Þ

Now, we are ready to prove the eight items.

(1) Nþ is a simply connected closed nilpotent subgroup of G and exp : nþ !
Nþ is a di¤eomorphism. Hence (1) holds because of uþ � nþ and Uþ ¼ exp uþ.

(2) The above (1) and y�ðuHÞ ¼ uG provide us with yðUHÞ ¼ UG.

(3) It su‰ces to get the conclusion in case of L ¼ CGðSÞ, because one can

generalize the conclusion from Lemma 3.3-(1). First of all, let us prove that

CGðSÞUþ ¼ CGðSÞyUþ, namely

CGðSÞUþ is the semidirect product of groups CGðSÞ and Uþ;

with Uþ normal:

On the one hand; (1) and Lemma 3.6-(vii) imply that

xUþx�1 � Uþ for all x A CGðSÞ:ð3:10Þ

On the other hand; we can assert that

CGðSÞ \Uþ ¼ feg:ð3:11Þ

Indeed, let us take an arbitrary y A CGðSÞ \Uþ. By virtue of y A Uþ and (1),

there exists a unique Y A uþ satisfying y ¼ exp Y . It follows from y A CGðSÞ that
Ad yðSÞ ¼ S. So, for any t A R we obtain yðexp tSÞy�1 ¼ exp tS, and then y ¼
ðexp tSÞyðexp tSÞ�1. Therefore exp Y ¼ exp Adðexp tSÞY . This, together with

Y ;Adðexp tSÞY A uþ and (1), assures that Y ¼ Adðexp tSÞY . Di¤erentiating this

Y ¼ Adðexp tSÞY at t ¼ 0 we have 0 ¼ ½S;Y �. Thus Y A cgðSÞ \ uþ ¼ f0g, and
y ¼ exp Y ¼ e. For this reason (3.11) holds. By (3.10) and (3.11) we see that

CGðSÞUþ ¼ CGðSÞyUþ ¼ Uþ zCGðSÞ; besides CGðSÞUþ is a subgroup of G.

At this stage, the rest of proof of (3) is to demonstrate the following items

(A) and (B):

(A) CGðSÞUþ is a closed subset of G,

(B) cgðSÞl uþ is the Lie algebra of CGðSÞUþ.

(A) Since NGð0mb0
gmÞ is closed in G, we are going to conclude (A) by

showing

CGðSÞUþ ¼ NG 0
mb0

gm

 !
:ðA 0Þ
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Our first aim is to verify

CGðSÞUþ � NG 0
mb0

gm

 !
:ð3:12Þ

On the one hand; it is immediate from Ad xðglÞ � gl that Ad x 0
mb0

gm
� �

�
0

mb0
gm for all x A CGðSÞ, so that

CGðSÞ � NG 0
mb0

gm

 !
:

On the other hand; since ½gl; gm� � glþm for all l; m A R and uþ ¼ 0
l>0

gl we

confirm that ½uþ;0
mb0

gm� ¼ ½0
l>0

gl;0
mb0

gm� � 0
n>0

gn, and therefore (1)

yields Uþ � NGð0mb0
gmÞ. Consequently one obtains CGðSÞUþ � NGð0mb0

gmÞ
because NGð0mb0

gmÞ is a group. Hence, we have shown (3.12). Our second aim

is to confirm that the converse inclusion also holds, namely

NG 0
mb0

gm

 !
� CGðSÞUþ:ð3:13Þ

Take any g A NGð0mb0
gmÞ. By g A G ¼ KANþ there exists a unique ðk; a; nÞ A

K � A�Nþ satisfying

g ¼ kan:

Here (3.9) and (3.12) imply k ¼ gðanÞ�1 A K \NGð0mb0
gmÞ. Accordingly

Ad kð0
mb0

gmÞ � 0
mb0

gm. So, yðkÞ ¼ k and y�ðglÞ � g�l give Ad kð0
nb0

g�nÞ
� 0

nb0
g�n. Therefore it follows from cgðSÞ ¼ g0 and uþ ¼ 0

l>0
gl that

Ad kðcgðSÞÞ ¼ Ad kð0
mb0

gm \0
nb0

g�nÞ � ð0
mb0

gm \0
nb0

g�nÞ ¼ cgðSÞ;
Ad kðuþÞ ¼ Ad kð½S; uþ�Þ � ½Ad kðSÞ;0

mb0
gm� � ½Ad kðSÞ; cgðSÞl uþ� � uþ;

