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EXTENDING FUNCTORS FROM THE CATEGORY
OF STRICT MORPHISMS OF INVERSE SYSTEMS
TO THE ASSOCIATED PRO-CATEGORY WITH
APPLICATIONS TO THE FIRST DERIVED LIMIT

By

Peter MRoOZIK

Abstract. We show that functors on the category of strict mor-
phisms of inverse systems which are indexed by arbitrary cofiltered
small categories have at most one extension to the associated pro-
category and give conditions characterizing the existence of exten-
sions. This is applied to provide a concrete extension of the first
derived limit to the category of pro-groups.

1. Introduction

To any category C one can associate the category of inverse systems inv-C
and the pro-category pro-C. A good reference is [8]. In the most general form
inverse systems are indexed by cofiltered small categories. Many authors restrict
to directed preordered sets as index categories which is a substantial simplifi-
cation. The justification is the following reindexing principle which ‘“improves”
inverse systems: For each inverse system X indexed by a cofiltered small category
there exists an isomorphism f: X — X’ in pro-C such that X’ is indexed by a
cofinite directed ordered set. Cofiniteness enables induction on the number of
predecessors which is an essential technique in many proofs.

Working with these more special inverse systems is sufficient for most pur-
poses. There are, however, questions where this approach appears inappropriate.
Many important constructions for inverse systems (e.g. derived limits) are pri-
marily not concerned with morphisms, but typically have natural continuations
to functors living on the subcategory lev-C C inv-C of level morphisms. Finding
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pro-extensions to functors living on pro-C is a highly non-trivial task and it is not
expedient to restrict to any sort of special inverse systems.

As a further challenge some interesting functors F on lev-C (e.g. the derived
limits) have a completely natural extension to functors Fy, living on the sub-
category str-C C inv-C of strict morphisms which are the most elementary mor-
phisms of inv-C in that they satisfy evident strict commutativity requirements (see
Section 2). Here are some obvious questions.

(1) Does Fy, have a pro-extension? More precisely, under what conditions

does there exist a pro-extension?

(2) Are pro-extensions of F, unique?

(3) If we have directly constructed a pro-extension of F from lev-C to pro-C,
we get an induced extension F’ of F to str-C. Does F’ agree with the
natural extension Fj,?

In this paper we develop the machinery to address these questions. We generalize
some classical results for inverse systems indexed by directed preordered sets to
arbitrary inverse systems. In particular we show that in the realm of cofinite
index categories all pro-morphisms can be represented by strict morphisms which
is a basic prerequisite for most proofs. In Section 5 we focus on level morphisms
and show that for a cofinite A4 the canonical functor IT: C* — pro-C, is a
localization at a certain class of level morphisms which means in particular that
functors on C* have at most one pro-extension to pro-C,. In Section 6 we show
that functors on str-C have at most one pro-extension to pro-C (which answers
question (2) in the affirmative) and give criteria for their existence (which answers
question (1)). In Section 8 we apply this to the first derived limit lgnl and show
that it has a unique pro-extension from str-G to pro-G (G = category of groups).
In Section 9 we briefly discuss the abelian case and show that all derived limits
lim” have a unique pro-extension from str-AG to pro-AG (AG = category of
abelian groups) which generalizes previous results by Watanabe [10] and Mar-
desic¢ [9].

For the derived limits the existence of pro-extensions from lev-C (C = G, AG)
to pro-C is well-known. For n =1 and C = G this is based on the topological
description of 1@1 via the homotopy limit on pro-SS*; see e.g. [4]. For C = AG
the functors lim” occur as the right derived functors of lim : pro-AG — AG and
are thus uniquely determined by this property. All this is based on completely

! This entails a certain vagueness because the homotopy limit depends on the precursory construction
of a closed model structure on pro-SS (SS = category of simplicial sets). In the literature one can find
various different constructions; see e.g [7].
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natural “‘systemic” constructions, but it is a priori not clear how the resulting
pro-extensions of lim” from lev-C to pro-C are related to the natural extensions
of lim" from lev-C to str-C, i.e. we do not get answers to questions (1) and (3).
In [10] and [9] one finds positive answers for the abelian case and directed
preordered index categories; we generalize this to arbitrary index categories. In
the non-abelian case the questions have never been addressed so far. We answer
question (1) in the affirmative (Theorem 8.1); concerning question (3) we have
partial results (Theorem 8.3).

2. Pro-categories

We recapitulate the basic definitions (cf. [8]). Let ¥ denote the category
of small categories (whose morphisms are functors) and £ the category of
preordered sets and increasing functions. Each preordered set 4 can be regarded
as small category whose objects are the elements of 4 and whose morphisms
are given by mor(ay, o) = {(o1,00) | o) = on}. Doing so, the morphisms of 2
turn out to be functors between small categories. In that way we identify £
with a full subcategory of . To each 4e€.¥ we associate o(A4) e ? by
setting 0o(A) = 0b(A) and oy > o, if there exists a morphism u:o; — ar. We
call > the induced preordering on A. To emphasize the role of u we also write
o] =4 00.

For any two objects 4,Be & let [B,A] denote the set of all functions
@ : 0b(B) — ob(A).

Let € C & denote the full subcategory of cofiltered small categories and
2 C 2 the full subcategory of directed preordered sets.

The objects of inv-C and pro-C are all functors X : 4 — C, where A4 is any
element of . Each such X is called an inverse system in C indexed by 4. We
also write X = (X; = X(), pu = X(1))c op(4), e mor(4)-

Given X = (meu)o:eob(A),uemor(A) and Y = (Yﬁvqv)/)’eob(B),vemor(B)’ the mor-
phisms f:X —Y of inv-C are all systems f = (¢, (fs)s.p) With p€[B, 4] and
Jp € C(X,p), Yp) such that the following holds: For each morphism v: f; — f,
in B there exist « € A and morphisms u; : @ — ¢(f;) in A such that fz o p,, =
qv © fp, © pu,- We refer to ¢ as the index function of f and denote it by ind(f).
Two morphisms f; = (goi,(]"ﬁi)) :X — Y are called equivalent (f; ~f;) if each
f € B admits o€ A and morphisms u; : & — ¢;(f) such that f o py, = f o pu,.
The morphisms of pro-C are the equivalence classes of morphisms in inv-C with
respect to ~. The canonical functor mapping each morphism to its equivalence
class is denoted by II : inv-C — pro-C.
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We give [B, A] the structure of a category by defining a morphism 7 : ¢ — ¢
to be a collection of morphisms 74 : Y(f) — ¢(f). The induced preordering on
[B, A] is denoted by >.

Given a morphism f of inv-C(X,Y) and a morphism 7 : ¥ — ind(f) in [B, 4],
we define f* = (, fz o p.,) which is a morphism of inv-C(X,Y) such that f* ~ f.
This endows inv-C(X,Y) with the structure of category: A morphism 7:g — f
is a morphism 7 :ind(g) — ind(f) in [B, A] such that g =f°. The induced pre-
ordering on inv-C(X,Y) is denoted by >.

The following is an obvious consequence of the axiom of choice.

ProposiTION 2.1.  For f),f; € inv-C(X,Y) the following are equivalent:

(1) fi ~ >

(2) There exist \y € [B, A] and morphisms t; : y — ind(f;) such that f]' = f£*.
(3) There exists g > fy, 1.

For each 4 €% we have the category C! whose objects are the inverse
systems indexed by A and whose morphisms f: X — Y are the natural trans-
formations between the functors X,Y : 4 — C. There is natural identification of
C“ with a subcategory of inv-C: Each natural transformation f = (fy) can be
regarded as a morphism of inv-C by writing f = (id4, (f;)). The wide sub-
category? of inv-C given as the union of all C*, 4 € %, will be denoted by lev-C.
Its morphisms are called level morphisms.

For each functor ¢: B— A in ¥ we obtain a functor

7 ct = C3, " (X) =Xo g, (o*(f)/f = fop)-

If  : C — B is another functor, we have (Y op)" =¢p*oy™.
The category str-C of strict morphisms® is defined as follows. Its objects are
all inverse systems in C. For X e C* and Y € C® we set

str-C(X, Y) = {f = (¢, ") |p € 6(B, 4),f" € C*(p"(X), Y)}.
Composition of morphisms is defined by
(,87) o (9,1%) = (poyh,g" 0y (f7)).

