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KÖHLER THEORY FOR COUNTABLE QUADRUPLE

SYSTEMS

By

Hirotaka Kikyo and Masanori Sawa

Abstract. From the late 1970s to the early 1980s, Köhler developed

a theory for constructing finite quadruple systems with point-

transitive Dihedral automorphism groups by introducing a certain

algebraic graph, now widely known as the (first) Köhler graph in

finite combinatorics. In this paper, we define the countable Köhler

graph and discuss countable extensions of a series of Köhler’s works,

with emphasis on various gaps between the finite and countable

cases. We show that there is a simple 2-fold quadruple system over Z

with a point-transitive Dihedral automorphism group if the countable

Köhler graph has a so-called ½1; 2�-factor originally introduced by

Kano (1986) in the study of finite graphs. We prove that a simple

Dihedral l-fold quadruple system over Z exists if and only if l ¼ 2.

The paper also covers some related remarks about Hrushovski’s con-

structions of countable projective planes.

1. Introduction

A t-design is an incidence structure consisting of a set V of points with a

collection B of k-element subsets of V , called blocks, such that the number l of

blocks containing a t-element subset T of V is independent of the choice of T ;

for example, see [18, 21]. This is often denoted by t-ðv; k; lÞ if V is a finite set of v

elements, and by t-ð@0; k; lÞ if V is a countable set. More generally, Cameron and
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Webb [4] defined ‘infinite t-designs’ allowing uncountable sets V and removing

the assumption of finiteness of k and l, but in this paper, we mainly focus on

countable t-designs with k, l finite. A 3-design with k ¼ 4 is a l-fold quadruple

system (QS) and in particular, a one-fold QS is called a Steiner quadruple system

(SQS). A t-design is simple if B contains no repeated blocks. Some of the

standard terminology in ‘Design Theory’, not explained but used in this paper,

can be found in [2].

There are some necessary ‘divisibility conditions’ for the existence of a finite

t-ðv; k; lÞ design, namely, that

l
v� i

t� i

� �
1 0 ðmod

k � i

t� i

� �
Þ for every i ¼ 0; 1; . . . ; t� 1:ð1:1Þ

A famous conjecture (cf. [15]) is that the divisibility conditions are also suf-

ficient, with some possible exceptions. This conjecture was a long-standing open

problem, until Keevash [14] recently announced the proof of the conjecture.

After the work of Keevash, constructions of t-designs have received special

attention in combinatorics and incidence geometry, since Keevash’s theorem is

non-constructive.

On the other hand, countable t-designs have received attention in model

theory and related areas. Köhler [18] first proved an existence theorem for

countable t-designs with l ¼ 1. Under some mild assumptions, a result by

Cameron and Webb [4, Proposition 7.2] also implies that there exists a simple

countable t-design for every t, k, l with t < k. Thus, as in the finite case, to

establish constructions of simple countable t-designs is a challenging problem.

There are many achivements for t-ð@0; tþ 1; 1Þ designs and 2-designs in general

[7, 8, 9, 24]. However, very little is known on constructions of countable t-designs

for tb 3 and lb 2, as remarked in the textbook Design Theory by Beth,

Jungnickel, and Lenz [2]; see also [4, p. 80].

In the infinite case, a series of influential works on quadruple systems was

conducted by Köhler from the late 1970s to the early 1980s. For example, Köhler

[19] developed a method for constructing finite SQS with a point-transitive

Dihedral automorphism group, by introducing the concept of the ( first) Köhler

graph and proving the equivalence between one-factors and Dihedral SQS. In

[17], Köhler also introduced the notion of di¤erence cycles and thereby con-

structed simple 3-fold QS. To discuss countable extensions of a series of Köhler’s

works is a main aim of this paper.