(

where we remark that ad S : uþ ! uþ is linear isomorphic and Ad kðSÞ belongs

to the center of cgðSÞ. Note that cgðSÞ ¼ ðk \ cgðSÞÞl ðp \ cgðSÞÞ and a is a

maximal Abelian subspace in p \ cgðSÞ. By virtue of Ad kðcgðSÞÞ � cgðSÞ and

cgðSÞ ¼ al ckðaÞl0
g Adgg, one has Ad kðaÞ � p \ cgðSÞ and there exists an

x0 A K \ CGðSÞ0 satisfying

Adðx0kÞðaÞ ¼ a; tAdðx0kÞ�1ðdþÞ �dþ;

where d :¼ fg Ahj gðSÞ ¼ 0g and dþ :¼d\hþ. From Ad kðuþÞ � uþ and

x0 A CGðSÞ we obtain Adðx0kÞðuþÞ � uþ. This, combined with Adðx0kÞðaÞ ¼ a

and uþ ¼ 0
a Ahþ�dþ

ga, assures that tAdðx0kÞ�1ðhþ �dþÞ �hþ �dþ. Conse-
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quently it follows that tAdðx0kÞ�1ðhþÞ �hþ, and so Adðx0kÞ ¼ id on a (e.g.

Theorem 4.3.18 in Varadarajan [12, pp. 282–283]). Hence we see that

k A CGðSÞ

in view of S A a and x0 A CGðSÞ. Therefore g ¼ kan A CGðSÞCGðSÞ0CGðSÞ0Uþ �
CGðSÞUþ by (3.9), and we have verified (3.13). This and (3.12) provide us with

(A0). So, (A) follows.

(B) Let us show that cgðSÞl uþ is the Lie algebra of CGðSÞUþ. From (A0) it

follows that the Lie algebra of CGðSÞUþ coincides with ngð0mb0
gmÞ. Accord-

ingly it su‰ces to show that

ngðcgðSÞl uþÞ � cgðSÞl uþ;ð3:14Þ

since 0
mb0

gm ¼ cgðSÞl uþ. For an X A g suppose that ½X ; cgðSÞl uþ� �
cgðSÞl uþ. By g ¼ u� l cgðSÞl uþ there exists a unique ðX �;X 0;X þÞ A
u� � cgðSÞ � uþ such that X ¼ X � þ X 0 þ X þ. The supposition and S A cgðSÞ
imply cgðSÞl uþ C ½X ;S� ¼ ½X �;S� þ ½X þ;S�. Thus it follows from ½XG;S� A uG

that ½X �;S� ¼ 0, so that X � A cgðSÞ \ u� ¼ f0g. Therefore X ¼ X 0 þ X þ A

cgðSÞl uþ, and (3.14) holds. That enables us to complete the proof of (3).

(4) We only prove that the mapping U� �Uþ � L C ðb; a; xÞ 7! bax A G is

injective, since g ¼ u� l uþ l l. First, let us verify

U� \Qþ ¼ feg:ð3:15Þ

Take any y A U� \Qþ. By y A U� and (1) we get a unique Y A u� such

that y ¼ exp Y . (A0), y A Qþ ¼ LUþ and L � CGðSÞ allow us to show y A

NGð0mb0
gmÞ. Then, it follows from S A g0 that Ad yðSÞ A 0

mb0
gm, and

moreover

0
mb0

gm C Ad yðSÞ � S ¼
X
nb1

1

n!
ðad Y ÞnS A 0

l>0

g�l

because Y A u� ¼ 0
l>0

g�l. This implies Ad yðSÞ � S ¼ 0, and y A CGðSÞ \U�

¼ feg by (3). Therefore (3.15) holds. Now, let us prove that U� �Uþ � L C

ðb; a; xÞ 7! bax A G is injective. Suppose that

bax ¼ b 0a 0x 0

for ðb; a; xÞ; ðb 0; a 0; x 0Þ A U� �Uþ � L. From (3) we deduce that Qþ C a 0x 0ðaxÞ�1

¼ ðb 0Þ�1
b A U�, so that a 0x 0ðaxÞ�1 ¼ e and ðb 0Þ�1

b ¼ e due to (3.15). Moreover,

it follows from a 0x 0ðaxÞ�1 ¼ e and (3) that a ¼ a 0 and x ¼ x 0. Hence b ¼ b 0,

a ¼ a 0 and x ¼ x 0.
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(5) Since G is connected, K is also connected. In order to show G ¼ KQþ, it

is enough to confirm that G � KQþ, which comes from G ¼ KANþ, (3.9) and

ANþ � CGðSÞ0Uþ � LUþ ¼ Qþ.