Obviously str-C is a wide subcategory of inv-C such that lev-C C str-C.

2A subcategory K’ C K is wide if it contains all objects of K.
3 For inverse systems indexed by directed preordered sets this concept goes back to [5, Ch. VIII] under
the name “map of inverse systems”.



Pro-categories 269

The set €(B, A) of functors B — A inherits the structure of a category from
[B, A]. Let 6uu(B,A) C €(B,A) denote the wide subcategory whose morphisms
are natural transformations. The induced preordering on %, (B, A) is denoted by
=. If Ae 2, then %,,(B,A) = €(B,A).

This endows str-C(X,Y) with the structure of category: A morphism 7:g — f
is a morphism 7 :ind(g) — ind(f) in ,,(B,A) such that g =f*. The induced
preordering on str-C(X,Y) is denoted by >. Clearly g > f implies g >f in
inv-C(X,Y). Note that f* is a morphism of str-C(X,Y) provided 7 :  — ind(f) is
a morphism in %, (B, 4).

On str-C(X,Y) we define f; £ f, if there exists gestr-C(X,Y) such that
g > f1,f,. £ generates an equivalence relation = which is compatible with com-
position so that we obtain a quotient category qstr-C =str-C/= and a com-
mutative diagram

str-C ——— inv-C

|

gstr-C — pro-C
where the vertical arrows are the quotient functors.

3. An Alternative Representation of Pro-morphisms between Cofinitely
Indexed Inverse Systems

For each preordered set 4 we define a ~a' if o >a’ and o' >« The
quotient set p(A4) = A/~ becomes an ordered set* by defining [«] > [o] if
o> o

As the skeleton of A €% we denote the ordered set s(A4) = p(o(A)). The
canonical function g4 : 4 — s(A4) is a morphism in %(A4,s(4)). A morphism
W e [B,A] resp. Y e%(B,A) is called skeletal if it has the form W = oop,
where € [s(B), 4] resp. y € €(s(B), A).

An internal diagram A in a category C consists of a set V" of objects of C and
a set E of morphisms between these objects. A cone over A consists of an object ¢
of C and a family of morphisms y,:c — v, ve V, such that for all morphisms
e:v—v in E, eoy,=7,. If ¢ is not an object of A, we use the wording outer
cone. The following is well-known.

*As an ordering on a set we understand an antiysmmetric preordering.



270 Peter MROZIK

PrOPOSITION 3.1. Let A be a small category. Then A € € if and only if each
finite internal diagram in A has a cone.

A small category B is called cofinite if for each e B there exist only
finitely many morphisms with domain f. By %(cfunt) C € resp. Z(cfut) C 9
we denote the full subcategories having as objects all cofinite Be % resp.
Beg.

A function & € [B, A] is called weakly cofinal if for all a € A there exist f € B
and a morphism u: &(f) — o in A. A functor ¢ € €(B, A) is called

(1) equalizing if for all f e B and all morphisms u;,u; : () — o in A4 there

exists a morphism v: " — B in B such that ujp(v) = urp(v),

(2) cofinal if it is weakly cofinal and equalizing.

If & > ¢ in [B, 4] and ¢ is weakly cofinal, then also &’ is weakly cofinal. If
A € 2, then each functor ¢ : B — A is equalizing; thus ¢ is cofinal if and only if
it is weakly cofinal.

Let 4., denote the wide subcategory of ¥ whose morphisms are all equalizing
functors. This yields a wide subcategory streq-C of str-C whose morphisms have
index functors in %,,. The relations £ and = on str-C can be modified in the
obvious way to produce relations on str,-C which are denoted by the same
symbols.

LemMA 3.2. Let Be €(cfnt) and A€ €. For i =1,... n let be given functions
o, o) - mor(B) — ob(A), A, vi,v) : mor(B) — POW (mor(A))°, such that for each
vip—p

« Ai(v) is a finite set of morphisms «;(v) — o(v),

* vi(v) is a finite set of morphisms oy (v) — a;(v),

* v{(v) is a finite set of morphisms a{(v) — of(v).

Then there exist
(1) a skeletal functor : B— A
(2) for i=1,...,n functions w;, w]:mor(B) — mor(A) such that for all
vif— B, wi(v) is a morphism y(B) — o;(v) and w!(v) is a morphism
W(B) — o(v)
with the following property: For all v:f— p', all i=1,...,n, all u; € i(v),
w; € vi(v) and w} € v(v) the following diagram commutes with the possible excep-
tion of the right inner square:

5The symbol POW denotes powerset.
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If for some i one has o;(v) = y,(p), o (v) = y,(B") with a function y;: ob(B) —
ob(A) (“functional case”), one can find a morphism t;:\y — y; in [B,A] such
that one can take w;(v)= (v:)p, ®/(v) = (v;)g. In case y; is a functor and
2i(v) = {x;(v)}, then 1; is necessarily a natural transformation.

Moreover, if A is cofinite, then \ can be chosen to be equalizing.

NB If L(v) =&, Li(v) =, vi(v) =& or vi(v) =, then in the above
diagram it is understood that corresponding arrow uy, u;, w; or w is omitted. The
consequence is that the corresponding commutativity assertion falls away.

Proor. Let T(B) = {(b,b',v) € 0b(s(B) x s(B)) x mor(B) |op(v) = (b,b")}
and P(B) = {(b,p) € 0b(s(B) x B) |ap(f)) = b}. We construct
(1) a functor ¥’ : s(B) — 4
(2) for each (b,b',v) € T(B) morphisms @;(b,b’,v) : ' (b) — o;(v), @} (b, b’,v) :
Y'(b") — «/(v) resp. in the functional case for each (b,f) € P(B) a mor-
phism %(b,8) : ¥'(b) — 1:(B)
such that for all (b,b',v) € T(B) and all u; € 4;,(v), w; € v;(v), w! € v/(v) the fol-
lowing diagram commutes with the possible exception of the right inner square:

v ((b,b") Jin Jru,' Dy(b,b’ v, uz, wi,w!)

w!
i (v) —— o)(v)

@(W

@/ (b,b',v)

v'(b")

In the functional case we consider all (b, ) € P(B) instead of all (b,b’,v) € T(B)
and replace in the above diagram @;(b,b’',v) by 7;(b,f) and &(b,b',v) by
fi(blaﬂ/)'
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This is clearly equivalent to the lemma. The right square subdiagram will
be denoted by Ds(b,b',v,u;, w;,w!). Removing from Di(b,b’,v,u;, w;,w]) the
object in the upper left corner and the three morphisms starting there yields
a diagram denoted as Dj;(b,b’,v,u;,w;,w/). For a fixed bes(B) there are
only finitely many diagrams having the form D;(b,b’, v, u;, w;,w]). Let Dj*(b,b’,
v,u;, wi, w;) denote the internal diagram canonically associated to D;(b,b’, v, u;,
Wi, Wi).

Let pr(b) denote the set of predecessors of b, i.e. of all 4’ such that b > b’.
Then pr(b) D pr(b’) if and only if b > &’. Since B’ is ordered, we have moreover
pr(b) = pr(b’) if and only if b="5".

Let k(b) = number of predecessors of b. Assume b >b'. Then clearly
k(b) = k(b"), and k(b) = k(b") if and only b =b’. In particular, for b,b’ € 5(B)
with k(b) = k(b'), we either have b = b’ or b, b’ are not comparable with respect
to >.

We construct the necessary objects and morphisms by induction over
k(b).
For k(b) = 1 let A be the union of the finitely many internal diagrams having
the form Dj(b,b,v,u;, w;,w!). Choose a cone (u,w,) over A and set y/'(b) = p,
W' ((b,b)) = id and @;(b,b,v) = Wa(0)> @] (b, b,v) = Wy(v)- In the special case based
on a function y; we set 7i(b,f) = w, (p).

Assume we have constructed the components for all » with k(b) <m. If 4
is cofinite, assume moreover that for all pairs (b,b’) such that b > b’ and k(b’) <
k(b) < m the following holds: For any two morphisms u;,u; : Y(b') — o in 4 one
has w1y ((b, b)) = wa((b,b")).