This paper is organized as follows. In Section 2 we briefly review the original

Köhler theory. Section 3 is the body of this paper. In Subsection 3.1, we define
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the countable Köhler graph G and study the structure of G, with emphasis on

various gaps between G and finite Köhler graphs. In Subsection 3.2, we prove

that if a ½1; 2�-factor of G is explicitly constructed, then so is a Dihedral simple

2-fold QS. We also prove that a Dihedral simple l-fold QS over Z exists if

and only if l ¼ 2. This is a remarkable gap between the finite and countable

cases because finite Dihedral simple l-fold QS actually exist for l ¼ 1; 3. Sec-

tion 4 is the Conclusion where discussions and further remarks about Hrush-

ovski’s construction ([11]) will be made; for instance, see Propositions 4.7 and

4.9.

As far as the authors know, this is the first paper relating to constructions

of countable t-designs with point-transitive (non-cyclic) automorphism groups

with tb 3, though there are some publications on countable t-designs with point-

intransitive automorphism groups; for example, see [5, 7]. ‘Infinite Design Theory’

is originally a part of mathematical logic, but is of combinatorial nature here and

there. To share such feelings among people in combinatorics and model theory is

an important aim of this paper.

2. The Classical Köhler Theory

It is easy to see (cf. [2]) that if a finite SQS with v points exists, then

v1 2; 4 ðmod 6Þ. Let Zv be the residue ring modulo v acting regularly on the

point set. Let sv be the automorphism of Zv defined by xsv ¼ �x, and ~ZZv be the

semidirect product of Zv and hsi which is isomorphic to the Dihedral group Dv

of order 2v. Let

Zv

k

� �
¼ fB A Zv j jBj ¼ kg:

For a subset X of Zv, let Orb~ZZv
ðX Þ be the ~ZZv-orbit of X , namely,

Orb~ZZv
ðXÞ ¼ fGX þ z j z A Zvg:ð2:1Þ

We use the notation ½z1; . . . ; zk� for Orb~ZZv
ðf0; z1; . . . ; zkgÞ. For example, for a

triple f0; x; yg A Zv

3

� �
, we have

fX j f0g t X A ½x; y�g

¼ ffx; yg; f�x; y� xg; f�y; x� yg; f�x;�yg; fx; x� yg; fy; y� xgg:

Let Tv ¼
�
½x; y� j f0; x; yg A Zv

3

� ��
. Tv contains two types of special orbits given

by
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T 0
v ¼ ½x;�x� j f0; x;�xg A

Zv

3

� �� �
;ð2:2Þ

T 00
v ¼ x;

v

2

	 
���� 0; x;
v

2

� �
A

Zv

3

� �� �
:ð2:3Þ

With the standard isomorphism fv between the additive group Zv and the mul-

tiplicative group of the vth roots of unity, each element of T 0
v (resp. T 00

v ) can be

regarded as an isosceles triangle (resp. right triangle) in the complex plane. We

also set

Qv ¼ ½x; y; xþ y� j f0; x; y; xþ yg A
Zv

4

� �� �
;ð2:4Þ

Q 0
v ¼ x;�x;

v

2

	 
���� 0; x;�x;
v

2

� �
A

Zv

4

� �
; x0

v

2

� �
:ð2:5Þ

With fv defined above, each element of Q 0
v can be realized as a ‘‘kite’’ in the

complex plane C.

Proposition 2.1 ([17, 19]). Let B A Zv

4

� �
. Then OrbZv

ðBÞ A Qv [ Q 0
v if and

only if

Orb~ZZv
ðBÞ ¼ OrbZv

ðBÞ:ð2:6Þ

Definition 2.2 (Dihedral quadruple system). A quadruple system ðZv;BÞ is

Dihedral if Orb~ZZv
ðBÞ � B and (2.6) holds for every B A B.

By the definition, a Dihedral QS over Zv admits Dv as a point-transitive

automorphism group.