(6) is a consequence of (5).

(7) Suppose that yðLÞ � L. Let us prove K \Qþ � K \ L. For any k A

K \Qþ there exists a unique ðx; uÞ A L�Uþ such that

k ¼ xu

because of k A Qþ and (3). Since yðkÞ ¼ k we see that yðxÞyðuÞ ¼ xu, and

yðuÞu�1ðx�1yðxÞÞ ¼ e. Therefore the supposition, ðyðuÞ; u�1; x�1yðxÞÞ A U� �
Uþ � L and (4) yield yðuÞ ¼ u�1 ¼ x�1yðxÞ ¼ e, especially u ¼ e. Hence k ¼
x A K \ L, and K \Qþ � K \ L. The converse inclusion K \ L � K \Qþ is

obvious.

(8) It is known that the center ZðGÞ is finite if and only if K is compact

(e.g. Theorem 1.1-(i) in Helgason [3, pp. 252–253]). Thus (6) allows us to get

the conclusion. r

Remark 3.16. Let us comment on Proposition 3.7, where s ¼G.

(i) qs ¼ ll u s contains a Borel subalgebra al ckðaÞl0
a Ahþ

gsa of g and

is a parabolic subalgebra of g whose Levi factor and unipotent radical

are l and u s, respectively.

(ii) In general CGðSÞ is not connected (cf. Example 4.13). For this reason,

the condition CGðSÞ0 � L � CGðSÞ makes a sense.

(iii) The condition yðLÞ � L in (7) always holds whenever L ¼ CGðSÞ0 or

L ¼ CGðSÞ.
(iv) In case of L ¼ CGðSÞ, it turns out that Qs ¼ NGðll u sÞ and G=Qs is a

real flag manifold; besides G=Qs is compact by virtue of ZðGÞ � Qs.

(v) G=Qs is called an R-space, if L ¼ CGðSÞ and there exists a connected

complex semisimple Lie group GC such that (a) G is a closed subgroup

of GC and (b) g is a real form of gC. Here Takeuchi [11, p. 100] has

introduced the notion of R-space. If G=Qs is an R-space, then it is

compact because the inclusion ZðGÞ � ZðGCÞ forces ZðGÞ to be finite.

3.2. Paraholomorphic Structures on Hyperbolic Adjoint Orbits. In this sub-

section, we first construct a G-invariant paracomplex structure IG of the ho-

mogeneous space G=L and afterwards fix a paraholomorphic structure SG=L ¼
fðOg;cgÞgg AG on ðG=L; IGÞ, where the setting in (3.4) and (3.5) remains valid

here.
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Now, let us construct a G-invariant paracomplex structure IG of G=L. Define

an involutive linear transformation { of the real vector space uþ l u� by

{ðAÞ :¼ A for A A uþ; {ðBÞ :¼ �B for B A u�:ð3:17Þ

Since g ¼ ll uþ l u� and Ad LðuGÞ � uG, the homogeneous space G=L is

reductive. Then, one can identify ToðG=LÞ with uþ l u�, where o is the origin of

G=L, and see that Ad x � { ¼ { �Ad x on uþ l u� for all x A L ð9 ð3:17ÞÞ; besides
Proposition 3.7-(1), (2) assures dimR uþ ¼ dimR u�. Accordingly we can obtain a

G-invariant almost paracomplex structure IG of G=L by setting

ðIGÞpv :¼ ðdtgÞoð{ððdtg�1ÞpvÞÞ for p ¼ gL A G=L and v A TpðG=LÞ:ð3:18Þ

About this IG one has TG
p ðG=LÞ ¼ ðdtgÞouG for all p ¼ gL A G=L. Hence, it

follows from ½uG; uG� � uG that ½XGðG=LÞ;XGðG=LÞ� � XGðG=LÞ, so that IG is

a G-invariant paracomplex structure of G=L due to Lemma 2.2-(3).

