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PARAHOLOMORPHIC COHOMOLOGY GROUPS
OF HYPERBOLIC ADJOINT ORBITS

By

Nobutaka Boumukl and Tomonori Noba

Abstract. For a paracomplex manifold, we construct certain coho-
mology groups. The main purpose of this paper is to clarify a link
between such cohomology groups of hyperbolic adjoint orbits and
the de Rham cohomology groups of real flag manifolds. That
establishes relation between a paraholomorphic invariant and a
topological invariant.
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1. Introduction

In 1952 Libermann [10] has introduced the notion of paracomplex manifold,
and a paracomplex manifold M is a differentiable manifold endowed with a
paracomplex structure /. Since the paracomplex structure / has properties like
those of a complex structure, we can naturally formulate the real vector space
") (M) of differential forms of type (r,s) on M, and get two kinds of
linear operators 9 : .o/ (M) — /") (M) and 0 : .o/ (M) — o2 75T (M)
such that d =0+, > =0, (8)>=0 and dod+0dod=0. Setting Q"(M) :=
{ae. o/ "O(M)|dx =0}, we see that Q(M):= @zoﬂr(M) forms a cochain
complex with respect to ¢ (see Subsection 2.3 for detail), which enables us to
construct cohomology groups

HOM), (M), #*(M),...

of the paracomplex manifold (M,I). Similarly, one obtains #°(M), #' (M),
HA(M),... from Q5(M):={fe.o ") (M)|0p=0}. Remark here that these
groups #*(M), #*(M) are invariant under paraholomorphic diffeomorphisms.
Now, let G be a connected real semisimple Lie group, and let S be a hyper-
bolic element of g (see Definition 3.1 for the definition of hyperbolic element).
The adjoint orbit Ad G(S) = G/L of G through S is called a hyperbolic adjoint
orbit and G/L is a homogeneous paracomplex manifold of G. Furthermore, it
is related with a real flag manifold G/Q~. Taking this relation into account,
we clarify a link between the cohomology groups #*(G/L) of G/L and the de
Rham cohomology groups H*(G/Q~) of G/Q~, which is the main result in
this paper (see Theorem 4.1). For example, a hyperboloid F? of one sheet is
a hyperbolic adjoint orbit, a circle S! is a real flag manifold and F? is related
with S!. Theorem 4.1 tells us that

dimg #°(F?) = dimg #'(F?) =1, dimg #*(F?)=0 if k>2

(ref. Example 4.13), where we consider an SL(2, R)-invariant paracomplex struc-
ture Ig;or) of F?>=SL(2,R)/S(GL(1,R) x GL(1,R)) and such paracomplex
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structures are unique up to sign +.

z

>

F2

b3
b3

This paper is organized as follows. In Section 2 we recall the definition of
paracomplex manifold, and give some lemmas, propositions and so on. Then
we construct cohomology groups #*(M), #*(M) of a paracomplex manifold
(M,I). In Section 3 we first recall the definition of hyperbolic element and
observe that a hyperbolic adjoint orbit G/L is related with a real flag manifold
G/Q~. Next, we construct a G-invariant paracomplex structure I of G/L; fur-
thermore we fix a paraholomorphic structure Sg/. = {(Oy,¥,)},c6 on (G/L,1g)
and a differentiable structure Sg/o- = {(0;,¢;)}QGG on G/Q~. Finally in Sec-
tion 4 we establish Theorem 4.1 and demonstrate it by investigating relation
between Sg/; and Sg/o-. As an appendix, we deduce that F2 = (F?, Ig o r)) and
a circular cylinder S' x R = (S' x R, I5i1,g) are diffeomorphic, but neither para-
holomorphically nor anti-paraholomorphically diffeomorphic to each other, from
the following data on cohomology groups:

{dimR HNF?) =1, dimg A (F?) =1,
dimg #'(S' x R) =1, dimg #'(S' x R) = 0.

Here Igi,g is a paracomplex structure of S' x R naturally defined by
(Is1xR)(p vy (U +v) :=u—v for (p,x)eS"' xR and ueT,S', ve T\R.

Notation. Throughout this paper, for a Lie group G we denote its Lie
algebra by the corresponding Fraktur small letter g; besides we always assume
the differentiability of class C* and utilize the following notation, where M is a
differentiable manifold:

(nl) T,M: the tangent vector space of M at a point p e M,

(n2) X(M): the real Lie algebra of vector fields on M,

(n3) D¥(M): the real vector space of differential forms of degree k

on M,
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(n4) F*o': the pullback by a differentiable mapping F : M — M’ of a form
o' e DKM,
) m@n: the direct sum of vector spaces m and n,
) f]y: the restriction of a mapping f to a set V,
) Zso: the set of non-negative integers,
n8) Ad, ad: the adjoint representation of G, g,
) Cg(S):={ge G|Ad g(S) =S} for an element S € g,
0) Ng(m):={ge G|Ad g(m) C m} for a vector subspace m C g,
1) Gy: the identity component of G,
nl2) Z(G): the center of G,
nl3) 7,: a diffeomorphic transformation of a homogeneous space G/H de-
fined by t,(aH) := gaH for aH € G/H, where g € G.
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2. Cohomology Groups of Paracomplex Manifolds

2.1. Definitions of Paracomplex Manifold and Local Paraholomorphic Coor-
dinate System. First of all, the definition of paracomplex manifold is as follows:

DeriNITION 2.1 (cf. Libermann [10, p. 2518]). Let M be a differentiable
manifold, and let 7 be a tensor field of type (1,1) on M. With this setting,
(I) I is said to be an almost paracomplex structure of M, if
(c1) I? =id (considering I as a linear transformation of vector fields),
(c2) dimg 7,"M = dimg 7,7 M for all p e M, where T;fM := {ve T,M |
Ly = +v}.
In this case, (M,[I) is called an almost paracomplex manifold.
(IT) I is said to be a paracomplex structure of M, if the conditions (cl), (c2)
above and
(c3) [IX,IY] —I[IX, Y] — I[X,IY] + [X, Y] =0 for all X,Y e X(M)
hold for I. In this case, (M,I) is called a paracomplex manifold.

In order to give the definition of local paraholomorphic coordinate system,
we first show Lemma 2.2 which can be found, with some slight modifications, in
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Kaneyuki-Kozai [5, p. 82, Proposition 1.1]. Here we note that a non-empty open
subset W C M is always an almost paracomplex manifold whenever M is an
almost paracomplex manifold.

LemmA 2.2, Let (M,I) be an almost paracomplex manifold of dimg M = 2n,
and let

X5 (M) :={AecX(M)|IA =+A4}.

Then, the following three items hold.

(1) For a given X € X(M), there exists a unique (A,B) e Xt (M) x X~ (M)
such that X = A+ B.

(2) For any point p e M, there exist an open neighborhood V of p and 2n
vector fields A;, B; on V such that, for each xeV, {(4;).}, and
{(Bi),}\., are real bases of T M and T M, respectively.

(3) (M,I) is a paracomplex manifold, namely the condition (c3) in Definition
2.1 holds if and only if [XT(M),X"(M)] C X" (M), [X (M), X (M)] C
X (M)

Proor. (1) follows from 7% =id, X*(M)N X~ (M) = {0} and

+1(X—1X).