The following notion was introduced by Köhler in [19]:

Definition 2.3 (Köhler graph). The ( first) Köhler graph of order v is a

finite incidence structure Gv ¼ ðVv;EvÞ such that Orb~ZZv
ðTÞ A Tv is incident with

Orb~ZZv
ðBÞ A E if T 0 � B for some T 0 A Orb~ZZv

ðTÞ, where

Vv ¼ f½x; y� j x; y A Zv; x0Gy; 2x B f0; y; 2yg; 2y B f0; x; 2xgg;ð2:7Þ

Ev ¼ f½x; y; xþ y� j x; y A Zv; 0 B f2x; 2yg; fGx;G2xg \ fGy;G2yg ¼ qg:ð2:8Þ

The graph Gv is indeed a graph in the usual sense, meaning any element of

Ev is incident with exactly two members of Vv. We remark that Tv ¼ Vv t
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ðT 0
v [T 00

v Þ. A one-factor of a graph G ¼ ðV ;EÞ is a subset F of E such that for

any vertex x A V there uniquely exists e A F for which x A e. A one-factor of Gv

covers all elements of Vv exactly once and Q 0
v covers all elements of T 0

v [T 00
v

exactly once.

The following theorem is due to Köhler:

Theorem 2.4 ([19]). Let F be a one-factor of Gv. Then

B A
Zv

4

� �����Orb~ZZðBÞ A F t Q 0
v

� �
ð2:9Þ

forms the set of quadruples of a Dihedral SQS over Zv.

Theorem 2.5 ([17, 19]). Then the following hold:

(i) Let v1 2 ðmod 4Þ. Then ðZv;Qv [ Q 0
vÞ forms a simple Dihedral 3-fold QS.

(ii) Let v1 2; 10 ðmod 24Þ. Then a Dihedral SQS over Zv exists if and only if

a Dihedral simple 2-fold QS over Zv exists.

Kleemann [16] proved a similar result for v1 0 ðmod 4Þ, where ðZv;Qv [ Q 0
vÞ

forms a non-simple 3-fold QS [16]. For instance, we refer the reader to [2,

Chapter 10] for a brief summary of Köhler’s works; see also [20] for abelian-

group-extensions of Köhler’s works.

In the next sections we develop countable extensions of a series of Köhler’s

works, with emphasis on various gaps between the originals and our countable

analogues.

3. Countable Köhler Theory

3.1. Countable Köhler Graph. Let s be an automorphism of Z defined

by xs ¼ �x. Let ~ZZ be the semidirect product of Z and hsi. As in the finite case,

we use the notation ½z1; . . . ; zk� for Orb~ZZðf0; z1; . . . ; zkgÞ. It is obvious that if

f0; x; yg A Z
3

� �
, then

fX j f0g t X A ½x; y�gð3:1Þ

¼ ffx; yg; f�x; y� xg; f�y; x� yg; f�x;�yg; fx; x� yg; fy; y� xgg:

Similarly, if f0; x; y; xþ yg A Z
4

� �
, then

fX j f0g t X A ½x; y; xþ y�gð3:2Þ

¼ ffx; y; xþ yg; f�x; y;�xþ yg; fx;�y; x� yg; f�x;�y;�x� ygg:
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Let T denote the set of all ~ZZ-orbits of triples in Z, and

T 0 ¼ f½x;�x� j x A Znf0gg:ð3:3Þ

Since Z has no nontrivial involutions, the following will be natural candidates

for countable analogues of Tv and Ev:

V ¼ f½x; y� j x; y A Z; x0Gy; 2x B f0; yg; 2y B f0; xgg;ð3:4Þ

E ¼ f½x; y; xþ y� j x; y A Z; 0 B fx; yg; x0Gy; x0G2y; y0G2xg:ð3:5Þ

It is shown by (3.1) that

T ¼ V tT 0:ð3:6Þ

Remark 3.1. In the countable case, we cannot consider triples corre-

sponding to ‘‘right triangles’’ nor quadruples corresponding to ‘‘kite quadruples’’

in the l1-space ðZ; k � k1Þ. We can understand T 0 in an intuitive geometric

language, that is, the elements of T 0 correspond to the ‘‘isosceles triangles’’ in

ðZ; k � k1Þ.

Now we shall define the countable Köhler graph:

Definition 3.2 (Countable Köhler graph). The countable Köhler graph for Z

is an incidence structure G ¼ ðV;EÞ where Orb~ZZðTÞ A T is incident with Orb~ZZðBÞ
if T 0 � B for some T 0 A Orb~ZZðTÞ.