Remark 3.19. We have constructed a G-invariant paracomplex structure of

G=L. In fact, one can construct a G-invariant paraKähler metric on G=L further

(cf. Theorem 3.8 in Hou-Deng-Kaneyuki-Nishiyama [4, p. 225]). In addition, it is

known that in some cases G-invariant paracomplex structures of G=L are unique

up to sign G (e.g. Proposition 4.4 in Kaneyuki-Kozai [5, p. 96]).

Next, let us fix a paraholomorphic structure SG=L on ðG=L; IGÞ, where IG is

the paracomplex structure constructed above. Take any real bases fAign
i¼1 and

fBign
i¼1 of uþ and u�, respectively. In the first place, we are going to set a

coordinate neighborhood of G=L containing the origin o. Proposition 3.7-(4) tells

us that O :¼ UþU�L=L is an open neighborhood of o A G=L, and moreover,

for each p A O there exists a unique ðuþ; u�Þ A Uþ �U� satisfying p ¼ uþu�L.

Proposition 3.7-(1) then enables us to obtain unique xi; yi A R such that uþ ¼
expð

Pn
i¼1 x

iAiÞ and u� ¼ expð
Pn

i¼1 y
iBiÞ. Therefore one can define a mapping

c : O ! R2n by

cðpÞ :¼ ðx1; . . . ; xn; y1; . . . ; ynÞ for p ¼ exp
Xn

i¼1
xiAi

� �
exp

Xn

i¼1
yiBi

� �
L A O;

and ðO;c ¼ ðx1; . . . ; xn; y1; . . . ; ynÞÞ is a coordinate neighborhood of G=L con-

taining o. Furthermore, (3.17) and (3.18) imply that

IG
q

qxi

� �
¼ q

qxi
; IG

q

qyi

� �
¼ � q

qyi
ð1a ia nÞð3:20Þ
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on O. In the second place, for g A G we put Og :¼ tgðOÞ, cg :¼ c � tg�1 and

denote the local coordinate system in ðOg;cgÞ by ðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g Þ. Since

(3.20) and IG is G-invariant, we conclude that

SG=L :¼ fðOg;cg ¼ ðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g ÞÞgg AGð3:21Þ

is an atlas of G=L such that IGðq=qxi
gÞ ¼ q=qxi

g, IGðq=qyi
gÞ ¼ �q=qyi

g ð1a ia nÞ
on each Og; and this ðOg;cg ¼ ðx1

g ; . . . ; x
n
g ; y

1
g ; . . . ; y

n
g ÞÞ is a paraholomorphic

coordinate neighborhood of ðG=L; IGÞ.
We end this subsection with showing

Proposition 3.22. With the setting (3.4) and (3.5); suppose that yðLÞ � L.

Then for the invariant paracomplex structure IG of G=L given in (3.18), there exists

an anti-paraholomorphic di¤eomorphism Y of G=L onto itself.

Proof. The supposition allows us to define a di¤eomorphic transformation

Y of G=L by YðgLÞ :¼ yðgÞL for gL A G=L. This Y is anti-paraholomorphic by

means of y�ðSÞ ¼ �S and (3.17). r

3.3. Di¤erentiable Structures on Real Flag Manifolds. We obey the same

setting as in Subsection 3.2. Let us fix a di¤erentiable structure SG=Q� on the

homogeneous space G=Q�. Recall that fAign
i¼1 is a real basis of uþ. Proposition

3.7-(1), (3), (4) enables us to define a coordinate neighborhood ðOþ;cþÞ of G=Q�

containing the origin eQ� as follows:

Oþ :¼ UþQ�=Q�;

cþðqÞ :¼ ðz1; . . . ; znÞ for q ¼ expð
Pn

i¼1 z
iAiÞQ� A Oþ:

�

For g A G we set Oþ
g :¼ tgðOþÞ, cþ

g :¼ cþ � tg�1 and denote the local coordinate

system in ðOþ
g ;c

þ
g Þ by ðz1g ; . . . ; zng Þ. Then, it turns out that

SG=Q� :¼ fðOþ
g ;c

þ
g ¼ ðz1g ; . . . ; zng ÞÞgg AGð3:23Þ

is an atlas of G=Q�.