1
X =3 (X +1X) +3

2

(2) Since M is a manifold, there exists a coordinate neighborhood (W,¢ =

(x!',...,x?)) of M containing the point p. Putting

1/ 0 0 1/ 0 0
X,== (412, v, (S 1S
T2 (6)6/ + 5x/)’ ) (5)({ 6x/)

for 1 </ < 2n, we deduce that X, e X" (W), Y, e X~ (W) and 0/ox’ = X, + Y,
so that 7'M and T, M are generated by (X,), and (Y/),, / =1,...,2n, respec-
tively (because {(ﬁ/ﬁx ) "l is a basis of 7,M and T*M cT, M) Therefore
there exist A/,u/ € R such that {32 l(X/) o and (S0 (Y, /)ptiey are
bases of T, M and T, M, respectively. Then, it turns out that 4; := EZ" M Xy e
XHW), Brm X2 Y, e X (W) for all 1<i<n, and {(4)), 1, UL(B), L,
is a basis of T,M = T;M @ T, M. Accordingly we can get the conclusion
by changing the W for a sufficiently small open neighborhood V of pe M (if
necessary).

(3) A direct computation, together with (1) and (c3), enables us to con-
clude (3). O
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Lemma 2.2 leads to Proposition 2.3 whose statement is similar to that of

Proposition 1.2 in Kaneyuki-Kozai [5, p. 83]. See Proposition 2 in Cortés-Mayer-

Mohaupt-Saueressig [2, p. 11] also.

ProPoOSITION 2.3.

(A)

For an arbitrary 2n-dimensional paracomplex manifold (M, I), there exists
an atlas {(Oy, W, = (xL, ... x2 ko v}, ey of M such that on each
01)

0 0 0 0 ,
o i) (G- ar 0=

From the above condition (a) it follows that on O, N O,

(b)

(1<ij<n)

whenever O, N Op # & (o, f € A).

Conversely, let us consider the case where a differentiable manifold M
admits an atlas {(Oy, W, = (x}, ... x" yL ... ")}, which the above
condition (b) holds for. In this case; if one defines a tensor field I, on each
0, by 1,(0/0x]) := 0/ox!, 1,(0/dyl) := —0/dyL for | <i < n, then we can
get a tensor field I on the whole M =, O, by setting 1|, =1, for
o€ A, and (M,I) is a paracomplex manifold.

PrOOF. (A) Lemma 2.2-(2), (3) implies that both M3 p+— TFM are
involutive distributions on M. By Frobenius’s theorem, there exists an atlas
{(Op, = (xL, o x y) v}, of M which the condition (a) holds

for.

(B) Taking I(d/dx}) = d/éx}, 1(0/dx}) = é/dx}), 1(2/dy}) = —0/dyj and

o N
oxj = \ox; axé ox} ay-lé

into account, one has éyé/ax; =0. In a similar way, we have 6x£/8y; =0.

©)
follows:

()

For each o€ 4, let us define a tensor field 7, of type (1,1) on O, as

0 0 0 0
I(x =~ | =5, I“ — | = — -
<5x;) 0x, ((’M) y,
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(1 <i<n). Then we see that on O, N Oy # I,

. 0y} :
I/”( > (Z axl ax 6x’ ayﬂ) <Z ax’ ax> . (b))

and I3(0/dyl) = —0/dy} for all 1 <i < n. This implies that one can get a tensor
field 7 on M =J,., O, by setting 1|, := 1, for o € A. Needless to say, this /
is an almost paracomplex structure of M. From (c) and Frobenius’s theorem it
follows that both [XT(M),X*(M)] C ¥F(M) hold for I. Therefore, the I is a
paracomplex structure of M by Lemma 2.2-(3). O

REMARK 2.4 (cf. Cortés-Mayer-Mohaupt-Saueressig [2, p. 11, Example 3]).
Let Ny and N, be differentiable manifolds with dimg Ny = dimg N;. Then, Prop-
osition 2.3-(C) ensures that one can define a paracomplex structure Iy, xy, of the
product manifold N; x N, by

(N xN>) (py oy (U1 + 102) = 11 —

for pieN; and u;eT,N;, i=1,2. Hence, for example, a 2n-dimensional
Euclidean space R” = R” x R” and a circular cylinder S! x R are paracomplex
manifolds.

Let us give the definition of local paraholomorphic coordinate system.

DEFINITION 2.5. Let (M,I) be a paracomplex manifold, and let

{(Omlpa = (xolw s 7x:7yolu R y;.l))}aeA

be an atlas of M which the condition (a) in Proposition 2.3 holds for. Then
we say that (O, ¢, = (xL,....x" yl ... y") is a paraholomorphic coordinate
neighborhood of (M,I), and that (x;,...,xg,y;7...,y§) is a local paraholo-
morphic coordinate system on Q,.
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2.2. Paraholomorphic Mappings. We recall the definition of paraholo-
morphic mapping, and state some topics related to paraholomorphic mappings.
Throughout Subsection 2.2, M = (M,I) and M’ = (M’,I') are paracomplex
manifolds.

DeriNITION 2.6. A differentiable mapping F : M — M’ is said to be para-
holomorphic (resp. anti-paraholomorphic), if

III;<[I) o (dF>p = (dF>p OIp (l"eSp ]Ifw(p) o (dF)p = _<dF)[) (¢] Ip)

for all pe M, where (dF), stands for the differential of F at p.
One mentions the following:

LemMa 2.7. For a given differentiable mapping F : M — M', it follows
that
(i) F is paraholomorphic if and only if (dF),(T,> M) C T;f(p
C T;(mM’ for all pe M,
(i) F is anti-paraholomorphic if and only if (dF),(T, M) C TE(p)M/»
(dF),(T, M) C T ,,M" for all pe M.

M, (dF),(T, M)

Proor. Trivial. O
From Lemma 2.7 it is easy to see

COROLLARY 2.8. For any diffeomorphism ¥ : M — M, it is paraholomorphic
(resp. anti-paraholomorphic) if and only if its inverse ¥~ is paraholomorphic (resp.
anti-paraholomorphic).

We end this subsection with

REMARK 2.9. Let (O,¢ = (x',...,x", »',...,»")) be a paraholomorphic
coordinate neighborhood of (M,I), and let Ig».g» be the paracomplex structure
of R?" given in Remark 2.4. Then,  : (O,I) — (Y(0), Ip»,g") is a paraholo-
morphic diffeomorphism.

2.3. Construction of Paraholomorphic Cohomology Groups. Our main goal
in this subsection is to construct cohomology groups of a paracomplex mani-
fold. Remark here that our approach is a little different from Krahe’s [9]; and
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that Angella-Rossi [1] deals with D-Dolbeaut cohomology groups H; *(X;R) and
D-complex subgroups H,;*(X;R) of the de Rham cohomology groups of a
compact D-complex manifold X, but these groups H.*(X;R), H;*(X;R) are
different from our cohomology groups.

2.3.1. Cohomology Groups »#*(M). We introduce the notion of differential
form of type (r,s).

DeriniTION  2.10. Let (M,I) be a paracomplex manifold, and let we
D'(M). We say that w is of type (r,s), if for each pe M there exists a
paraholomorphic coordinate neighborhood (O, (x!,...,x" y',..., y") of (M,I)
such that

(1) peo,

(2) o is expressed as

o= E Ojyipfyejy AXT A AAXT AV A Ay
i <<, J1 <<

on O.

REmARK 2.11. Here are comments on Definition 2.10.

(i) The property that w is of type (r,s) does not depend on the choice of
local paraholomorphic coordinate system (x!,...,x",y',... y") on O,
due to (b) in Proposition 2.3.

(i) A differential form of type (0,0) on M is a differentiable function on M.