From now on, we show G is a graph in the usual sense and then extensively

study the structure of G.

Lemma 3.3. The following hold:

(i) Let f0; x; yg A Z
3

� �
such that ½x; y� A V. Then

x0Gy; 2x B f0; yg; 2y B f0; xg:ð3:7Þ

(ii) Let f0; x; y; xþ yg A Z
4

� �
such that ½x; y; xþ y� A E. Then

0 B fx; yg; x0Gy; x0G2y; y0G2x:ð3:8Þ

Proof of Lemma 3.3. Straightforward from (3.4) and (3.5). r

Lemma 3.4. Let B A Z
4

� �
such that Orb~ZZðBÞ A E, and let T A B

3

� �
. Then B is

the only member of Orb~ZZðBÞ containing T.
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Proof of Lemma 3.4. Without loss of generality we may assume 0 A B, that

is, B ¼ f0; x; y; xþ yg satisfying (3.8). Assume T ¼ f0; x; yg. Then, by (3.2) and

(3.8),

jfC A Orb~ZZðBÞ jT � Cgj

¼ jfC 0 A ffx; y; xþ yg; f�x; y� x; yg;

f�y; x� y; xg; f�y;�x;�x� ygg j fx; yg � C 0gj

¼ jffx; y; xþ yggj ¼ 1:

The same thing holds for T ¼ fx; y; xþ yg, since

fx; y; xþ yg � ðxþ yÞ ¼ f0;�x;�yg � f0;�x;�y;�x� yg ¼ B� ðxþ yÞ:

Similarly for T ¼ f0; x; xþ yg, we get the desired result since

f0; x; xþ yg � x ¼ f0;�x; yg � f0;�x; y;�xþ yg ¼ B� x:

Switching the role of x and y also leads to the desired result for T ¼
f0; y; xþ yg. r

Lemma 3.5. If ½x; y� A V, then ½x; y� B f½x; xþ y�; ½x; y� x�; ½y; x� y�g.

Proof of Lemma 3.5. Assume ½x; y� ¼ ½x; xþ y� or ½x; y� x�. Then by (3.1),

ffx; yg; f�x; y� xg; f�y; x� yg; f�x;�yg; fx; x� yg; fy; y� xgg

\ ffx; xþ yg; fx; y� xgg ¼ q:

This is however impossible by Lemma 3.3 (i). Switching the role of x and y, we

get ½x; y�0 ½y; x� y�. r

Proposition 3.6. Each edge ½x; y; xþ y� A E is incident with exactly two

vertices ½x; y�; ½x; xþ y� A V. Moreover, the possible edges incident with a given

vertex ½x; y� A V are given by

½x; y; xþ y�; ½x; y� x; y�; ½y; x� y; x�;ð3:9Þ

with the adjacent vertices

½x; xþ y�; ½x; y� x�; ½y; x� y�;ð3:10Þ

respectively.
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Proof of Proposition 3.6. We note that

½x; y� ¼ Orb~ZZðfx; y; xþ ygÞ; ½x; xþ y� ¼ ½y; xþ y�

since

f0; x; yg ¼ �fx; y; xþ yg þ ðxþ yÞ;

f0; x; xþ yg ¼ �f0; y; xþ yg þ ðxþ yÞ:

So it su‰ces to show ½x; xþ y� A V, because ½x; y� A V by Lemmas 3.3 (i) and

(ii). Since

0 B fx; xþ yg; x0Gðxþ yÞ; x0 2ðxþ yÞ; xþ y0 2x

by Lemma 3.3 (ii), we have ½x; xþ y� A V by Lemma 3.3 (i). Moreover the

possible edges incident with a given vertex ½x; y� A V are given by (3.9), since

fx; yg [ fx; xþ yg ¼ fx; y; xþ yg;

fx; yg [ fx; y� xg ¼ fx; y� x; yg;

fx; yg [ fy; x� yg ¼ fy; x� y; xg: r

The above results also hold for finite Köhler graphs Gv (see e.g. [19] and

[2, Chapter 10]), whereas the following are not always true for Gv.