4. The Main Result and Its Related Topics

The main result in this paper is as follows (see Paragraph 2.3.1, (3.4) for

HrðG=LÞ, Q�):
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Theorem 4.1. Let G be a connected real semisimple Lie group, let S be a

hyperbolic element of g, and let L be a subgroup of G such that

CGðSÞ0 � L � CGðSÞ:

Then, for the invariant paracomplex structure IG of G=L given in (3.18), the co-

homology group H rðG=LÞ is linear isomorphic to the de Rham cohomology group

H rðG=Q�Þ for every r A Zb0.

This theorem follows by Proposition 4.6 in Subsection 4.1.

4.1. A Link between Paraholomorphic Cohomology Groups of Hyperbolic

Adjoint Orbits and the de Rham Cohomology Groups of Real Flag Manifolds.

We obey the same setting as in Subsections 3.2 and 3.3.

Our first aim is to show Lemma 4.5, and we will deduce Proposition 4.6 from

the lemma. Since L � Q� we can consider a surjection Pr : G=L ! G=Q� defined

by

PrðgLÞ :¼ gQ� for gL A G=L:

In Subsections 3.2 and 3.3 we have defined atlases SG=L ¼ fðOg;cg ¼ ðx1
g ; . . . ; x

n
g ;

y1g ; . . . ; y
n
g ÞÞgg AG and SG=Q� ¼ fðOþ

g ;c
þ
g ¼ ðz1g ; . . . ; zng ÞÞgg AG, respectively. By

means of these definitions, we can assert that for each g A G one has

Pr�1ðOþ
g Þ ¼ Og; hu�L A Og for all ðhL; u�Þ A Og �U�ð4:2Þ

(cf. Proposition 3.7-(3)), and that Pr is expressed as

Pr : ðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g Þ ! ðz1g ; . . . ; zng Þ; xi

g ¼ zig � Pr ð1a ia nÞð4:3Þ

on Og, so that

ðd PrÞp : Tþ
p ðG=LÞ ! TPrðpÞðG=Q�Þ is a linear isomorphismð4:4Þ

for any p A G=L:

Lemma 4.5. Pr�ðDrðG=Q�ÞÞ � WrðG=LÞ for all r A Zb0.

Proof. Take an arbitrary x A DrðG=Q�Þ. We want to show that Pr� x A

WrðG=LÞ. It is clear that Pr� x A DrðG=LÞ. Hence it su‰ces to confirm that Pr� x
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is of type ðr; 0Þ and qðPr� xÞ ¼ 0. Suppose that x is expressed as

x ¼
X

i1<���<ir
xi1���ir dz

i1
g 5� � �5dzirg ; xi1���ir ¼ xi1���irðz1g ; . . . ; zng Þ

on ðOþ
g ; ðz1g ; . . . ; zng ÞÞ. Then, in view of (4.2) and (4.3), Pr� x is expressed as

Pr� x ¼
X

i1<���<ir
fi1���ir dx

i1
g 5� � �5dxir

g ; fi1���ir ¼ fi1���irðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g Þ

on ðOg; ðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g ÞÞ. Accordingly the di¤erential form Pr� x is of type

ðr; 0Þ. Furthermore, since Prðguþu�LÞ ¼ PrðguþLÞ for all uG A UG we see that

the function fi1���ir ¼ xi1���ir � Pr is independent of the variables y1g ; . . . ; y
n
g , and

qfi1���ir=qy
k
g ¼ 0. So, it follows that

qðPr� xÞ ¼
Xn
k¼1

X
i1<���<ir

qfi1���ir j1���js
qyk

g

dyk
g5dxi1

g 5� � �5dxir
g ¼ 0: r

Now, let us demonstrate

Proposition 4.6. For each r A Zb0 there exists a linear isomorphism

zr : W
rðG=LÞ ! DrðG=Q�Þ such that

(1) Pr� � zr ¼ id on WrðG=LÞ,
(2) zr � Pr� ¼ id on DrðG=Q�Þ,
(3) d � zr ¼ zrþ1 � q.