(iii) If @ is a differential form of type (r,s), then w,(vi,...,v4) =0 for
vectors vy, ..., 045 € T,M of which more than r belong to T;M or more

than s belong to 7,7 M.

Let us denote by .o/ (”)(M ) the real vector space of differential forms of type
(r,s) on a paracomplex manifold (M,I), and show Lemma 2.12, Lemma 2.13
and Corollary 2.14 which enable us to construct cohomology groups.

LemMA 2.12.  The following three items hold:
(1) LN MYA LTSN MY) C TSN MY for all r,rs,s' € L.
2) d( ") (M)) C A (M) @ .o V(M) for all r,s e Zsy.
(3) L "I(M)={0} if r>n or s>n

Here dimg M = 2n.
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Proor. We prove (2) only, since (1) and (3) are immediate from Definition
2.10. Suppose that an w € ./ (”)(M ) is expressed as

o= E Ojyciyjyowjy AXT A NdAX" ANV A Ay
i< i i< <

in terms of a local paraholomorphic coordinate system (x!,...,x", y' ... y").

Then, it follows that

do = E E —ll(') SR xR A XY A AdXT Ay A A dy?
=1 i <o<ip<o<i ¥

" i i s - - -
FEDTY Y S g Ay Ay Ay
k=1 i <<y, 1< <Js

and the Ist (resp. 2nd) term of right-hand side belongs to .oZ*+1¥) (M) (resp.
o "STD(M)). This assures (2). |

For every o € .« "*) (M), its exterior derivative dew decomposes into a sum of
differential forms of types (r+1,s) and (r,s+ 1), which we denote by dw and
0w, respectively (cf. Lemma 2.12-(2)). With this notation we assert

LemMA 2.13.  The following four items hold:

(i) d=d+a.

(i) 0:ATI(M) — 2N (M) and 6 - AT (M) — 2TV (M) are linear
mappings for all r,s € Zx,.

(iii) 0> =0, (§)>=0 and do0d+do0d=0.

(iv) For all r,r' s,s' €Zso, we.d")(M) and ne L") (M), it follows
that

Awnn) = (0w) A+ (=1)"w A (n),
B An) = (@) An+ (1) "o A (3n).

ProOF. We only confirm (iii). For any w e .oZ"»*)(M), one obtains
0 = d(dw) = 0(0w) + (00 d+ 00 d)w + d(dw)

from 0 = d? and (i). Hence, we can conclude 6(6w) =0, (00 d+ 0o d)w =0 and
d(dw) = 0 by virtue of (ii), d(dw) € "2 (M), (00 0+ 00 d)w e .o "5 (M)
and 0(dw) € "2 (M). O
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Two Lemmas 2.12 and 2.13 lead to

COROLLARY 2.14. For an re€ Zxy, we set
Q'(M):={aed"O(M)|da=0} (=ker(d: 4"V M) — .oV (M))).

Then, the following five items hold.
(1) Q"(M) is a real vector space for each r e Zxy.
(2) Let (O,(x',....x", y',....¥") be a paraholomorphic coordinate neigh-
borhood of (M,I), and let o.€ Q"(M). Then, o is expressed as

_ i i _ 1 n
o= E Oy, AX A AdAXT oty = o (X0 X
i <<l

on O. Here, w;..; = o ;(x',...,x") means that the function o; .. is
independent of the variables y',... y".
(3) A(Q"(M)) C Q"N (M) for all re Z=.
@) Q' (M)AQ" (M) C Q™" (M) for all r,r' € Zs,.
(5) Q"(M)={0} if r>n.
Here dimgp M = 2n.

Let Q(M) be the direct sum of real vector spaces Q" (M), re Zso. Lemma
2.13-(iii) and Corollary 2.14-(3) allow one to regard Q(M) =P, Q" (M) as
a cochain complex with coboundary operator ¢. We denote by #"(M) the
r-dimensional cohomology group of this cochain complex—that is, for r e Zg
we set

(2.15) {Q‘”(M) ={ae Q" (M)]|dx =0},

#B'(M):={0B|fe Q" (M)} (r>0), 2°(M):={0},

and #"(M) :=Z"(M)/%" (M) (the quotient linear space). With this setting, one
can demonstrate the proposition below, because Corollary 2.14-(4) and Lemma
2.13-(iv) yield

P (MYAZ" (M) C 2™ (M), Z"(M)AB" (M) C B (M) (r,r' € Zs).

ProposITION 2.16. Let (M,I) be a 2n-dimensional paracomplex manifold.
Then,

(1) dimg #°(M) is equal to the number of connected components of M.

(2) dimg #"(M) =0 if r>n.
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(3) (—Dr o (M) forms a real algebra with respect the following
product.

o] - 7] =[x Ayl for [ e £ (M), [yl e A" (M).

2.3.2. Cohomology Groups #*(M). In the preceding paragraph we have
constructed the cohomology group #"(M) of a paracomplex manifold (M,I).
Now, let

QM) :={fedO)(M)|of=0} (seZs).

In a similar way, one can see that Q(M):= @ Q*(M) is a cochain com-
plex with coboundary operator 0, and define the s-dimensional cohomology
group AS(M) of this cochain complex. Here Z*(M) :={feQ*(M)|dp =0},
B(M) = {3y]y e (M >} (s > 0), @0( )i= {0} and (M) = F*(M)/
#*(M). Note that # (M) := P, #*(M) similarly forms a real algebra, and
that H(M) is lrrelevant to #5(M) in general, because we can prove

THEOREM 2.17. Let N, and N, be connected differentiable manifolds with
dimg N| = dimg N,. For the paracomplex structure Iy «n, of Ni x Ny given in
Remark 2.4, it follows that

dimg #X(N, x Ny) = dimg H¥(Ny), dimg #*(N; x N,) = dimg H*(N>)

for all k € Z=o. Here H*(N;) stands for the k-dimensional de Rham cohomology
group of Nj.

PrOOF. We fix coordinate neighborhoods (U, (x',...,x")) of N; and
(W,(p',...,9") of Nao. Then, (U x W, (x',....,x" y',...,»")) is a paraholo-
morphic coordinate neighborhood of (N; x N, Iy, xn,). Any a € Q"(N; x N,) and
B e Q%(N, x N,) are expressed as

*= Z Gjyoy XA AdXT o = (XX,
I <<y
. . 1
B= Z ﬁj]u.ﬂ Ay’ Ayt ﬂj]u.jlx = ﬂj,”.jl‘(y ey yn)
J1<<Js

on U x W, respectively (cf. Corollary 2.14-(2)). Therefore one may assume
that o and f belong to D"(N;) and D*(N,), respectively; and conversely, any
®eD'(Ny) and 5 € D*(N,) belong to Q"(N; x N,) and Q*(N; x N,), respec-
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tively. Furthermore, on this assumption we have
r+1 - . aail"'ir k i iy r+l1
QN xNz)aaa:Z Z de AdX" A ndx =dae DTT(NY),
k=1 iy<<iy
Os+!1 A - aﬁjl"‘fs k J1 Js s+1
QN xNy)sdp=) > ot Ay A ndy = dB e D (N).
=p<<i 9
Consequently we deduce that dimg #" (N x N;) = dimg H"(N;) for all r € Z,,
and that dimg #°(N; x N>) = dimg H*(N,) for all se Z,. O

Theorem 2.17 enables us to compute cohomology groups #*(M), #*(M) in
some cases.