Lemma 3.7. If ½x; y� A V, then ½x; xþ y�, ½x; y� x�, ½y; x� y� are distinct

each other.

Proof of Lemma 3.7. We first claim that ½x; xþ y� B f½x; y� x�; ½y; x� y�g.
Suppose ½x; xþ y� ¼ ½x; y� x�. By (3.1), this is equivalently,

fx; xþ yg A ffx; y� xg; f�x; y� 2xg; fx� y; 2x� yg;

f�x; x� yg; fx; 2x� yg; fy� x; y� 2xgg;

which is however impossible by Lemma 3.3 (i). Thus we also get

½x; xþ y� ¼ Orb~ZZð�f0; x; xþ yg þ ðxþ yÞÞ ¼ ½y; xþ y�0 ½y; x� y�:

Similar arguments also yield that ½x; y� x�0 ½y; x� y�. r

Remark 3.8. Lemma 3.7 is not true for finite Köhler graphs Gv. In fact,

if Zv contains elements x, y with 5x ¼ 2xþ y ¼ 0 (in Zv), then ½x; xþ y� ¼
½x; y� x�.
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Let us determine the degree sequence of G. Proposition 3.6 implies that

degð½x; y�Þ, the degree of ½x; y� in G, is at most 3. To determine degð½x; y�Þ, we
only have to check whether ½x; xþ y�, ½x; y� x�, ½y; x� y� belong to V by

Lemma 3.5, Lemma 3.7 and Proposition 3.6.

Proposition 3.9. Assume ½x; y� A V. Then the following hold:

(i) degð½x; y�Þ ¼ 3 if and only if

0 B f2xþ y; xþ 2y; 3x� y; 3x� 2y; 3y� 2x; 3y� xg:ð3:11Þ

In particular, degð½x; y�Þ ¼ 2 or 3.

(ii) degð½x; y�Þ ¼ 2 if and only if

½x; y� A f½x; 3x�; ½y; 3y�g:ð3:12Þ

Proof of Proposition 3.9 (i). By Lemma 3.3 (i), ½x; xþ y� A V is equiv-

alently

x0Gðxþ yÞ; 2x B f0; xþ yg; 2ðxþ yÞ B f0; xg;

meaning 0 B f2xþ y; 2yþ xg. Similarly, by Lemma 3.3 (i), ½x; y� x� A V is

equivalently

x0Gðy� xÞ; 2x B f0; y� xg; 2ðy� xÞ B f0; xg;

i.e. 0 B f3x� y; 3x� 2yg. Switching the role of x and y, we see that ½y; x� y� A
V if and only if 0 B f3y� x; 3y� 2xg. Clearly, if any two distinct elements of

(3.11) equal zero, we have x ¼ y ¼ 0. This means that degð½x; y�Þ ¼ 2 or 3.

r

Proof of Proposition 3.9 (ii). It su‰ces to consider the case where exactly

one of the elements of (3.11) is zero. Suppose 2xþ y ¼ 0. Then, by Lemma 3.3

(i), we have

½x; xþ y� B V and f½x; y� x�; ½y; x� y�g � V:

Proposition 3.6 thus implies degð½x; y�Þ ¼ 2 and in this case,

½x; y� ¼ ½x;�2x� ¼ Orb~ZZð�f0; x; 3xg þ xÞ ¼ ½x; 3x�:

Switching the role of x and y, we get the desired result for xþ 2y ¼ 0. Similarly,

if 0 A f3x� y; 3x� 2yg, then

f½x; xþ y�; ½y; x� y�g � V and ½x; y� x� B V:
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Switching the role of x and y, we get the desired result for 0 A f3y� x;

3y� 2xg. r

Proposition 3.9 (ii) says that G does not have vertices of degree 1 or 2. This

is a gap between the structure of G and that of finite Köhler graphs Gv.

Next we discuss the connectedness of the countable graph G. We begin by

introducing a certain algebraic object introduced by Köhler in [18].