Consider »* with k(b*)=m+1. Let A be the union of the finitely
many internal diagrams having the form D{(b,b',v,u;, w;,w!) with b’ <
b <b*, D;(b*,b" v,u;,w;,w!) with b' <b* and Dj(b*,b*,v,u;,w;,wj). If A4
is cofinite add all (finitely many) morphisms u:y'(h) — o in A4 where
b< b

Choose a cone (u,w,) over A and set ' (b*) =, ' ((b*,b*)) = id and, for
b < b*, Y'((b*,b)) = wyr ) @i(b*,b,0) = Wy, @](b*,b,v) = wy(y). In the special
case based on a function y; we set 7;(b*, ") = w, 4. ]

CoROLLARY 3.3. Let Be @(cfiit) and A€ €. Then for each f € inv-C(X,Y)
there exists g € str-C(X,Y) such that g > f (so that [g] = [f] in pro-C). The index
functor of g can be chosen to be skeletal. If A is cofinite, then it can moreover be
chosen to be equalizing. If we are given ¢ € [B, A]|, we can achieve ind(g) > ¢&. In
case £ €€ (B, A), we can achieve ind(g) = ¢
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Proor. For each morphism v:f — ' in B there exist a(v) € A and mor-
phisms v(v) : a(v) — @(B), v'(v) : «(v) — @(B’) such that the following diagram
commutes:

Puc 7
Xy —— Xppy —— Yp

pid_idJ/ lllu

XO{(U) —_— XW / —> Yﬂ/
i) S

Now apply Lemma 3.2 with o(v) = o (v) = a(v), 02(v) = @(B), wb(v) =e(B),
az(v) = E(B), o4(v) =<&(B) and Ai(v) ={id}, J(v)=. If Eeb(B,A) set
23(v) = {&(v)}, otherwise 13(v) = &J. Moreover, let v2(v) = {v(v)}, vi(v) = {v'(v)}
and vi(v) = v{(v) = »3(v) =) = .

This yields a skeletal functor v : B — A and morphisms 7 :  — ¢, t/ : y — &
in the functorial case 7’ is a natural transformation. Set g = f°*. O

COROLLARY 3.4. Let Be @(cfnt) and A € € and let f,,f; € str-C(X,Y). Then
fi ~ £, ininv-C(X,Y) if and only if there exists g € str-C(X,Y) such that g = f,, 1.
The index functor of g can be chosen to be skeletal. If A is cofinite, then it
can moreover be chosen to be equalizing. If we are given & e €(B,A) such that
ind(f;) =, &, we can achieve g =, f; such that 10\ = 1205.

Proor. The “if’-part is obvious. Conversely, let f; ~ f,. Then there exist
Y € [B, A] and morphisms 7y :  — ind(f1), 12 : Yy — ind(f,) such f' =f3> =g. A
suitable application of Lemma 3.2 yields the assertion. O

COROLLARY 3.5. [In str-Cy(.fiy) the following are equivalent:
(O f1 ~f
(2) f1 21,
(3) fi =1
The same holds in streq-Ce(cp)-

We therefore obtain the following alternative representation of pro-
morphisms between cofinitely indexed inverse systems.

THEOREM 3.6. 1 : qstr-Co(cfnry — Pro-Co(epiy and 1 : qstrog-Cos(cefnry — Pro-Ce(cpin)
are category isomorphisms.
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4. Reindexers

For each inverse system X indexed by 4 € % and each functor ¢ : B — A with
domain Be % we obtain a canonical morphism

1(X,p) = (p,id,(x)) : X — ¢"(X)

in str-C. For each morphism f = (¢,f*):X —Y in str-C we thus have a
canonical decomposition

f=1"or(X, ¢p).
The r(X,¢) constitute a natural transformation
(=) :id —¢°

between the functors id : C* — C* C str-C and ¢* : C* — C2 ¢ str-C.
Moreover, if ¢ splits as ¢ =y o y with functors y: B— C and {: C — A4,
then f splits as

f = f(l/,/) [e] I'(X, lﬁ),

where f(, ) = (x.17) : " (X) = Y (note that x*(y"(X)) = (¥ 0 )" (X) = ¢*(X)).
If Y : C — B is another functor, then clearly

(9" (X), ) ox(X, 0) =r(X,p 0 ).
For a functor yy : B— A and a natural transformation 7: — ¢ let
i(X,7) = (id, (py)) : Y7 (X) = 9" (X).
This is a morphism in C?# such that
iX,7)or(X,¥) =r(X,0)".
If y: B— A is a functor and w:y — ¥ is a natural transformation, we have
i(X,7) oi(X,w) =i(X, 70 w).

In the special case B = A4 we may take ¢ = id. For each functor  : 4 — 4
and natural transformation 7:y — id we get the level morphism

iX,7): " (X) = id*(X) =X.
DEerFINITION 4.1. A morphism having the form r(X, ¢) for some X and some

cofinal functor ¢: B— A is called a reindexer (or more precisely a reindexer
over ).
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ProposITION 4.2.  Each reindexer r(X,p) induces an isomorphism in pro-C.

PrROOF. A pair (7,Y) consisting of a function ¥ : 4 — B and a morphism
T:poy —id in [A,A] is called an associate® of ¢. Choose any associate and
define

KX, p:7,9) = (¥, (Pr, 0 0" (X)) = Xow)) = Xa))-

Let u:01 — oy be a morphism in A. There exist fe B and morphisms
vi : B — (o). Since ¢ is equalizing, there exist ' € B and a morphism w: f’ — f
such that (o 7, 0 @(v1)) 0 p(w) = (7,, 0 @(12)) o @(w). Set w; = v;ow : B’ — Y(o;).
Then (uo 1ty )o@(wi) =1, o@(wy). This implies that k(X, ¢; 7, ) € inv-C(p*(X),

We have k(X,¢;7,¢) or(X,0) = (9o, (pe, : Xpy)) — X)) =id" ~id and
1(X,0) ok(X,¢;7,9) = (Y00, (Pryy = 0" Xy = Xotwtoip)) = Xop) = 07 (X)p).
There exist '€ B and morphisms v:p — B, v':p — y(p(p)). Since ¢ is
equalizing, there exist f” e B and w: " — B’ such that (z, o ¢(v")) o p(w) =
@(v) o p(w). This implies p.,, © Pyiow)) = Pp(ow) Which shows r(X, ) o k(X, ¢;
7, ) ~ id. O

REMARK 4.3. The reindexers r(X,¢) with cofinal functors ¢ € ¥(4, A) such
that ¢ > id have a distinctive feature: The inverse isomorphism in pro-C is rep-
resented by a level morphism. In fact, any natural transformation 7 : ¢ — id yields
the associate (id,7) of ¢. Then k(X, ¢;7,id) =i(X,7) is a level morphism. Note
also that each functor ¢ > id is automatically weakly cofinal.

ExampLE 4.4. Let X be an inverse system indexed by 4 € € and A’ C A be
a cofinal subcategory which means that the inclusion functor 1 : A" — A is cofinal.
Then *(X) is the cofinal subsystem of X indexed by A’ and r(X,) is a reindexer.

ExaMmPLE 4.5. Let A;,A> €% and n': A} x A» — A; the projection functor
(which is cofinal). Each reindexer over such a n’ is called a projection reindexer.

ExampLE 4.6. This example is taken from [6, Proposition 8.1.6] where it
appears in dual form; see also [8, Ch. I, §1.4, Theorems 2 and 4]. For 4 € ¥ let
P(A) be the set of finite internal diagrams A in 4 having a unique initial object
14(A). An initial object of A is an object € A such that

SThis concept is defined for any ¢ € [B, A]. Associates of ¢ exist if and only if ¢ is weakly cofinal.
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(1) For each object o € A there exist exactly one morphism u, : g — o in A.

(2) u, =

(3) For each morphism u:o — o’ in A, uou, = u,.

P(A) is ordered by inclusion; it is cofinite but in general not directed. The initial
object function 4 : 0b(P(A)) — 0b(A) extends to a functor u, : P(A) — A (the
morphisms in P(A4) are the pairs (A;,Ag) with A; D Ag, and we let u, (A1, Ag) be
the unique morphism in A; from u,(A;) to 1,(Ag) € Ay C Ay).

For A € " = full subcategory of ¥ whose objects do not have maximal
elements it turns out that

* P(A) € Y(ord, cfnt) = full subcategory of & whose objects are ordered

cofinite sets.

« uy:P(4) — A4 is a cofinal functor.

We remark that the same is true for A € Z(ord) = full subcategory of &
whose objects are ordered sets. In this case P(A) is nothing else than the set of
finite internal diagrams A in 4 having a maximal element x4 (A) (which is auto-
matically unique).