ExampLE 2.18. For a circular cylinder S' x R,

{dimR #(S' x R) = dimg #(S' xR) =1, dimg #*(S' xR) =0 if k> 2,
dimg #°(S' xR) =1, dimg #7/(S" x R) =0 if j > 1.

cf. Remark 2.4.

2.4. Paraholomorphic Diffeomorphisms and Cohomology Groups. The fol-
lowing proposition is easy to prove, but we confirm it for the sake of com-
pleteness (see (2.15) for Z%(M), B*(M)):

PropPOSITION 2.19. Let (M,I) and (M',1') be paracomplex manifolds, and
let ¥ : M — M’ be a paraholomorphic diffeomorphism. Then,

() (A "I(M)) =" (M) for all r,se L.

(i) 0oP* =W 0d and 0o P* =W¥* o0l

(iti) P*(QX (M) = QX (M) and ¥*(QX(M')) = QX(M) for all k € Zsy.

(iv) For every keZso, Y (Z¥M")=2zXM), ¥ (B (M) =2"M),

Y FHM)) = ZFF(M) and Y*(B*(M')) = B*(M).

Therefore the mapping A" (M')> [o'] — [V o' € #" (M) is a linear isomor-
phism for every re Zsy, and moreover it induces an algebra isomorphism of
H(M') onto H(M). Similarly, #5(M') = AH*(M) and #(M') = # (M) via
v

Proor. (i) Let us take any o'e."(M’') and verify that ¥*w'e
") (M). From o' eD'*(M’) it is natural that ¥*w’ e D™ (M). For each
p € M, there exists a paraholomorphic coordinate neighborhood (O’, (x!,...,x",
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vl ™) of (M’ I') such that (1) ¥(p) € O’ and (2) ' is expressed as

I __ / i .. iy J e Js
w' = E Ojy oy, dx" Ao ndx" Ady A A dy
[1<"‘<[r7jl<”'<js

on O'. Since ¥: M — M’ is a paraholomorphic diffeomorphism we set
V=910, u:=x"0¥, v:=y0o¥ (1<i<n),

and assert that (V,(u',... u" v',...,v")) is a paraholomorphic coordinate
neighborhood of (M, ) containing the point p, and that
Y = Z (@] i 0) dul' A+ Adu" AdvT A A dvPs
1‘1<.N<[’_yjl<u.<j\
on V. This implies ¥*w' € .o/ "9 (M).
(ii) For any ' e.o/"9(M"), it follows from d =3+ 0 and d o ¥* =¥* od
that

(Y0 +d(¥0)=dVo) =Y (do) =¥ (o) +¥* (o).

This, combined with (i), (¥*w’), ¥*(0w') € o219 (M ) and 5( '), ¥*(0w') e
"5 TD(M), assures that d(W*ew') = ¥*(dw’) and (P w’) = P (dw').

(iii) comes from (i) and (ii).

(iv) comes from (ii) and (iii). O

By arguments similar to those in the proof of Proposition 2.19 we deduce
ProposiTION 2.20. Let (M,I) and (M',I') be paracomplex manifolds.

Suppose that there exists an anti-paraholomorphic diffeomorphism Z: M — M.
Then,

*
Q
B
~—
%
=
=
I

E Jz{(”( )for all r,s € ZLso.

(i) oB"=E"o0 5 nd 002" =E*00.

(iii) E2*(Q"(M")) = Q" (M) for all r e Zs.

(iv) The mapping #"(M') 3 [o/] — [E*a'| € #"(M) is a linear isomorphism
for every r e ZLxy.

REMARK 2.21. Proposition 2.20-(iv) and Example 2.18 imply that for
the paracomplex structure Igi,g of S' xR given in Remark 2.4, there are
no anti-paraholomorphic diffeomorphisms of S' x R onto itself, because of
dimg #(S! x R) # dimg #'(S' x R).
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3. Structures on Hyperbolic Adjoint Orbits and Real Flag Manifolds

3.1. The Definition of Hyperbolic Element. In this subsection we establish
Proposition 3.7 which will play a role later and is applicable to hyperbolic adjoint
orbits. Here, the definition of hyperbolic adjoint orbit is as follows:

DeriNiTION 3.1 (cf. Kobayashi [7, p. 5]). Let g be a real semisimple Lie
algebra, and let G be a connected Lie group with Lie algebra g. Then, an element
S eg is said to be hyperbolic, if ad S is a semisimple linear transformation of
g and all the eigenvalues of ad S in g are real. The adjoint orbit Ad G(S) =
G/Cs(S) of G through a hyperbolic element S € g is called a hyperbolic adjoint
orbit.

REMARK 3.2 (e.g. Helgason [3, p. 431, Theorem 7.2-(ii)]). An element X € g
is hyperbolic if and only if there exists a Cartan involution 6, of g such that

From Lemma 3.3 we will generalize known facts and obtain Proposition
3.7.

LeEMMA 3.3. Let P be a Lie group, let Q be a closed subgroup of P, and let R
be a subgroup of P such that Qy C R C Q, where R is not necessary closed in P.
Then,

(1) R is an open and closed subgroup of Q.

(2) R is a closed subgroup of P.

Proor. (1) It suffices to confirm that R is an open subgroup of Q (cf. the
proof of Proposition 1.93-(a) in Knapp [6, p. 84]). It is obvious that R is a
subgroup of Q. Let us prove that R is open in Q. Since R is a group and Qy C R,
we see that xQyp C R for all xe R. So, it follows from e e Qp that

R= U xQo,
xeR

where e is the identity element of P. By virtue of R C Q, the left translation
of Q by any xe R is a homeomorphism of Q onto itself. Therefore xQy is
open in Q because so is Qp. Consequently, R =/ xQp is an open subset

of Q.
(2) Q is closed in P, and R is closed in Q by (1). Thus R is closed in P.
Ll

xeR
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We want to state Proposition 3.7. First, let us fix the notation and setting
of the proposition. Let G be a connected real semisimple Lie group, let S be a
hyperbolic element of g, and let L be a subgroup of G such that Cg(S), C L C
C(S). Then we set

(3.4) { g* = (X eglad S(X) = X} for ZeR,

wt =@, (g%, Ut:=exput, 0OF:=LU*

where g* = {0} in the case where Z is different from the eigenvalues of ad S
and exp:g— G is the exponential mapping. In addition, let 6, be a Cartan
involution of g satisfying 0,(S) = —S. Since the Lie group G is semisimple,
0, is liftable to G. We denote its lift by 6, and define a closed subgroup K of
G by

(3.5) K := G’ ={keG|O(k) = k}.

Next, let us prepare for the proof of Proposition 3.7.

LemMA 3.6. With the setting (3.4) and (3.5); the following seven items
hold:

(i) L is a closed subgroup of G with 1= ¢4(S) = g°.

(i) g=@@P, gs"=u" @lOu™.

(iii) T@u" =D, 9" and l®u =D, 87"

(iv) Ad x(g*) C ¢* for all (x,7) e Cs(S) x R.

v) [a%a" C ¢’ for all i,pueR.

(vi) 0.(¢*)=g* for all 1eR.

(vil

vii) Both u™ and u~ are subalgebras of @ such that Ad x(ut) Cut,
Ad x(u™) cu™ for all xe Cg(S), and 0, (u")=u", O,(u”) =u".

Proor. (i) follows by Lemma 3.3-(2), Cs(S), C L C Cg(S) and (3.4).

(i) Since the element S e g is hyperbolic, one obtains g = @z R g’ from
(3.4). Hence, we can assert (ii) because (P, _p 9" =1~ @ 1@ u' is an easy con-
sequence of (3.4) and [ = ¢°.