Definition 3.10 (Di¤erence sequence). Let Z ¼ fz1; . . . ; ztg A Z
t

� �
; without

loss of generality we may assume z1 < � � � < zt. The map D : Z
t

� �
! N t�1 defined

by

DZ ¼ ðz2 � z1; z3 � z2; . . . ; zt � zt�1Þ

or the image DZ is called the di¤erence sequence of Z.

Fact 3.11 (cf. [2, 18]). Let X ¼ fx1; . . . ; xtg, Y ¼ fy1; . . . ; ytg A Z
t

� �
with

x1 < � � � < xt, y1 < � � � < yt. Then the following are equivalent:

(i) DX ¼ DY ;

(ii) OrbZðXÞ ¼ OrbZðYÞ.
In particular there is a bijection between N2 and the set of Z-orbits of triples in Z.

The following is a refinement of Fact 3.11:

Proposition 3.12. Let X ¼ fx1; . . . ; xtg, Y ¼ fy1; . . . ; ytg A Z
t

� �
with x1 < � � �

< xt, y1 < � � � < yt. Then the following are equivalent:

(i) DX ¼ DY or DX ¼ Dð�Y Þ;
(ii) Orb~ZZðXÞ ¼ Orb~ZZðYÞ.

In particular there is a bijection between fðx; yÞ A N2 j yb xg and T.

Remark 3.13. Let

G ¼ fðx; yÞ A N2 j y > xg:ð3:13Þ

There is a bijective map h : G ! V defined by

hððx; yÞÞ ¼ ½x; xþ y�:ð3:14Þ

Let us briefly check that h is surjective. Let ½z;w� A V. Recall (3.1), namely

fX j f0g t X A ½z;w�g

¼ ffz;wg; f�z;w� zg; f�w; z� wg; f�z;�wg; fz; z� wg; fw;w� zgg:

198 Hirotaka Kikyo and Masanori Sawa



We thus need to consider only the case when 0 < z < w, and then take ðx; yÞ ¼
ðz;w� zÞ A G if w > 2z, and ðx; yÞ ¼ ðw� z; zÞ A G if w < 2z. To show the injec-

tivity, we may use (3.1) again.

Lemma 3.14. For a positive integer x, let Vx ¼ f½x; nx� j nb 3g. Then the

subgraph Gx induced from Vx is connected.

Proof of Lemma 3.14. It follows by Proposition 3.6 that

f½x; nx; ðnþ 1Þx� j n A Z; nb 3g A E:

Since two vertices ½x; nx� and ½x; ðnþ 1Þx� are joined by ½x; nx; ðnþ 1Þx� for nb 3,

we get the desired result. r

For each x, we denote the connected component covering Vx by Cx.

Proposition 3.15. The following hold:

(i) G ¼
Sy

x¼1 Cx.

(ii) Every Cx is isomorphic to C1.

Proof of Proposition 3.15 (i). Let P1 :¼ ðx1; x0Þ A G. It follows by the

Euclidean algorithm that

x0 ¼ q1x1 þ x2; 0a x2 < x1

x1 ¼ q2x2 þ x3; 0a x3 < x2

..

.

xn�1 ¼ qnxn; 0a xn < xn�1

We claim that hðP1Þ lies in the component Cgcdðx0;x1Þ. If x2 ¼ 0, we are already

done. Assume x2 0 0. We consider a sequence of latttice points given by

P1; ðx1; x0 � x1Þ; ðx1; x0 � 2x1Þ; . . . ; ðx1; x0 � ðq1 � 1Þx1Þ:

This is equivalent to choosing a sequence of vertices

hðP1Þ; hððx1; x0 � x1ÞÞ; . . . ; hððx1; x0 � ðq1 � 1Þx1ÞÞ

where each two consecutive vertices

hððx1; x0 �mx1ÞÞ ¼ ½x1; x0 � ðm� 1Þx1�;

hððx1; x0 � ðmþ 1Þx1ÞÞ ¼ ½x1; x0 �mx1�
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are joined by ½x1; x0 �mx1; x0 � ðm� 1Þx1� A E by Proposition 3.6. Since