For each inverse system X indexed by 4 € €™, we define P(X) = (uy)"(X).
As the standard cofinite reindexer we denote

px =1(X,py) : X — P(X).

To deal with arbitrary A4 €%, [6] uses the cofinal projection functor
ng:AxN— A. Define P'(4)=PAxN) and u/j=ng4ou,n:P(4)— A4
which is a cofinal functor. As the modified cofinite reindexer we denote

He = T(X. ) 1 X — (1) (X) = P'(X).

It would be desirable if the association 4 — P(A4) had a continuation to
a functor P: %" — %Y(ord,cfnt). The natural definition of the induced
P(p): P(B) — P(A) is of course P(p)(A)=¢(A), but in general ¢(A) ¢ P(A)
when A € P(B). We circumvent this problem by considering only regular functors’
¢: B — A characterized by the property that ¢(A)e P(4A) and ¢(ug(A)) =
uy(p(A)) for all Ae P(B). Examples for such functors are all embeddings®
9p:B— A and all ¢: B— A4 such that A4 is ordered.

On the wide subcategory %7 C €™ whose morphisms are the regular

reg

functors we thus obtain a functor P: %)~ — Z(ord, cfnr) and a natural trans-

formation u= (uy) : P — id.

7This concept is defined for arbitrary 4, B e %.
8This means that ¢ establishes a category isomorphism between 4 and a subcategory 4’ C B.



Pro-categories 277

Let E: % — ™ be the functor defined by E(4) =4 x N, E(p) = ¢ X idn
and %,., C € be the wide subcategory whose morphisms are the regular functors.
We have E(%) C %, and define a functor

P'=PoE: %y — Z(ord,cfnr)

which comes together with the natural transformation u' = (4/)) : P’ — id.

Let strreg-C denote the wide subcategory of str-C whose morphisms have
a regular index functor. Given f = (¢,f") : X — Y in strye-C, the index functor
poup of uyof splits as g o up = u/; o P'(p). Hence

pyof = (uyo f)(ﬂ/;,P/(q;)) or(X,uy) = (uy o f)(/z/;,P/(q;)) o ux.
We define
P'(f) = (ny o f)(,zg.P'((p)) : P'(X) — P(Y).
It is easy to verify that this yields a functor
P Strpeg-C — Stl’-Cg(Ord’ ofint)

coming together with the natural transformation ' = (ug): P’ — id.

5. Pro-extensions and Localization

We recall the concept of localization. For any functor @ : K — K let INV(®)
denote the class of all morphisms f in K such that ®(f) is an isomorphism
in K.

DEFINITION 5.1, Let @ : K — K be a functor.

(1) Let F: K — L be a functor. A functor F : K — L is called a ®-shift of F
if Fod=F.

(2) Let X be a class of morphisms of K. ® is said to be a localization at X if
(a) X C INV(®D)
(b) Each F :K — L satisfying ¥ C INV(F) has a unique ®-shift.

For each full subcategory % C % and each wide subcategory J C inv-C we
denote by J, resp. pro-Cx the full subcategory of J resp. pro-C having as
objects all inverse systems indexed by some A4 € . If % has only one object 4,
we simply write J, resp. pro-C,. The restriction of Il to J, will again be
denoted by

II:3; — pro-Cx.
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DerINITION 5.2, Let F: 35 — L be a functor.

(1) A pro-extension of F is a Il-shift F : pro-C» — L of F.

(2) F satisfies the shifting condition if for all morphisms f', f of J, N str-C
such that f’ = f one has F(f') = F(f).

The focus of this paper are existence and uniqueness of pro-extensions. The
existence of a pro-extension clearly implies the shifting condition. The following is
an immediate consequence of Theorem 3.6.

PRrOPOSITION 5.3.  Let F C 6(cfunt) be a full subcategory and F : str-C# — L
be a functor. Then the following are equivalent:

(1) F has a unique pro-extension.

(2) F has a pro-extension.

(3) F satisfies the shifting condition.
In particular, F has at most one pro-extension.

LEMMA 54. Let F:C* =L be a functor and F :pro-C, — L a pro-
extension of F. Then for each morphism f = (p,f*) : X = Y in str-C4 with cofinal
index functor ¢ = id

F(II(f)) = F(f*) o F(i(X,7)) "

NB F(i(X,7)) = F(II(i(X,7))) is an isomorphism in L because T1(i(X,7)) is an
isomorphism in pro-C .

Proor. F(II(f)) :1_%(11( ) o F(TI(r(X, p))) = FI(f*)) o FI(i(X,7)) ") =

THEOREM 5.5. Let A€ %(cfnt). Then T1:C* — pro-C, is a localization at
the class 1(A) of all morphisms i(X,t) where 1 establishes a relation ¢ =, id for
some cofinal ¢ € €(A,A). (NB A functor ¢ = id is cofinal if and only if it is
equalizing.)

PrOOF. By Proposition 5.3 it suffices to show that each functor F : C* — L
with 7(A4) C INV(F) has a pro-extension.

We know that each morphism {: X — Y in pro-C, is represented by a mor-
phism f = (¢,f*) in str-C4 with an equalizing ¢ >, id. Define

E(f) = F(f) o F(i(X,7)) .



Pro-categories 279

We show that this does not depend on the choice of the representative f and the
choice of 7. Let f; = (¢;,f;) be representatives of { such that ¢; >, id. There exists
g = (y,g*) such that y is equalizing, g >, f; and 7101 = 1202 = w : Y — id. The
diagram

i(X,7; f;
X X0 ey — Ly

i(X,0) i(XA,D'[)I /

¥ (X)
commutes and we infer F(f) o F(i(X,7,))”" = F(g*) o F(i(X,w)) "

We next show that F is a functor. It is trivial that F(id) = id. Let g be
represented by g = (y,g*) : X — Z with =, id. Define a natural transforma-
tion ¢*(g) : poy — @,9*(0), = ¢(0,). Then gof is represented by gof = (p oy,
(gof)"), where p o = o,y id. We obtain a commutative diagram

i(X,7) f* i(Y,0)
—

X

(poy)(X)

which shows that F(gof) = F(g) o F(f).
For level morphisms one has ¢ =id and 7 =id so that i(X,id) =id and
f*=f, hence Foll =F. O
Let p € €(B,A) be cofinal. Define a functor
" : pro-C4 — pro-Cp

as follows: For the objects set ¢*(X) = ¢*(X), for the morphisms {: X — Y set
7*(f) = II(r(Y, 9))fTI(r(X,9)) "". Then by construction
(1) The following diagram commutes:

¢t —r . c*

(2) The II(r(X,p)) constitute a natural isomorphism id — @*.



280 Peter MROZIK

Given a cofinal ¢ € €(cfint)(B, ), we call a functor F : str-Cy ) — L ad-
missible with respect to ¢ if all reindexers over ¢ are contained in INV(F). It
is called strongly admissible with respect to ¢ if in addition Flg,.c,, Flg.c, have
pro-extensions F4 : pro-C4 — L, Fp : pro-Cp — L. Note that these are unique by
Theorem 5.5.

LemMmA 5.6.  Let F : str-Cy(y) — L be strongly admissible with respect to ¢.
Then the F(r(X,¢)) constitute a natural isomorphism Fy — Fpp*.

Proor. Define a functor F:pro-C4, — L by Fj(X)=F(X) and F/(f) =
F(x(Y,9)) ' Fpp* () F(r(X,p)) for {: X — Y. For level morphisms f:X — Y we
have F([f]) = F(r(Y.9))" Falp" (D) F(x(X, 9)) = F(x(Y, )" Flg* (£) F((X, 0))
— F(r(Y, ) " Flp" (DK(X,0) = F(e(Y,0) " F(x(Y,g)f) = F(£) = Fu([f]). By the
uniqueness of pro-extensions of functors living on C4 we see that F/ = F,.