(iii) is immediate from (3.4) and [ = g°.

(iv) One has (iv) by a direct computation and (3.4).

(v) comes from (3.4) and the Jacobi identity in g.

(vi) From 0.(S) = —S and (3.4) we deduce 0.(g*) = g~*.

(vii) Since ut =@, , ¢, (v) implies that [u*, u*] C u*, and thus both u*
are subalgebras of g; moreover, (iv) and (vi) imply that Ad x(u*) C u* and
0. (ut) = u*, respectively. O
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Now, we are in a position to state

PrOPOSITION 3.7.  With the setting (3.4) and (3.5); the following eight items
hold:

(1) U* is a simply connected, closed nilpotent subgroup of G whose Lie algebra
is u¥, and exp : u* — U* is a diffeomorphism, for each s = +.

(2 OU)=U* and O(UT)=U".

(3) O =LU" is a closed subgroup of G such that Q° =L X U*=U*>L
(semidirect) and q* =1@u’, for each s = +.

(4) Both the product mappings U™ x U~ x La (ut,u”,x) —uTu"xe G and
U xU"xL>w ,ut,x)—uutxeG are embeddings whose images
are open subsets of G.!

(5) K is a connected closed subgroup of G, and G = KQ* for each s = +.

(6) The mapping K/(KN Q%) 2 k(KN Q%) — kQ° € G/Q° is a diffeomorphism
for each s = +.

(7) If O(L) C L, then KN Q*=KNL holds for each s = +.

(8) The center Z(G) is finite if and only if all K, G/Q" and G/Q~ are
compact.

PrOOF. We investigate the case of s =+ only.

Let us prepare for the proof. From 6,.(S) = —S, one can obtain a Cartan
decomposition g =t@ p with S e p. We fix a maximal Abelian subspace a in p
containing S, and denote by A = A(g, a) the (non-zero restricted) root system of
g relative to a. Moreover, we define a lexicographic linear ordering of the dual
space a* such that «(S) > 0 for all positive roots o. Let A be the subset of A
consisting of all positive roots relative to this ordering. Setting g, := {X eg]
ad H(X) =p(H)X for all Hea} for fe A and n, := (—BMA+ 0,
Iwasawa decomposition g =@ a @ n; moreover it follows from g = a @ ¢t(a) @
Dien, 944> S€a and (3.4) that
(3.8) w=@Pg¢"'c Pg,=1,cPg'=ldu’.

A>0 ae, n=0

one has an

Denote by G = KAN. the Iwasawa decomposition of G corresponding to the
g=f@a®n.. On the one hand; we obtain 4 C Cg(S), from a C ¢4 (S)
and A4 =expa. On the other hand; since both n; N¢g(S) and u™ are sub-
algebras of n; and n;y = (ny N¢y(S)) @u’, one can see that N, =expn, =

'In case of L= Cg(S) this is called the Gel'fand-Naimark decomposition.
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exp(y N¢g(S)) expu® C Cg(S), Ut by Lemma 6.2 in Kostant 8, p. 124]. Then,
it turns out that

(3.9) AC C(S),, NiC CglS),U.

Now, we are ready to prove the eight items.

(1) N, is a simply connected closed nilpotent subgroup of G and exp : n,. —
N, is a difftomorphism. Hence (1) holds because of ut C ny and Ut =exp u™.

(2) The above (1) and 6,(uF) = u* provide us with O(UF) = U*.

(3) It suffices to get the conclusion in case of L = Cg(S), because one can
generalize the conclusion from Lemma 3.3-(1). First of all, let us prove that
Ce(S)UT = Cg(S) x Ut, namely

Cs(S)U™ is the semidirect product of groups Cg(S) and U™,

with U normal.
On the one hand; (1) and Lemma 3.6-(vii) imply that
(3.10) xUtx™ ' c U" for all xe Cg(S).
On the other hand; we can assert that
(3.11) Co(S)NUT = {e}.

Indeed, let us take an arbitrary y € Cq(S) N U™. By virtue of ye U and (1),
there exists a unique Y e u™ satisfying y = exp Y. It follows from y e Cg(S) that
Ad y(S) = S. So, for any te R we obtain y(exp tS)y~! = exp ¢S, and then y =
(exp tS) y(exp 1S) ™. Therefore exp ¥ = exp Ad(exp tS)Y. This, together with
Y,Ad(exp £S)Y € ut and (1), assures that ¥ = Ad(exp ¢S)Y. Differentiating this
Y = Ad(exp 1S)Y at t =0 we have 0 =[S, Y]. Thus Y € ¢4(S)Nu* = {0}, and
y=cexp Y =e. For this reason (3.11) holds. By (3.10) and (3.11) we see that
Ce(S)UT = Cg(S) x Ut = UT X Cg(S); besides C(S)UT is a subgroup of G.

At this stage, the rest of proof of (3) is to demonstrate the following items
(A) and (B):

(A) Cs(S)UT is a closed subset of G,

(B) ¢(S) @ u™ is the Lie algebra of Cq(S)U™.

(A) Since NG(@#ZO g#) is closed in G, we are going to conclude (A) by
showing

(A/) CG(S)U+=NG<@ g”).

u=0
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Our first aim is to verify

(3.12) Ce(S)UT € N[ @ o).

>0
On the one hand; it is immediate from Ad x(gi) C g* that Ad x(@ﬂzogﬂ) -
Dz 9" for all xe C6(S), so that

Cg(S) C Nc;<<—D g‘u>.
n=0

On the other hand; since [g%,g*] C g*** for all 2, ueR and ut = D0 a* we
confirm that [u*,(PD,., 9] = [D,., 927@;;20 g“] € @,.,9", and therefore (1)
yields U* € N6((D),-9"). Consequently one obtains Cg(S)U* C No(D),~(9")
because NG(C—Bﬂ20 g#) is a group. Hence, we have shown (3.12). Our second aim
is to confirm that the converse inclusion also holds, namely

(3.13) Ne| P g" | Cc Ca(S)U™.

u=0
Take any ¢ eNG(C—Dﬂzog/‘). By ge G = KAN, there exists a unique (k,a,n) €
K x A x N, satisfying

g = kan.

Here (3.9) and (3.12) imply k =g(an) '€ KQNG(@ﬂZ() g*). Accordingly

AdK(@D,.08") C D,y 8" So, O(k) = k and 0.(g") C g give Ad k(P ,97")
C@,.,8 " Therefore it follows from ¢(S) =g’ and u™ =P, ,g* that

Ad k(¢y(8)) = Ad k(D20 9" N D209 € (D209 N D108 = (),
Ad k(u*) = Ad k([S,u*]) C [Ad &(S), D)2 "] C [AdK(S), ¢o(S) @ ut] C u,

where we remark that ad S: u™ — u™ is linear isomorphic and Ad k(S) belongs
to the center of ¢4(S). Note that ¢;(S) = (fN¢y(S)) @ (PN¢y(S)) and a is a
maximal Abelian subspace in pN¢y(S). By virtue of Ad k(¢q(S)) C ¢4(S) and
GS)=a® ala)® @y“ g,, one has Adk(a) CpNey(S) and there exists an
X0 € KN Cg(S), satisfying

Ad(xok)(a) = a, ‘Ad(xok) '(A,) C A,

where A:={yeA|y(S)=0} and A, :=ANA;. From Adk(ut)Ccu® and
xo € Cg(S) we obtain Ad(xok)(ut) C u™. This, combined with Ad(xok)(a) =a
and ut = @“GA+_A+ g,, assures that ‘Ad(xok) (A, — Ay) C A, — A,. Conse-
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quently it follows that ‘Ad(xok) ' (A;) C A, and so Ad(xok) =id on a (e.g.
Theorem 4.3.18 in Varadarajan [12, pp. 282-283]). Hence we see that

ke Cg(S)

in view of S € a and x € Cs(S). Therefore g = kan € C(S)C(S),Ca(S), U™ C
Ce(S)U™ by (3.9), and we have verified (3.13). This and (3.12) provide us with
(A"). So, (A) follows.