½x1; x1 þ x2� ¼ ½x2; x1 þ x2� by (3.1), the vertex ½x1; x0 � ðq1 � 1Þx1� ¼ ½x1; x1 þ x2�
corresponds to the lattice point P2 :¼ ðx2; x1Þ A G, which is adjacent to

hððx1; x0 � ðq1 � 1Þx1ÞÞ ¼ ½x1; 2x1 þ x2�. In summary, we get a simple path from

hðP1Þ to hðP2Þ, say l1. Now, by repeating the same arguments, we obtain n

simple paths l1; l2; . . . ; ln, each starting from Pi :¼ ðxi; xi�1Þ and ending with

Piþ1 :¼ ðxiþ1; xiÞ. The result thus follows by Lemma 3.14. r

Proof of Proposition 3.15 (ii). Let us fix xb 2. By (3.1) and Lemma 3.3,

there is a bijective map f : VðC1Þ ! VðCxÞ with fð½a; b�Þ ¼ ½ax; bx�. By Propo-

sition 3.6, the neighbour of ½a; b� lie in

f½a; b� a�; ½b; a� b�; ½a; aþ b�g \ VðC1Þ:

This is equivalently,

ffð½a; b� a�Þ; fð½b; a� b�Þ; fð½a; aþ b�Þg \ VðCxÞ

since x is a nonzero element in Z. Proposition 3.9 implies that f½a; b�; ½a; b� a�g A

EðC1Þ if and only if ffð½a; b�Þ; fð½a; b� a�Þg A EðCxÞ, and similarly for f½a; b�;
½b; a� b�g and f½a; b�; ½a; aþ b�g. Hence f induces an isomorphism between C1

and Cx, which completes the proof. r

In general a finite Köhler graph Gn is a union of non-isomorphic connected

components. This is again a gap between the finite and countable cases.

3.2. Dihedral Simple Quadruple Systems. Let

Q ¼ ½x; y; xþ y� j f0; x; y; xþ yg A
Z

4

� �� �
:ð3:15Þ

There are no ‘‘kite quadruples’’ in the space ðZ; k � k1Þ since Z has no non-trivial

involutions, as mentioned in Remark 3.1.

We begin with a countable analogue of Proposition 2.1:

Proposition 3.16. Let B A Z
4

� �
. Then Orb~ZZðBÞ A Q if and only if

Orb~ZZðBÞ ¼ OrbZðBÞ:ð3:16Þ

Proof of Proposition 3.16. Suppose B A Q. Without loss of generality we

may assume 0 A B, that is, B ¼ f0; x; y; xþ yg for some x; y A Z. The ‘‘only if ’’
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part can be easily shown by noting that Bs ¼ B� ðxþ yÞ A OrbZðBÞ. Conversely,
let B ¼ f0; x; y; zg A Z

4

� �
satisfy (3.16). Since �B ¼ Bþ a for some a A Z, we

have

f�x;�y;�zg A ffx; y; zg; f�x; y� x; z� xg; f�y; x� y; z� yg;

f�z; x� z; y� zgg

If f�x;�y;�zg ¼ fx; y; zg, we must have 0 A fx; y; zg by a simple descent, which

is clearly impossible. Suppose that f�x;�y;�zg ¼ f�x; y� x; z� xg. Then

f�y;�zg ¼ fy� x; z� xg and so x ¼ yþ z; in this case B ¼ f0; y; z; yþ zg. In

the remaining two cases, by switching the role of x and z (resp. y), we get

B ¼ f0; x; y; xþ yg (resp. B ¼ f0; x; z; xþ zg). r

Definition 3.17 (Dihedral (countable) quadruple system). We say that a

countable quadruple system D ¼ ðZ;BÞ is Dihedral if OrbZðBÞ � B and (3.16)

holds for every B A B.

In this section we give a necessary and su‰cient condition for the existence of

simple Dihedral quadruple systems over Z. Before doing so, we give some pre-

liminary lemmas.