O

LemMa 5.7. Let & C % and 9, # C €(cfnt) be full subcategories such that
G H CF,F:str-Cy — L be a functor and G : pro-Cy — L resp. H : pro-C, —
L be pro-extensions of Fly.c, resp. Flg.c, Let A1,Ax,A3e F, A}, Ay, A€ 9
and ¢, : A] — A; be cofinal functors such that F is admissible with respect to ¢,, ¢,,
@5 For each pro-morphism §: X1 — Xz between inverse systems X; indexed by A;
define a morphism E(F,G,p,,0,)(f) : F(X1) — F(Xz) in L by

E(Fv Ga ?1; ¢2)(f)
= F(r(X2, 02)) ' G([r(Xa, 0)]ilr (X1, 01)] ) F (x (X, )

(1) For any morphism f:Xy — X, in str-C which admits a morphism
' 07 (X1) — ¢5(Xz) in str-C such that v(Xa, 0,)f = f'v(X1,9,) one has

(2) If g: Xy — X3 is pro-morphism and Xj is indexed by As, then
E(F7 Ga ¥, (03)(Q)E(F, Ga §017¢2)(f) = E(F7 Ga ¢17€03)(gf)

(3) If Ay =A5 =B and y : B — B is a cofinal functor such that B' € # and
F is admissible with respect to \, then

E(F, G,01,0,)() = E(F, H, 01, p290) ().
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Proor. (1) follows from
E(F, G, 91, 0)(f])
= F(x(X2,0,)) " G([r(Xa, pa)|[f][r (X1, 00)] ) F(r(X1, 1))
= F(r(X2, )" G(I'DF(r(X1, 1)) = F(r(Xz, 0,)) " F(E)F (X1, ,))
= F(r(Xs,02)) " F(r(Xe, p2)) F(f) = F(1).
(2) is obvious and (3) follows from Lemma 5.6. O
Tueorem 5.8.  Let F :str-Cy ) — L be a functor such that all projection
reindexers in str-Cy(.p are contained in INV(F) and each Fly. ¢, has a pro-

extension F, : pro-C4 — L (which is unique by Theorem 5.5). Then F has a unique
pro-extension.

ProOF. By Proposition 5.3 it suffices to prove the existence of a pro-
extension. We use Lemma 5.7.
For a morphism f: X; — X, in pro-Cg .4y, where X is indexed by A4;, define

F(f) = E(F7FA1><A277Z,{11,A257[,24],A2)(T) : F(Xl) —>F(X2)

where 7!y , : Ay x Ay — A; denotes the projection which is cofinal. Note that
% C % is the full subcategory having the one object 4| x Aj.

Claim 1: For A;=A,=A we have F([f])=F(f) for any morphism
f:X; - X; in C*.

Proor. Let 7:4xA— Ax A be the functor exchanging coordinates.
Set £ =r((x} )" (Xa), 7)(x},) () estr-C((x} )" (Xa),7((x} ) (X2))). Since
Ty 4T =75 4 We have

(X, 7y ) = (7 0) " (Y), 0) (7o) (Or(X, 7y )
= r((n,lq,A)*(Y)v ‘L')l‘(Y, n/lél,A)f = I‘(Y, nzzcl,A)f'
Lemma 5.7 proves Claim 1. ]

Claim 2: The above definition yields a functor F : pro-Cy ) — L.

Proor. Claim 1 shows that F([id]) = id. Let g: X, — X3 in pro-Co(cnyy. We
show that F(gf) = F(q)F(f). Let 77 : Ay x Ay x A3 — A; x A; and p': Ay x A3 x
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A3z — A; denote the projection functors which are cofinal. Using Lemma 5.7 we

see that
F() = E(F, Fa,rxay 0% ") (D),
F(8) = E(F, Fayayeas; 07, 0°)(),
F(gf) = E(F, Fayapeas, p’sp")(D)-
This shows that F(gf) = F(g)F(F). O

Claim 3: Let X be an inverse system indexed by 4, ¢ € ¥(B, A) be any (not
necessarily cofinal) functor and r =r(X,¢) : X — ¢*(X) the induced morphism.
Then F([r]) = F(r).

ProOF. Define ¢y = (p x idB)ABniB :AXx B— Ax Bwhere Ap: B— BxB
is the diagonal functor. Then ¢n} 5 =7} g With s=r((n) 5)"(X),¥):
(75)"(X) — ()" (X)) = (22 )" (0" (X)) we obtain  r(p*(X), 2 ) —
st(X, 7y p). Lemma 5.7 shows F([r]) = F(r). ]

Claims 1-3 prove F ([f]) = F(f) for all morphisms in str-Cg(.z) since we have
f =f"r(X,ind(f)) with a level morphism f*. ]

REMARK 5.9. Theorem 5.8 can be generalized to functors F :str-Cs# — L
where F C €(cfnt) is a full subcategory such that 4 x B e & whenever 4, Be F.

An interesting question is whether II : str-Cy () — pro-Co ey is a local-
ization at reindexers in str-Cy .4, We conjecture that it is not. A first indica-
tion is

PrROPOSITION 5.10. Let & C €™ be a full subcategory such that all A e F
are totally preordered with respect to the induced preordering. Then I1 : str-C57 —
pro-Cs is not a localization at reindexers in str-C .

Proor. Let Z, denote the category having one object * and two morphisms
0, 1 which are composed by 1o1=1 and Oopu= o0 =0. Define a functor
0O :str-C5» — Z, by setting for each morphism f = (¢, ")

of) — {0 ¢ is not weakly cofinal

1 ¢ is weakly cofinal
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That this is in fact a functor can be seen as follows. Let ¢ € (B, A), Y € €(C, B).
It is obvious that if ¢ is not weakly cofinal, then ¢ o/ is not weakly cofinal, and
if ¢, Y are weakly cofinal, then ¢ oy is weakly cofinal. We claim that if  is not
weakly cofinal and B is totally preordered and 4 has no maximal element, then
@ oy is not weakly cofinal. There exists S, € B such that B(y(y),f,) = & for all
ye C. Since B is totally preordered, we have S, > y(y) for all ye C. More-
over ¢(f,) is not a maximal element so that we can find oy e 4 such that
A(p(fy),0) = &. Choose o) > oo, p(fy). If ¢ oy were weakly cofinal, we could
find y, € C such that p((y,)) = o;. But then ¢(f,) = o(Y(yy)) = o1 > a9 which is
a contradiction.

Assume IT:str-C» — pro-C» were a localization at reindexers in str-Cg.
Since all these reindexers are contained in INV(®), there is a unique functor
®':pro-Cs# — Z, such that @' oIl = ®. This implies that all morphisms in
str-C» which induce isomorphisms in pro-Cz (“II-isomorphisms™) are contained
in INV(®). But this is not true because there exist II-isomorphisms having
no weakly cofinal index function. For example, choose any object X of C, any
AeZ and any constant functor ¢: 4 — A. Let [X], be the inverse system
indexed by A4 such that all X, =X and all bondings are identities. Then
(o, (f. =idy)) : [X], — [X], is a Il-isomorphism not contained in INV(O®).

O

6. Pro-extensions of Functors on str-C

THEOREM 6.1. Let F :str-C — L be a functor. Then the following are
equivalent:
(1) F has a unique pro-extension.
(2) F has a pro-extension.
(3) F satisfies the shifting condition and INV (F) contains all standard cofinite
reindexers.
4) F |str-CzJ<,,n/,f,m> has a pro-extension (which is unique by Proposition 5.3) and
INV(F) contains all modified cofinite reindexers.
In particular, F has at most one pro-extension.

Proor. (1) = (2) = (3): Obvious.

(3) = (4): By Proposition 5.3 Flyc,
complete the proof it suffices to show that all reindexers having the form r =
r(X,n4) : X — 7}(X) are contained in INV(F). Define a functor 1: 4 — A x N,
1(a) = (o, 1). Let s =r(n}(X),1) : 75 (X) — 1" (7% (X)) = X. We have sor =id and
id > ros. This implies that F(r) is an isomorphism whose inverse is F(s).

has a pro-extension. To
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(4) = (1): Let F : pro-Cy(ora, iy — L be a pro-extension of F ‘str—C{,(m-d.dm'
Define F by F(X) = F(X) for the objects; for the morphisms f: X; — X; set (cf.
Lemma 5.7)

F(f) = E(F,F,uy 1) ()

It is obvious that F is a functor. We show that it is a pro-extension of F.
Let f be a morphism of stryes-C. Then r(Xz,,u;,Z)f = P’(f)r(Xl,,u;,l) so that
F([f]) = F(f).
For an arbitrary morphism f = (¢,f*) in str-C we split ¢ = o @ where
n:AXB— A denotes projection and ¢: B— A x B, ¢(f) = (p(f),p). This
induces a splitting

f= f(n.(ﬁ) o I‘(X, 77,’).

r = r(X, 7) is a reindexer, hence [r] is an isomorphism in pro-C so that F([r]) is an
isomorphism.

f(r,3 = (9,f7) is @ morphism of stryg-C since ¢ is an embedding. Choose any
Po € B and define a functor 1: 4 — A x B, 1(a) = (o, ). We have n o1 = id, thus
1*(n*(X)) = X. Letting s = r(z*(X),1) : #*(X) — X, we obtain sor = id so that [s]
is the inverse isomorphism to [r]. Since : is an embedding, s is a morphism of
stre-C so that F(s) = F([s]) which is an isomorphism. We have F(s) o F([r]) =
F([s]) o F([r]) = F([id]) = F(id) = F(s) o F(r), hence F(|r]) = F(r). This yields

E([f]) = F([fp)]) 0 F([Y]) = F(fr,4)) © F(r) = F(f).