(B) Let us show that ¢;(S) @ u™ is the Lie algebra of Cq(S)U*. From (A) it
follows that the Lie algebra of Cg(S)U™ coincides with ng(@”zo g*). Accord-
ingly it suffices to show that

(3.14) (¢ (S) D ut) C ¢o(S) D u™,

since @uzo g’ =¢(S)@u. For an X eg suppose that [X,¢,(S)@ut]C
G(S)@ut. By g=u" @¢(S)Du’ there exists a unique (X ,X° X*)e
u” X ¢(S) x ut such that X = X~ + X%+ X*. The supposition and S € ¢4(S)
imply ¢(S)@ut > [X,8]=[X",S]+[X",S]. Thus it follows from [X*,S]eu*
that [X~,8] =0, so that X~ e¢,(S)Nu~ ={0}. Therefore X =X+ X" e
¢;(S) @ ut, and (3.14) holds. That enables us to complete the proof of (3).

(4) We only prove that the mapping U~ x Ut x L3 (h,a,x) — bax e G is
injective, since g =u~- @ u™ @ L. First, let us verify

(3.15) U™ Nno* = {e}.

Take any ye U NQ'. By ye U~ and (1) we get a unique Y eu~ such
that y=exp Y. (A'), ye Q" =LU" and L C Cg(S) allow us to show ye
NG(@ﬂzog”). Then, it follows from Seg’ that Ad y(S)e@uzog”, and
moreover

1
P g'aAd y(S)-S= Z—'(ad Y)'Se Pg*
u=0 n>1 n. >0
because Y eu =P, , g~*. This implies Ad y(S) =S =0, and ye Ce(S)N U~
= {e} by (3). Therefore (3.15) holds. Now, let us prove that U~ x U x L >
(b,a,x) — bax € G is injective. Suppose that

bax =b'a'x’'

for (b,a,x),(b',a’,x') e U~ x U x L. From (3) we deduce that Q" > a’x’(ax) ™"
= (b")"'be U™, so that a’x'(ax)"' = e and (b')"'b = e due to (3.15). Moreover,
it follows from a'x’(ax)™' =e and (3) that a =4’ and x = x’. Hence b=/,
a=a and x=x'.
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(5) Since G is connected, K is also connected. In order to show G = KQ™, it
is enough to confirm that G C KQF, which comes from G = KAN,, (3.9) and
AN, C Cg(S),UT C LU* = Q*.

(6) is a consequence of (5).

(7) Suppose that O(L) C L. Let us prove KNQ" C KNL. For any ke
KN Q" there exists a unique (x,u) e L x Ut such that

k= xu

because of ke QT and (3). Since (k) =k we see that 6(x)0(u) = xu, and
O(u)u='(x7'0(x)) = e. Therefore the supposition, (O(u),u"' x710(x)) e U~ x
Ut x L and (4) yield 0(u) =u~' = x7'0(x) = e, especially u =e. Hence k =
xeKNL, and KNQ" C KNL. The converse inclusion KNLC KNQ" is
obvious.

(8) It is known that the center Z(G) is finite if and only if K is compact
(e.g. Theorem 1.1-(i) in Helgason [3, pp. 252-253]). Thus (6) allows us to get
the conclusion. O

REMARK 3.16. Let us comment on Proposition 3.7, where s = +.

(i) q*=1@u* contains a Borel subalgebra a @ ¢;(a) @ (‘Bm& g, of g and
is a parabolic subalgebra of ¢ whose Levi factor and unipotent radical
are | and u’, respectively.

(i) In general Cg(S) is not connected (cf. Example 4.13). For this reason,
the condition Cg(S), C L C Cg(S) makes a sense.

(iif) The condition (L) C L in (7) always holds whenever L = Cg(S), or
L= Cg(S).

(iv) In case of L = Cg(S), it turns out that Q° = Ng(1@ u*) and G/Q° is a
real flag manifold; besides G/Q° is compact by virtue of Z(G) C Q°.

(v) G/Q° is called an R-space, if L = Cg(S) and there exists a connected
complex semisimple Lie group Gc¢ such that (a) G is a closed subgroup
of G¢ and (b) g is a real form of g.. Here Takeuchi [11, p. 100] has
introduced the notion of R-space. If G/Q® is an R-space, then it is
compact because the inclusion Z(G) C Z(Gc¢) forces Z(G) to be finite.

3.2. Paraholomorphic Structures on Hyperbolic Adjoint Orbits. In this sub-
section, we first construct a G-invariant paracomplex structure Iz of the ho-
mogeneous space G/L and afterwards fix a paraholomorphic structure S/ =
{(Og,¥y)}yec on (G/L,1g), where the setting in (3.4) and (3.5) remains valid
here.
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Now, let us construct a G-invariant paracomplex structure I of G/L. Define
an involutive linear transformation 2 of the real vector space u™ @ u~ by

(3.17) 1(A):=A4 for Aeu, «(B) :=—B for Beu .

Since g=1®u"@u~ and Ad L(u*) C u*, the homogeneous space G/L is
reductive. Then, one can identify 7,(G/L) with u* @ u~, where o is the origin of
G/L, and see that Ad xor=120Ad x on u™ @u~ for all xe L ("." (3.17)); besides
Proposition 3.7-(1), (2) assures dimg u™ = dimg 1~. Accordingly we can obtain a
G-invariant almost paracomplex structure I of G/L by setting

(3.18)  ({g),v = (d7y),(«((d7y1),v)) for p=gLe G/L and ve T,(G/L).

About this I one has T;5(G/L) = (dt,),u* for all p=gLe G/L. Hence, it
follows from [u®,u*] C u* that [X*(G/L),X*(G/L)] C ¥*(G/L), so that I; is
a G-invariant paracomplex structure of G/L due to Lemma 2.2-(3).

REMARK 3.19. We have constructed a G-invariant paracomplex structure of
G/L. In fact, one can construct a G-invariant paraKédhler metric on G/L further
(cf. Theorem 3.8 in Hou-Deng-Kaneyuki-Nishiyama [4, p. 225]). In addition, it is
known that in some cases G-invariant paracomplex structures of G/L are unique
up to sign + (e.g. Proposition 4.4 in Kaneyuki-Kozai [5, p. 96]).