Proof. Take any a A WrðG=LÞ. Fix an arbitrary q A G=Q� and w1; . . . ;wr A

TqðG=Q�Þ. For each point p A Pr�1ðqÞ there exist unique v1; . . . ; vr A Tþ
p ðG=LÞ

satisfying ðd PrÞpva ¼ wa ð1a aa rÞ by (4.4), and then we put

ðzrðaÞÞqðw1; . . . ;wrÞ :¼ apðv1; . . . ; vrÞ:ð4:7Þ

Our first aim is to confirm that (4.7) is well-defined. Suppose that p 0 A Pr�1ðqÞ
and v 0a A Tþ

p 0 ðG=LÞ satisfies ðd PrÞp 0v 0a ¼ wa ð1a aa rÞ. For the aim, it su‰ces to

verify

apðv1; . . . ; vrÞ ¼ ap 0 ðv 01; . . . ; v 0rÞ:ð4:8Þ

On the one hand; if the point p is expressed as p ¼ hL, then it follows

from PrðpÞ ¼ q ¼ Prðp 0Þ and Q� ¼ U�L that there exists an u� A U� satisfying
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p 0 ¼ hu�L. On the other hand; by virtue of q A G=Q� ¼
S

g AG Oþ
g there exists a

g A G such that q A Oþ
g . Therefore (4.2) yields p ¼ hL A Pr�1ðqÞ � Pr�1ðOþ

g Þ ¼ Og

and p 0 ¼ hu�L A Og—that is,

p ¼ hL; p 0 ¼ hu�L A Og:

Now, let us express the vector wa A TqðG=Q�Þ as wa ¼
Pn

i¼1 l
i
aðq=qzigÞq for a ¼

1; . . . ; r. Then (4.3), (4.4) and ðd PrÞpva ¼ wa, ðd PrÞp 0v 0a ¼ wa enable us to show

that va ¼
Pn

i¼1 l
i
aðq=qxi

gÞp, v 0a ¼
Pn

i¼1 l
i
aðq=qxi

gÞp 0 for all 1a aa r. Consequently

we have

apðv1; . . . ; vrÞ ¼
Xn

i; j;...;k¼1

l i
1l

j
2 � � � l

k
r a

q

qxi
g

 !
p

;
q

qx
j
g

 !
p

; . . . ;
q

qxk
g

 !
p

0
@

1
A

¼
Xn

i; j;...;k¼1

l i
1l

j
2 � � � l

k
r aij���kðpÞ;

ap 0 ðv 01; . . . ; v 0rÞ ¼
Xn

i; j;...;k¼1

l i
1l

j
2 � � � l

k
r aij���kðp 0Þ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4:9Þ

Here the definition of ðOg;cg ¼ ðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g ÞÞ, together with u� A U�,

assures that

xi
gðpÞ ¼ xi

gðhLÞ ¼ xi
gðhu�LÞ ¼ xi

gðp 0Þ for all 1a ia n:

For this reason one can conclude (4.8) by a A WrðG=LÞ, Corollary 2.14-(2) and

(4.9). Accordingly (4.7) is well-defined.

Since (4.7) is well-defined, q=qxi
g A TþðG=LÞ and q=qzig ¼ d Prðq=qxi

gÞ, one

can assert that on Oþ
g ,

ðzrðaÞÞ
q

qzi1g
;
q

qzi2g
; . . . ;

q

qzirg

 !
¼ a

q

qxi1
g

;
q

qxi2
g

; . . . ;
q

qxir
g

 !
� gg:ð4:10Þ

Here gg is a local cross-section on Oþ
g (namely, Pr � gg ¼ id on Oþ

g ) defined as

follows:

gg : O
þ
g ! Og; guþQ� 7! guþL:

From (4.10) we deduce that zrðaÞ is of class Cy and zrðaÞ A DrðG=Q�Þ.
It is immediate from (4.7) that zr : W

rðG=LÞ ! DrðG=Q�Þ, a 7! zrðaÞ, is a
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linear mapping. Furthermore, it holds that for any ~aa A WrðG=LÞ, ~pp A G=L and

~vv1; . . . ; ~vvr A Tþ
~pp ðG=LÞ,

~aa~ppð~vv1; . . . ; ~vvrÞ ¼ð4:7Þ ðzrð~aaÞÞPrð ~ppÞððd PrÞ~pp~vv1; . . . ; ðd PrÞ~pp~vvrÞ ¼ ðPr�ðzrð~aaÞÞÞ~ppð~vv1; . . . ; ~vvrÞ:

This yields (1) Pr� � zr ¼ id, since ~aa;Pr�ðzrð~aaÞÞ A Aðr;0ÞðG=LÞ, Remark 2.11-(iii)

and T~ppðG=LÞ ¼ Tþ
~pp ðG=LÞlT�

~pp ðG=LÞ.
From now on, we are going to prove (2) zr � Pr� ¼ id. Take any x A

DrðG=Q�Þ and suppose it to be expressed as

x ¼
X

i1<���<ir

xi1���ir dz
i1
g 5� � �5dzirg ; xi1���ir ¼ xi1���irðz1g ; . . . ; zng Þ

on ðOþ
g ; ðz1g ; . . . ; zng ÞÞ. Then, (4.3) implies that

Pr� x ¼
X

i1<���<ir

ðxi1���ir � PrÞ dxi1
g 5� � �5dxir

g

on ðOg; ðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g ÞÞ, and so it follows from Lemma 4.5, (4.10) and

Pr � gg ¼ id that

zrðPr� xÞ ¼
X

i1<���<ir

ððxi1���ir � PrÞ � ggÞ dzi1g 5� � �5dzirg

¼
X

i1<���<ir

xi1���ir dz
i1
g 5� � �5dzirg ¼ x

on Oþ
g . Therefore (2) holds also. (1) and (2) imply that the linear mapping

zr : W
rðG=LÞ ! DrðG=Q�Þ, a 7! zrðaÞ, is isomorphic.

The rest of proof is to conclude (3) d � zr ¼ zrþ1 � q. By Corollary 2.14-(2),

any a A WrðG=LÞ is expressed as

a ¼
X

i1<���<ir

ai1���ir dx
i1
g 5� � �5dxir

g ; ai1���ir ¼ ai1���irðx1
g ; . . . ; x

n
g Þ

on ðOg; ðx1
g ; . . . ; x

n
g ; y

1
g ; . . . ; y

n
g ÞÞ. On the one hand; (4.10) implies that zrðaÞ ¼P

i1<���<ir
ðai1���ir � ggÞ dzi1g 5� � �5dzirg , and therefore

dðzrðaÞÞ ¼
Xn
k¼1

X
i1<���<ir

qðai1���ir � ggÞ
qzkg

dzkg5dzi1g 5� � �5dzirgð4:11Þ
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on ðOþ
g ; ðz1g ; . . . ; zng ÞÞ. On the other hand; since qa ¼

Pn
k¼1

P
i1<���<ir

ðqai1���ir=
qxk

g Þ dxk
g5dxi1

g 5� � �5dxir
g and (4.10) we see that

zrþ1ðqaÞ ¼
Xn
k¼1

X
i1<���<ir

qai1���ir
qxk

g

� gg

 !
dzkg5dzi1g 5� � �5dzirg :ð4:12Þ

Here, the derivation of composite function, qai1���ir=qy
j
g ¼ 0, x j

g ¼ z j
g � Pr and

Pr � gg ¼ id yield

qðai1���ir � ggÞ
qzkg

ðq 0Þ ¼
Xn
j¼1

qai1���ir

qx
j
g

ðggðq 0ÞÞ �
qðx j

g � ggÞ
qzkg

ðq 0Þ ¼
Xn
j¼1

qai1���ir

qx
j
g

ðggðq 0ÞÞ � d j
k

¼ qai1���ir
qxk

g

ðggðq 0ÞÞ

for all q 0 A Oþ
g . For this reason, (4.11) coincides with (4.12). Thus (3) follows.

r

We are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. For r A Zb0 we set

ZrðG=Q�Þ :¼ fx A DrðG=Q�Þ j dx ¼ 0g;
BrðG=Q�Þ :¼ fdx j x A Dr�1ðG=Q�Þg ðr > 0Þ; B0ðG=Q�Þ :¼ f0g:

�

About the linear isomorphism zr : W
rðG=LÞ ! DrðG=Q�Þ in Proposition 4.6 it

follows that zrðZrðG=LÞÞ ¼ ZrðG=Q�Þ, zrðBrðG=LÞÞ ¼ BrðG=Q�Þ by virtue

of (2.15) and Proposition 4.6-(3). Accordingly, H rðG=LÞ ¼ ZrðG=LÞ=BrðG=LÞ
is linear isomorphic to HrðG=Q�Þ ¼ ZrðG=Q�Þ=BrðG=Q�Þ via ½a� 7! ½zrðaÞ� for

every r A Zb0. r

4.2. An Appendix: A Circular Cylinder and a Hyperboloid of One Sheet

are Di¤eomorphic, But Not Paraholomorphically Di¤eomorphic. Let us give an

example.