Finally let G : pro-C — L be any pro-extension of F. Then G’ = G|pr0-C9<m1_ o

is a pro-extension of Flg ¢, whence G' = F by Proposition 5.3. We infer

ord, cfnt)

G(7) = G(Ir(Xa, wy,))) ™ G([r(Xa, a2, )X, g )] ™) G([r (X, 424, )])

= F(r(Xa, 1y,)) ~ F(Ir(Xa, e Nr(Xa, sy )T F (X, ) = F(7). O

Theorem 6.1 is an extension of Proposition 5.3. The price we have to pay
in (3) is the additional condition that INV(F) contains all standard cofinite
reindexers; but note that since F satisfies the shifting condition, each standard
cofinite reindexer based on a u,: A — P(A) with A € €(cfnt) is automatically
contained in INV(F).

REMARK 6.2. Theorem 6.1 can be generalized to functors F :str-C#» — L
where & C € is a full subcategory such that Z(ord,cfnt) C # and A x Be F
whenever A, Be % . Such an % will be called admissible.
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7. Extending Functors from lev-C to str-C

Throughout this section let # C % be an admissible full subcategory and
F :lev-Cz — L be a fixed functor. A necessary criterion for the existence of a
pro-extension is the existence of an extension of F to str-Cs D lev-C4. Since
functors on str-C4 have at most one pro-extension, we have a 1-1-correspondence
between pro-extensions of F and extensions of F to str-Cs which itself have a
pro-extension. A characterization of pro-extensible functors on str-Cs was given
in Theorem 6.1.

For each extension F of F to str-C» and each morphism ¢ : B — A4 in Z# we
obtain a natural transformation

A(p) = Ap(p) : Flea — Flerop*,  Alp)x = F(r(X,9))
such that
(7.1) Alpo)x = AW),.x o Alp)x for all pe F(B,A), y e 7(C,B).

Any collection A = (A((p))wemm(,;) assigning to each morphism ¢ : B — A in
Z a natural transformation A(g) : F|cs — F|cs 0 ¢* such that (7.1) is satisfied
will be called an extensor for F.

Given an extensor, define for each morphism f = (¢,f*) : X — Y in str-C»
FA(f) = F(f") o Ap)x : F(X) — F(Y).

This yields a functor Fj : str-C5# — L which is an extension of F. Moreover we
have Fy, = F and Ap, = A. This means that there is 1-1-correspondence between
extensions F of F and extensors A for F.

Examples of extensors occur in the context of the homotopy limit (see e.g.
[1, Ch. XI §3.2], [4, §4.3] although (7.1) has not been considered there). A
necessary condition for Fp having a pro-extension is

(7.2)  A(p) is a natural isomorphism whenever ¢ is a cofinal functor.

This reflects the fact that a necessary condition for the existence of a pro-
extension of a functor F on str-Cs is

(7.3) F(r) is an isomorphism whenever r is a reindexer.

It is not known to the author whether this condition is sufficient (this would
imply that IT:str-C# — pro-C# is a localization at reindexers which appears
doubtful in the light of Proposition 5.10).
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This indicates that the concrete construction of the homotopy limit on
Ho(pro-SS) in [4, §4.3] contains a gap®. In [4] one finds an explicit construction
of a functor Ex™ :1ev-SSy (o, i) — Ho((pro-SS)f) which is claimed to have a
pro-extension to pro-SSg (4, ). An extensor A for Ex® is constructed in [4,
(4.3.3)]; it satisfies (7.2). What is missing is the verification of (7.1) and a proof
of either that (7.3) is sufficient for the existence of a pro-extension or that ExY
satisfies the shifting condition. Fortunately this gap is not dramatic because the
universal construction of the homotopy limit on Ho(pro-C) in [4, §4.2] is correct.

8. The First Derived Limit on pro-G

We begin by reviewing the definition of the first derived limit of an inverse
system X: A — G given by Bousfield and Kan [1, Ch. XI, §6.5] as the coho-
motopy set 7! (IT*X) of the cosimplicial replacement IT*X of X. The latter is
defined for inverse systems in arbitrary categories C with products. It consists of
objects I[1"X € C, n > 0, and coface and codeneracy morphisms. With 4, = {u =

(ap <= a; <= - &L a1 & ay,) | a; € ob(A),u; € mor(A)} we have

X = [] Xu  Xu=X(a0) = Xy
ue A,

This construction produces a functor IT* : lev-C — ¢C = category of cosimplicial

objects in C (see [1]). 7! is a functor from ¢G to the category Sety of pointed sets

and Bousfield and Kan define
lim' = 7' o IT* : lev-G — Sety.

IT* has a straightforward extension to str-C. In fact, each f = (p,(f)) €
str-C(X,Y) induces a cosimplicial morphism

I f: "X - 1y

which consists of the unique morphisms IT"f making the following diagrams
commute for all v = (b il by a2 b,) € By:

X Ty

° Also the proof of [3, Theorem 4.1] contains a gap. The “naturality properties” of the homotopy limit
do not apply to diagrams which commute in the pro-category.
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Hence the original liin] : lev-G — Sety from [1] has a natural extension
lim' = 7' o [1* : str-G — Sety.

1

Boiling down the definition of n' to IT*X gives us explicit formulae. Set

ZIN'X = {(x,) e I'X | V(u1,u2) € Ay 2 puy (x0,)x, L x,, = €}

uyuy

and define an operation of IT°X on ZIT'X by

(9a) - (xu) = (gaoxupu(gm)il)

where u : @y — a. Then #' (IT*X) = lim' X is orbit set of this operation. For the
morphisms we have

ljﬂll((pu (fb))([(xu)]) = [(fbo(x(ﬂ(v))]

where v : by — by.
1£n1 : lev-G — Sety has a topological description based on the homotopy limit
(see [3], [4]). On lev-G one has a natural isomorphism

lim' ~ 7 o holim o Ho o ®®
s

where holim : Ho(lev-SS) — Ho(SS) is the homotopy limit, Ho : lev-SS —
Ho(lev-SS) the quotient functor, ®: G — SS a suitably defined functor and
@’ : 1ev-G — lev-SS the canonically induced functor. There exists an extension'®
of holim to Ho(pro-SS); this induces a pro-extension of 1@1. Unfortunately the
extension of holim is not concrete enough to understand what the “topological”

1

pro-extension of lim' does with non-level morphisms. As a compensation we

establish the purely algebraic

THEOREM 8.1. 1£n1 : str-G — Sety has a unique pro-extension liin1 : pro-G —
Seto.
For the proof we need a modified description of 1}311 X. Let
A, = {ue d,|ap,...,a, are n+ 1 distinct objects},

"X = H X,

ued,

ZI'X = {(x,) e ITI'X | V(u1,12) € A3 2 pu, (x0,)X, ) x,, = e}.

Uy

107t is adjoint to the inclusion Ho(SS) — Ho(pro-SS) and in that sense unique up to natural iso-
morphism.
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The canonical projection 7:II'X — II'X restricts to 7:ZIT'X — ZIT'X.
Moreover, the operation of IT°X on ZI1'X obviously restricts to an operation of
I1°X on ZIT'X defined by the same formula as above.

Lemma 82. If Ae %™, then #:ZII'X — ZII'X is a bijection such that

((9a) - (xu)) = (9a) - A((x0))- If (ga) - 2((xu)) = 7((xy)), then (ga) - (xu) = (xp).
Therefore 7 induces a bijection 1&11 X — ZII'X/m°X.