Next, let us fix a paraholomorphic structure Sg/; on (G/L,Is), where I is
the paracomplex structure constructed above. Take any real bases {4;}", and
{B;}/L, of u™ and u~, respectively. In the first place, we are going to set a
coordinate neighborhood of G/L containing the origin o. Proposition 3.7-(4) tells
us that O:= UtU L/L is an open neighborhood of o e G/L, and moreover,
for each p e O there exists a unique (ut,u”) e U x U~ satisfying p =uTu" L.
Proposition 3.7-(1) then enables us to obtain unique x’,y’ e R such that u™ =
exp(>°1L, x'4;) and u~ =exp(>_i, »'B;). Therefore one can define a mapping
Y : 0 — R¥ by

Yip):=(x',....x" p',....»") for p= exp(z:l:l xiAi) exp(z:l:l yiBi)L € 0,

and (O, = (x',...,x",p',...,»")) is a coordinate neighborhood of G/L con-
taining o. Furthermore, (3.17) and (3.18) imply that

0 0 0 0 .
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on O. In the second place, for ge G we put O, :=1,(0), ¥, =y o7, and
denote the local coordinate system in (O,,v,) by (x},...,x}, y),..., y}). Since
(3.20) and Iy is G-invariant, we conclude that

(3.21) SeiL =040, = (xg, -, X0 vas - Vi)Y ge
is an atlas of G/L such that I(0/dx}) = 0/0x], 16(0/dy}) = —0/dy} (1 <i<n)
on each Oy and this (Oy, Y, = (x},...,x},y),..., ) is a paraholomorphic

coordinate neighborhood of (G/L,I;).
We end this subsection with showing

PropoSITION 3.22.  With the setting (3.4) and (3.5); suppose that O(L) C L.
Then for the invariant paracomplex structure Ig of G/L given in (3.18), there exists
an anti-paraholomorphic diffeomorphism @ of G/L onto itself.

Proor. The supposition allows us to define a diffeomorphic transformation
® of G/L by ©(gL) :=6(g)L for gL € G/L. This © is anti-paraholomorphic by
means of 0,(S) =-S5 and (3.17). Il

3.3. Differentiable Structures on Real Flag Manifolds. We obey the same
setting as in Subsection 3.2. Let us fix a differentiable structure Sg/o- on the
homogeneous space G/Q~. Recall that {4,};_, is a real basis of u™. Proposition
3.7-(1), (3), (4) enables us to define a coordinate neighborhood (O*,y") of G/Q~
containing the origin eQ~ as follows:

ot:=U"Q0 /0,

Yyh(q) = (z',...,z") for g=exp(>I,z/4;)0" € O*.
For g e G we set O] :=1,(0"), ;=" o7, and denote the local coordinate
system in (O,f,¥,) by (z,,...,z}). Then, it turns out that
(323) SG/Q* = {(Ong;:(zév"'azg))}geG

is an atlas of G/Q".

4. The Main Result and Its Related Topics

The main result in this paper is as follows (see Paragraph 2.3.1, (3.4) for
#(G/L), 07
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THEOREM 4.1. Let G be a connected real semisimple Lie group, let S be a
hyperbolic element of g, and let L be a subgroup of G such that

CG(S)() cLC Cc;(S)

Then, for the invariant paracomplex structure Ig of G/L given in (3.18), the co-
homology group #"(G/L) is linear isomorphic to the de Rham cohomology group
H'(G/Q7) for every re€ Zsy.

This theorem follows by Proposition 4.6 in Subsection 4.1.

4.1. A Link between Paraholomorphic Cohomology Groups of Hyperbolic
Adjoint Orbits and the de Rham Cohomology Groups of Real Flag Manifolds.
We obey the same setting as in Subsections 3.2 and 3.3.

Our first aim is to show Lemma 4.5, and we will deduce Proposition 4.6 from
the lemma. Since L C @~ we can consider a surjection Pr: G/L — G/Q~ defined
by

Pr(yL) :=gQ~ for gLe G/L.

In Subsections 3.2 and 3.3 we have defined atlases S/ = {(Oy, ¥, = (x;, e Xy

Voro s VN gee and Sgro- ={(0; ¥ = (z),...,2)))}yeq> Tespectively. By
means of these definitions, we can assert that for each g € G one has

(4.2) Pr'(0}) =0y hu"LeO, forall (hL,u")eOyx U~

(cf. Proposition 3.7-(3)), and that Pr is expressed as
(4.3)  Pr:(xg,..., X gy V) = (20-0020), Xxp=zioPr (1 <i<n)
on Oy, so that
(4.4) (d Pr), : T;(G/L) — Tpr(p)(G/Q7) is a linear isomorphism
for any pe G/L.

Lemma 4.5. Pr*(D'(G/Q7)) C Q'(G/L) for all r € L.

Proor. Take an arbitrary £ e D"(G/Q~). We want to show that Pr* & e
Q"(G/L). 1t is clear that Pr* £ € D"(G/L). Hence it suffices to confirm that Pr* &
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is of type (r,0) and d(Pr* &) = 0. Suppose that ¢ is expressed as
E= o G ) ANz G = & (2, 2))

on (Og*,(zgl,...,zg)). Then, in view of (4.2) and (4.3), Pr* ¢ is expressed as

4 B | |
Prt ¢ = Zil@q, Sty AXI A ndxE iy = S (X)X YY)

on (Og, (x},...,x), yl,..., y)). Accordingly the differential form Pr* & is of type
(r,0). Furthermore, since Pr(guTu~L) = Pr(gutL) for all u* € U* we see that
the function f;..; =¢;..; oPr is independent of the variables y{},..., vy, and
Of;y.i,/ 0yl = 0. So, it follows that

— 1 8 [N A i 1
oPrr e =>" > 7/{16 R dyl Adxl A Adxl = 0. O
=1 i<<i, g

Now, let us demonstrate

ProposITION 4.6. For each reZsy there exists a linear isomorphism
(:Q(G/L) — D' (G/Q™) such that

(1) Pr' o, =id on Q"(G/L),

(2) {,oPr* =1id on D"(G/Q7),

() dol,={100.

Proor. Take any o € Q"(G/L). Fix an arbitrary g € G/Q~ and wy,...,w, €
T,(G/Q7). For each point pePr!(q) there exist unique vy,...,v, € Ty (G/L)
satisfying (d Pr),v, =w, (1 <a <r) by (44), and then we put

(4.7) (&) (wiyeywy) 2= (01,5, 0y).

Our first aim is to confirm that (4.7) is well-defined. Suppose that p’ € Pr=!(g)
and v/ € T;,(G/L) satisfies (d Pr), v, = w, (1 <a <r). For the aim, it suffices to
verify

(4.8) ap (01, 0) = o (0], ..., 1))

On the one hand; if the point p is expressed as p = hL, then it follows
from Pr(p) = ¢ =Pr(p’) and Q~ = U™ L that there exists an u~ € U~ satisfying
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p'=huL. On the other hand; by virtue of g€ G/Q~ =J,.c O, there exists a
g € G such that g € O,. Therefore (4.2) yields p=hL € Pr!'(¢) c Pr! (07) =0y
and p’ = hu~L € O,—that is,

p=hL, p'=hu"LeO,.

Now, let us express the vector w, € T,(G/Q7) as w, = > ., ié(@/azé)q for a =

l,...,r. Then (4.3), (4.4) and (d Pr),v, = wya, (d Pr),v, = w, enable us to show
that v, = > ii(a/ﬁx;)p, v =>" }i(a/ﬁxé)p, for all 1 <a <r. Consequently

i=1"a i=1"a

P YR
i,_/,.z.;:l ox} ’ ox;) g oxk g

n

(4.9) = Z }f/l] e }v,{cfxij--k(p);

ij. k=1

we have

OC])/(U{7 ceey U;) = Z }v{/ﬂhé e }v,{(dljk(p,)'

Here the definition of (O, ¢, = (x},..., X, y},..., y})), together with u~ e U™,

assures that
x)(p) = x)(hL) = xj(hu”L) = x)(p') for all 1 <i<n.