Example 4.13. Let G ¼ SLð1þ n;RÞ and

S ¼ n 0
t0 �In

� �
;

where 0 ¼ ð0; . . . ; 0Þ A Rn and In stands for the identity matrix of degree n. Define

a Cartan involution y of G by yðgÞ :¼ tg�1 for g A G. Then y�ðSÞ ¼ �S and S is
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a hyperbolic element of g ¼ slð1þ n;RÞ. Moreover, it turns out that

CGðSÞ ¼
a 0
t0 Bn

� ����� a A GLð1;RÞ; Bn A GLðn;RÞ; a det Bn ¼ 1

� �

¼ SðGLð1;RÞ � GLðn;RÞÞ

and G y ¼ K ¼ SOð1þ nÞ. Note that CGðSÞ consists of two connected compo-

nents, and set

L ¼ CGðSÞ0 or CGðSÞ:

With this setting we conclude that

l ¼ z 0
t0 Wn

� ����� z A R; Wn A glðn;RÞ; zþ trðWnÞ ¼ 0

� �
;

uþ ¼ g1þn ¼ 0 u
t0 On

� ����� u A Rn

� �
;

u� ¼ g�ð1þnÞ ¼ 0 0
tv On

� ����� v A Rn

� �
:

� In case of L ¼ CGðSÞ0, one has

L ¼ l 0
t0 Bn

� ����� l > 0; Bn A GLðn;RÞ; l det Bn ¼ 1

� �

¼ SðGLð1;RÞ � GLðn;RÞÞ0;

Q� ¼ 1 0
tv In

� �
x

���� v A Rn; x A L

� �
;

K \Q� ¼ K \ L ¼ 1 0
t0 Xn

� �����Xn A SOðnÞ
� �

¼ SOðnÞ:

Accordingly G=Q� ¼ K=ðK \ LÞ ¼ SOð1þ nÞ=SOðnÞ is an n-dimensional sphere,

and therefore dimR HrðG=Q�Þ ¼ 1 if r ¼ 0 or n, and dimR HrðG=Q�Þ ¼ 0 if

0 < r < n. Hence Theorem 4.1 and two Propositions 2.20-(iv) and 3.22 tell us

that

dimR HrðG=LÞ ¼ dimR H rðG=LÞ ¼ 1 if r ¼ 0 or n;

0 if 0 < r < n

�

for the invariant paracomplex structure IG of G=L ¼ SLð1þ n;RÞ=SðGLð1;RÞ �
GLðn;RÞÞ0 given in (3.18).
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� In case of L ¼ CGðSÞ, we see that G=L ¼ SLð1þ n;RÞ=SðGLð1;RÞ �
GLðn;RÞÞ, G=Q� ¼ K=ðK \ LÞ ¼ SOð1þ nÞ=SðOð1Þ �OðnÞÞ is an n-dimensional

real projective space, and

dimR HrðG=LÞ ¼ dimR HrðG=LÞ ¼ 1 if r ¼ 0 or n;

0 if 0 < r < n

�
ðn ¼ 2k þ 1Þ;

1 if r ¼ 0;

0 if 0 < ra n

�
ðn ¼ 2kÞ:

On the one hand; Example 4.13 implies that

dimR H1ðF 2Þ ¼ dimR H1ðF 2Þ ¼ 1

for the invariant paracomplex structure ISLð2;RÞ of F 2 ¼ SLð2;RÞ=SðGLð1;RÞ �
GLð1;RÞÞ given in (3.18). On the other hand; Example 2.18 implies that

dimR H1ðS1 � RÞ ¼ 1; dimR H1ðS1 � RÞ ¼ 0

for the paracomplex structure IS 1�R of S1 � R given in Remark 2.4. Accordingly,

it follows from Propositions 2.19 and 2.20 that the hyperboloid ðF 2; ISLð2;RÞÞ of

one sheet and the circular cylinder ðS1 � R; IS 1�RÞ are neither paraholomor-

phically nor anti-paraholomorphically di¤eomorphic to each other.
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