ProoF. It is an easy exercise to show that if 4 does not have maximal
elements, then each diagram in A4 has an outer cone. Let 4] denote the com-
plement of A, in A.

For u:a; — ap we define an internal diagram (u) = (ao, a1; u, idy,, id,, ). Let
(b;vg : b — ap,v; : b — ay) be an outer cone for (u); note that vy = vy if ap = ay.
Any such outer cone will be called a resolution of u. We have vy, v; € A; and for
all (x,) e ZIT'X as well as for all (x,) e ZII'X the following holds:

(81) Xu :xvopu(xb‘l)71

This is true because (u,vi)€ Ay (resp. (u,v;) € Ay for (x,)e ZII'X) so that
€= pu(xvl)xu_vllxu = pu(xvl)xlzllxu-

Claim 1: 7: ZII'X — ZII'X is injective.

ProoF. Let (x,) € ZII'X. Then (8.1) shows that the coordinates x, for
u e Aj are uniquely determined by the coordinates x, with v €A. OJ

Claim 2: For (x,) e ZII'X and ue A, u:a— a, define x, :xvp,,(xv)_1
where (b;v:b — a) is a resolution of (u). This definition is independent on
the choice of the resolution and thus produces a canonical extension function
12 ZIT'X — IM'X (i.e. with 7 = id).

Proor. Let (b';v':b" — a) be another resolution. Choose an outer cone
(;w:c—b,w:c—b' s:c—a) for (a,b,b’;v,0"). We have (v,w) € 4, so that
e = po(x)x;,\x, = py(x)x; 1 x,. Since pup, = puw = p, we obtain
xspu(xs)il = xvpv(xw)pu(pv(xw)71x;1) = xvpu(xv)71~

Similarly xsp,,(xs)f1 = xvfpu()cvr)*1 which proves the claim. O

Claim 3: «(ZI1'X) ¢ ZII'X so that 7 : ZIT'X — ZIT'X is bijective.
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Proor. Let (x,) =1((xy)). For (ug,u;) € A> choose an outer cone (b;v; : b —
a;) for (ag, a1, ax; up, uy, uouy, id,,, id,, , id,,). This yields resolutions for uy, w1, uou;.
Using (8.1) resp. the definition in Claim 2 we obtain

-1 —1y-1 -1
Puo(xm)xuolulxo Py (X0, Puy (X03) ) Xy Puguy (X)) ™ X Py (X)) = €. [J

Claim 4: 7#((g,) - (x4)) = (94) - #((x,)). This is obvious.
Claim 5: If (ga) - 7((x0)) = 7((x;,)), then (ga) - (xu) = (x;,).

u

Proor. For ve A, v:a; — ay, we have guoxvpv(gal)f1 =x,. For an
arbitrary u € Ay, u:a; — ap, choose a resolution (b;v;: b — a;). Then

—1 -1 —1
gaoxupu(gul) = gaoxvopu(xvl) pu(gul)

!

-1 ~1 -1
= GayXoo Poo(9) " Puo(96) Pu(X0) ™ Pu(9ay) ™ = x;opu(x;l) =Xy
where we used p,, = pupy,- O
O

ProorF oF THEOREM 8.1. We apply Theorem 6.1 by showing that the
conditions in 6.1 (3) are satisfied.

(a) Let f = (p,(f»)) and g = (¥, (g95)) be morphisms X — Y such that g >, f.
We show that lim' g = lim' f.

We have

tim" g([(x)]) = [(9m (Xy))] = [(fouPes, (Xp))]:
For the pairs (4, Y(v)), (¢(v), 76,) € A2 we obtain
Poay (X)) X2,y ¥en, = € = Poto) (Xay, ) X0z, Xot0)-
p(v)tp, = THY(v) implies
Py (Yp(0) = X7, Xy p0) = Xop) Xo(0) Pot) (¥, )-
Thus

fbopfbo (x(np v)) fbo( 7:,, )fbo (xw v))fbop(/z (bel )
= fbo (xf/,o ) _lfbo (xw(v) )%fbl (xrbl )

Setting z, = f3(x;,)”' we see that
(fbopfho (x(l//(v))) = (Zb) : (fbo(xv))'
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This means

lim'" g([(x)]) = [(z) - (oo ()] = [(fi ()] = lim" £([(x,)]).

(b) Let r=r(X,py): X — pX be the standard cofinite reindexer for an
inverse system X over 4 € €"™*. Writing u = u, we have explicitly

WX = (Xa = Xua, DA, A0) = Pu(Ar,A))s
r—= (ﬂ, ldz\ﬁ,A : !,A — XA)
tim" r([(x)]) = [(%ua,.00)]-

Adapting the technique used in [10] for the case of an inverse system X of abelian
groups indexed by an ordered set 4, we shall construct a function

sh: ZIM X — ZIm'x

which will induce an inverse for lgll r. For ve A, v:a — ag, let (v), C (v)
denote the diagram (a;;id,,). Then (v),(v); € P(4). Note that if ve 4], then
(v) ¢ P(A) unless v = id,. For (ya, a)) € ZI1'u*X set

— —1
(8.2) Vo = V@), ) LoV (@), 0)) -

We observe that also y;, is well-defined and yields y;, = e. Define

(8.3) S (vana) = (7,) e TI'X.

We show that §'((ya, ) € ZIT'X, ie. py,(F,,) P50 7, = e for all (v1,v) € A,
where v :a; — ap, vy : ay — a;. For i,j€{0,1,2} define diagrams i = (a;;id,,),
g = (ai,qf;vij,idai,ida/) where i < j and Vo] = Uy, V12 = U2, Ugp = U102, w = (ao,al,
a; vy, vy, V102, idy, , idy,, id,,). Since (y(a,,ay)) e ZIT'yw*X we obtain 6 equations
Puy(¥(012,01) ¥ (012,00 Y(01,0) = € (nOte p(o1 0) = Puy)
2) Pugn (¥ Y12, 02)))’(0112 0)Y(02,0) = ¢ (note D(2,0) = Puovy)

1)
)
3) P (¥01212)¥oia a2y =€ (nOte pa 1y = puy)
)y
)
)

4) y(o12,00)Yoia, 1y Y11 = € (note poi,1) = pu, = id)

5) Y12,02 ¥ o122 Y022 = € (nOte p2,2) = pig,, = id = id)

6) Y1212V 122 Y122 = € (n0te p(122) = pu,, = id)
From 3)-6) we derive

3') Pun (V(012,12)) Py (Y012 l))71Pv1>(J/(1_,l)) =e

) pa(yor2 >)Pm(y< 1))7117@0@(_1,9) =e

5') pvovl(y(O_ 02)) Pegwy (Y (012, g))flpuovl(y(_zvg)) =e

6') onvl(y(L ))pLOLI(y( 12 2))71onv1(y(1_,g)) =e
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From 1) and 4’), 2) and 5’), 3’) and 6’) we infer
_ 1
1") Yoi2.0Y010 = (y<012 1) Pu(YeL)
I 1
2") Yoia.0 Y02, 0= pbobl(y(OIZ ) Pue (¥©2,2)

3") P (Poi2)” Po(Vi2.1) = P (Y012,2) ~ Puoen (V12,2))
In 1”) we replace y(o%z o Via 2”) and obtain

Yo1,0) = Pbo(y( 21))7117”0@(%1))

") and obtain
2)

4”) onvl(J’(m,g)) pb‘ovl(y(OZZ) 0_
In 4”) we replace Puom(y(mz )~ ' via
1 _
5") po(Yi12,1)” plo(y(12l)ptobl( Y12.2) " P (¥(02.2) Vigh.0) Y(01,0) =
on(y(m,y) Pm( Yot 1)
which produces

6") Poy(¥12.1) Prors ($(12.2)) ™ Prors (¥02.2)) ¥ om0y Y010 P (V(01.1)) T = €

We have pbo( Y(a2,1) ) LoL1( Y(12,2) ) = pvo(y(j l)Pn(}’(g,g))_l) = pvo()_/vl)»
P (P02.2) Y (gh.0) = Fugwr> V(01,0 _)pvo(y(OI y) ' =7,, thus

)
37

— —1 =
pvo(yvl)yvovl yU() =e

Using Lemma 8.2 we obtain the desired function s':ZI'x*X — ZII'X as
s' = 77'5'. Note that for all ue A; = A, U {id,|a e A}

(8.4) SU (@10 = Fu = Pl ) Pul (. 0)) -

This is true for u = id, simply because s'((y(a,ay)) € ZII'X. Now define
sO 0% X — 110X, SO((QA))u =Y(a)

where («) denotes the diagram (a;id,). We have

§'(g-y)=5"9) -5 (»)

since
- . -1
sl(g ' y)u = Sl((ngy(Al,Ao)p(A],Ao)(gAl) ))v

—1 —1\—-1
90 Y((0)©)0) P((), 000) () Po(G0), Y (0)0)) P((0), 0)) () )

-1 -1 -1
= 90, V(000 P d0)  Po(90) Po(Y(@)w)) Pe(9),)

—1 —1 — —1
= G0), V(@) eV ()w)) Pe(9w),) " = 9wy, FePo(9(w),)
= (s%(g) - 3' (),

Using again Lemma 8.2 we see that

s'(g-y)=5"(9) - 5" (»)
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so that s' induces
o:lim' 1*X — lim' X.