For this reason one can conclude (4.8) by o e Q"(G/L), Corollary 2.14-(2) and
(4.9). Accordingly (4.7) is well-defined.
Since (4.7) is well-defined, d/0x] € T*(G/L) and 0/dz, = d Pr(d/0x]), one

can assert that on 0;,

Jd 0 0 0 0 0
(410) (Cr((x)) AL AL = A LA B AL Oyg.
0z4 0zg 0z4 x4 0xy4 0xy

Here 7, is a local cross-section on O/ (namely, Proy, =id on Of) defined as
follows:

Vg1 0y = Oy, gu™ Q™ > gu'L.

From (4.10) we deduce that (.(x) is of class C* and (.(x) eD'(G/Q7).
It is immediate from (4.7) that {,:Q'(G/L) — D' (G/Q7), a— (. (), is a
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linear mapping. Furthermore, it holds that for any a € Q"(G/L), p e G/L and
b1y..., 0 € T, (G/L),

G5 (@1, 5) 2 (@) ((d POy, - (d P)o) = (PE(C(@)),(00, - -, 51).

This yields (1) Pr* o(, =id, since &, Pr*({,(a)) € «"Y(G/L), Remark 2.11-(iii)
and T3(G/L) = T;(G/L) @ T; (G/L).

From now on, we are going to prove (2) (,oPr*=id. Take any &€
D'(G/Q™) and suppose it to be expressed as

i i 1
é = Z f,’l...,"_ dZél AN /\dZé’, f,’l...,‘r = 5,’1...,"_(Zg, ce ,Z;)

I <--<i

on (0;,(z),...,2!)). Then, (4.3) implies that

Pre &= Z (&ioui, O Pr) dX] Ao A )

<---<i

on (Oy, (x,...,x, y4,---,¥)), and so it follows from Lemma 4.5, (4.10) and
Proy, =id that

gr(Pr* é/) — Z ((éil-“l} o PI‘) o yg) dZ;l A /\dzév

0 <<y

— i I
= Y &g dEl nndz) =

i <<y

on O;. Therefore (2) holds also. (1) and (2) imply that the linear mapping
(:Q(G/L) - D' (G/Q™), ar {.(a), is isomorphic.

The rest of proof is to conclude (3) do{, =, od. By Corollary 2.14-(2),
any o€ Q"(G/L) is expressed as

_ i iy _ 1 n
o= E iy, Ay N NAXY S Oy, = O, (X X))
i1 <<y

on (0g,(x;,...,x;’,y;-,...,y;’)). ‘On the one hand; (4.10) implies that {,(x) =
D iy<ci, (Giyed, ©99) dzg A Adzy, and therefore

n

0 i1-eiy F . .
(4.11) A (@)=Y > %dz;‘/\dz;‘/\---/\dz;"

k=1 i <--<i, g
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on (O;,(zgl,... z)). On the other hand; since doo=>; ;>

14y
kY gk ‘
Oxy) dx; ndx) A---Adxg and (4.10) we see that

! (30(,‘ e, i i
(4.12) La(0) =D Y (ﬁ ° yg> dzf Nz} A ndz)
g

k=1 i) <--<i,

6061'14..,‘,_/

h<m<ﬁ(

Here, the derivation of composite function, 0., /dy) =0, xg =zJoPr and
Proy, =id yield
n

i, 07,) , , 00y ..i, , d(xioy,) , " B0ty , )
— ) = )0 i d) = ) 0,(4) 9
g g

j
= 0xg =1 @Xg

750!,'144.,', ’
= ok (v4(q"))

for all ¢’ € OF. For this reason, (4.11) coincides with (4.12). Thus (3) follows.
g
]

We are in a position to prove Theorem 4.1.

ProoF OF THEOREM 4.1. For reZsy we set

{Z"(G/Q) ={¢eD(G/Q7)|d¢ =0},

B'(G/Q7):={d¢|£e D" 1(G/Q7)} (r>0), B(G/Q7):={0}.
About the linear isomorphism (, : Q"(G/L) — D"(G/Q~) in Proposition 4.6 it
follows that (.(Z"(G/L))=Z"(G/Q7), ((#"(G/L))=B"(G/Q~) by virtue
of (2.15) and Proposition 4.6-(3). Accordingly, #"(G/L)=%"(G/L)/%"(G/L)
is linear isomorphic to H'(G/Q~) =Z"(G/Q~)/B"(G/Q~) via [o] — [{.(«)] for
every r € Zxy. O]

4.2. An Appendix: A Circular Cylinder and a Hyperboloid of One Sheet
are Diffeomorphic, But Not Paraholomorphically Diffeomorphic. Let us give an
example.

ExAMPLE 4.13. Let G = SL(l+n,R) and

n 0
S:(’O _In),

where 0 = (0,...,0) € R” and I, stands for the identity matrix of degree n. Define
a Cartan involution 6 of G by 0(g) := ‘g~ for g € G. Then 0,(S) = —S and S is
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a hyperbolic element of g =sl(1 + n,R). Moreover, it turns out that

cun-{(4 8)

= S(GL(1,R) x GL(n,R))

ae GL(1,R), B, e GL(n,R), adet B, = 1}

and G’ = K = SO(1 +n). Note that Cg(S) consists of two connected compo-
nents, and set

L:CG(S)O or CG(S)

With this setting we conclude that

[— z 0
L\ w,
u+:gl+n:{<2} g)’llGRn},
0o 0
u‘:g—<1+”):{(,v o ) veR”}.

* In case of L = Cg(S),, one has
A0
L= 0 B A>0, B,e GL(n,R), Adet B, =1

zeR, W, egl(n,R), z+tr(W,) = 0},

= S(GL(1,R) x GL(n,R)),,

. 10
2 ={(u 1)

koo =xnz={(} *)|xcsom}-som

veR”,xeL},

Accordingly G/Q~ = K/(KNL)=S0(1+n)/SO(n) is an n-dimensional sphere,
and therefore dimg H'(G/Q ) =1 if r=0 or n, and dimg H'(G/Q~) =0 if
0 < r < n. Hence Theorem 4.1 and two Propositions 2.20-(iv) and 3.22 tell us
that

1 if r=0 or n,

dimg #"(G/L) = dimg #"(G/L)
img A#7(G/L) = dimg #7(G/L) {0 if0<r<n

for the invariant paracomplex structure I of G/L = SL(1 +n,R)/S(GL(1,R) x
GL(n,R)), given in (3.18).
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«In case of L= Cg(S), we see that G/L = SL(1+n,R)/S(GL(1,R) x

GL(n,R)), G/Q~ =K/(KNL)=SO(1+n)/S(O(1) x O(n)) is an n-dimensional
real projective space, and

1 if r=0 or n,
0 if 0<r<n

{1 %fr:(), (n = 26).
0 f 0O<r<n

dimg #"(G/L) = dimg #"(G/L) = { (n=2k+1);

On the one hand; Example 4.13 implies that

dimg #'(F?) = dimg #'(F?) = 1

for the invariant paracomplex structure Is; gy of F? = SL(2,R)/S(GL(1,R) x
GL(1,R)) given in (3.18). On the other hand; Example 2.18 implies that

dimg #'(S' xR) =1, dimg #(S!'xR)=0

for the paracomplex structure Isi,g of S' x R given in Remark 2.4. Accordingly,
it follows from Propositions 2.19 and 2.20 that the hyperboloid (F Z;ISL(Z,R)) of

one

sheet and the circular cylinder (S' x R,Igi,g) are neither paraholomor-

phically nor anti-paraholomorphically diffeomorphic to each other.
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