We have

o(lim' r([(x,)]) = o([(Xuar.a0)]) = I8 (Xuar, a0))]-
For ve A; we have

5" (Xu(ar,80))o = Xu(©), 0 2o (K0, )~ = Xo
so that
a(s' ((vuar,a))) = (%))
whence s'((x,(a,.a,))) = (xu). This proves
golim' r=id.
For all (Aj,A¢) € P(4), we have u(A;,A¢) € A; so that by 8.4
lim' r(a([(y(a,.a0)]) = im" r([s" ((yar,a0))) = (8" ((F(ar.80) uiar a0))]

= [(Fuar,a0)]-
Setting
(8.5) 28 = VA, () € Xeua) = Xua = 7 (X)y,
we shall show
(8.6) (za) - (Vara0) = ((Fuar,a0))
which proves
lim' roo = id

and thus shows that 1<i1_n1 r is a bijection, i.e. an isomorphism in Sety.
We set a; = pA; and u = u(A;,Ay) : a1 — ap. Then (8.6) means explicitly

—1 —1
(8.7) Y (80,(a0)) Y (A1, 80) P (81, 80) (Y (81, (@)~ = Yi(w), (a0)) Pu(V (@), @) -

This will be verified by transforming it into equivalent equations. For
(a;) C (u) C Ay we obtain

—1 —1
V(A1 @) Yy, @) Y (@), (@) = P, (@) (YA, @) Yiar, @) Y@, @) = €

-1 —1
Pu(YAr, @) V(A (a0) Y (@), (a0) = Pl(w), @) Va1, @) YAy, (a0) Y ((w), (a0)) = €
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Inserting y((),(4)) into (8.7) yields (note p(a, a,) = Pu)

1
Y4, (ao))y(Al.,Ao)p“(y(Al-,(01)))

= V(a1 () PV w) " PuVianw) PulViar @))

which is equivalent to

(8.8) V(Ao () Y (A1, 80) = V(A1 (a0))-

For (ap) C Ag C Ay we obtain

y(AhAo)y(iAll , (a“))y(Aoy (a0)) = P(Ao, (a0)) (y(Al,A()))y(le, (al>))y(A()~, (a)) = €
which proves (8.8). O

An immediate consequence of Lemma 5.4 is

THEOREM 8.3. Let A € %(cfnt). Then 1&1’11 : G — Sety has a unique pro-
extension l‘iLn1 : pro-G 4 — Sety.

Whether our functor 1£n1 : pro-G — Sety coincides with the holim-based pro-
extension remains open. The question is complicated by the dependency of holim
on the choice of a closed model structure on pro-SS (cf. [7]). However, our lim'
has the following characteristic feature.

THEOREM 8.4. Let 5” denote the category whose objects are short exact
Sequences 0—A'L A iR A” — 0 in pro-G and whose morphisms y : (0 — AL
AL A”) — (0 — B LB B”) are triples y = (y',7,7") of morphisms y' : A" —
B, y:A—B, y": A" = B” in pro-G such that the following diagram commutes:

0 Al if A i A 0
1
0 B’ B B” 0
g’ g

For i =1,23 let Comp;: ¥ — pro-G be the functor selecting the i-th component
of short exact sequences and morphisms between such sequences.

There exists a natural transformation 6 :1im o Comp; — lgll o Comp; such
that the following sequence is exact for each A€ &

lim §’ lim § lim! §' lim' §

0—0b l1mA —>l1mA—>11mA —>11m A —>l1m A—>l1m A”
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ProorF. We do not go into details. The same arguments as in [9, §15.2]
reduce the general case to short exact sequences of level morphisms where
everything is well-known. Only [9, Lemma 15.12] requires a new proof. This
is a routine exercise requiring to use the construction of ¢ :lim o Comps —
lgn1 o Comp; as presented e.g. in [8, Ch. II, §6.2, Proof of Theorem §|. O

We finally consider the case 4 = N where

ZHIX = {(x(n,m)) |Vn <Sm<p: P(m,n) (x(m,p))x(_n}p)x(n,m) = 6’}

with x(, ,,) € X,,. Define

[}
0: ZI'X - X = [[ X, O((x(um)); = X(ii11)-
i=1

It is known that © is a bijection. The action of I1°X on ZIT'X transforms via ©
into an action of I1°X on I1°X given by

((gi) ) (xl/))n = gnx;;p(n-&-l,n)(giwl)il’

This yields the well-known elementary description of liin1 X for inverse sequences
from [1, Ch. IX, §2.1]. We denote it as LIM'X. It comes as a functor
LIM' : GN — Sety: Each level morphism f = (f;) : X — Y induces T1°f : TI°X —
n°yY, T1°f((x!)) = (fi(x!)), which induces LIM'f : LIM'X — LIM"Y, LIM 'f([x'])
= [I1°f(x")].

For a morphism f = (¢, (f;)) in str-Gx let us define I1°f = Oy (ZI1'f)O4" :
M°X — I°Y. Explicitly

p(i+1)—

1
r(x) = [I /rl/(x)
J=o(i)

For level morphisms we have I1°f = T1°f. This implies
(1) LIM" extends naturally to str-Gx by setting

A o(i+1)—1 )
LIM,£([x']) = [If(x")] = IT 7irl(x)
J=0(i)

(2) © induces a natural isomorphism O’ : liénl — LIM]_ between functors on
str-Gn.
We conclude that LIM! has a unique pro-extension LIM' : pro-Gnx — Sety which

coincides with the unique pro-extension of LIM] .
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9. The Derived Limits on pro-AG

Let lim” :lev-AG — AG be the n-th derived limit functor which can be
represented as lim” = 7" o IT1* where #" is the n-th cohomotopy group!! on cAG
(cf. [1, Ch. XI, §6]). The natural extension of IT* to str-AG generates a natural
extension lim” : str-AG — AG. In [10] and [9] it is proved that lim” : str-AGg —
AG has a pro-extension lim" : pro-AGy; — AG. Using the methods of this paper
and the technique of [10], [9] one can prove the stronger

THEOREM 9.1.  lim" : str-AG — AG has a unique pro-extension lim" : pro-AG
— AG.

The crucial and difficult part of the proof is to show that each standard
cofinite reindexer r induces an isomorphism lim” r. This was proved for arbitrary
reindexers in [2, Lemma 6.3]. Moreover we have

THEOREM 9.2.  The functors lim" : pro-AG — AG of Theorem 9.1 are the
right derived functors of lim : pro-AG — AG.

This has been proved in [9] for the case of directed preordered index cat-
egories by showing that the functors in question form a universal connected
sequence of functors whose connecting homomorphisms come from the short
exact sequence IT*(%) of cochain complexes associated to any short exact se-
quence & in str-AG. The same proof applies in the general case.

REMARK 9.3. In their role as right derived functors the lim” : pro-AG — AG
are up to natural isomorphism uniquley determined by lim : pro-AG — AG, but
this does not mean eo ipso that each individual lim" : str-AG — AG (let alone
lim" : lev-AG — AG) has a unique pro-extension.

We conclude with

THeOREM 9.4. Let A€ €(cfnt). Then lim" : AG? — AG has a unique pro-
extension 1im" : pro-AG, — AG.

"For G e cAG, n"(G) is defined as the n-th cohomology group of G considered as a cochain complex
with coboundaries 6" = Y,(—1)'d’, d' the cofaces of G.
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