Lemma 3.18. Q ¼ E t Q0, where

Q0 ¼ f½x; 2x; 3x� j x A Znf0gg:ð3:17Þ

Proof of Lemma 3.18. Let B ¼ f0; x; y; xþ yg A Z
4

� �
, and suppose

Orb~ZZðBÞ B E. By Lemma 3.3 (ii), we see that x ¼G2y or y ¼G2x. In the former

case, if x ¼ �2y, then

B ¼ f0;�2y; y;�yg ¼ f0; y; 2y; 3yg þ ð�2yÞ A ½y; 2y; 3y�:

Switching the role of x and y, we have B A ½x; 2x; 3x� if y ¼ �2x. There is

nothing to prove when x ¼ 2y or y ¼ 2x. r

Lemma 3.19. For x A Znf0g, let

T x ¼ f0; x; 3xg A
Z

3

� �
; Tx ¼ f0; x;�xg A

Z

3

� �
;ð3:18Þ

Qx ¼ f�2x;�x; 0; xg A
Z

4

� �
:
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The following hold:

(i) Qx and Q�x are the only members in
S

O AQ O containing Tx.

(ii) Qx þ 2x is the unique member in
S

O AQ0
O containing T x.

Proof of Lemma 3.19 (i). Clearly, Qx and Q�x satisfy (3.16) and contain

Tx. Conversely, let B ¼ f0; x;�x; yg A
S

O AQ O. Then by Proposition 3.16, there

exists z A Z such that

B ¼ �Bþ z ¼ fz; z� x; zþ x; z� yg:

If z A f0; yg, we must have y ¼ 0, which is clearly impossible. So z ¼Gx. If

z ¼ x, then we have f2x; x� yg ¼ f�x; yg and so 2x ¼ y, which implies that

B ¼ Q�x. Switching the role of x and �x, we get B ¼ Qx if z ¼ �x. r

Proof of Lemma 3.19 (ii). Clearly, T x � f0; x; 2x; 3xg A
S

O AQ0
O. Con-

versely, let B ¼ f0; x; 3x; yg A
S

O AQ0
O. Then by Proposition 3.16,

B ¼ �Bþ z ¼ fz; z� x; z� 3x; z� yg for some z A Z:

Clearly, z0 0. If 0 A fz� x; z� yg, then y A f�2x; 4xg and B B
S

O AQ0
O. If

z ¼ 3x, then we have y ¼ 2x, namely T x � Qx þ 2x. r

Proposition 3.20. If there is a Dihedral simple l-fold QS over Z, then l ¼ 2.

Proof of Proposition 3.20. The result follows by Lemma 3.19. r

To show the converse direction, we begin by introducing a countable an-

alogue of the concept of ½k � 1; k�-factors originally introduced by Kano [13] for

finite graphs:

Definition 3.21 ([13]). Let k be a positive integer and G be a (possibly

finite) graph. A subset F of EðGÞ is called a ½k � 1; k�-factor of G if every vertex

has degree k � 1 or k with respect to the subgraph G with edge set F; we say

that a vertex of degree k � 1 (resp. degree k) is covered k � 1 times (resp. k times)

by F.

Theorem 3.22. Let F be a ½1; 2�-factor of G where the elements of f½x; 3x� j
x A Znf0gg are the only vertices of degree 1. Then

B :¼ B A
Z

4

� �����Orb~ZZðBÞ A F t Q0

� �
ð3:19Þ

forms the set of quadruples of a Dihedral simple 2-fold QS over Z.
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Proof of Theorem 3.22. Let

T 00 ¼ f½x; 3x� j x A Znf0gg:

T 00 is clearly a subset of V and so T 0 \T 00 ¼ q by (3.6). We count the number

of quadruples in B which contains a given triple T A Z
3

� �
. First, assume that

Orb~ZZðTÞ A T 0 tT 00. By Lemma 3.19 we get

B A
Z

4

� �����Orb~ZZðBÞ A Q0; T � B

� �����
���� ¼ 2 if Orb~ZZðTÞ A T 0;

1 if Orb~ZZðTÞ A T 00:

�

Next, let T A Z
3

� �
with Orb~ZZðTÞ A V. Then we see that

B A
Z

4

� �����Orb~ZZðBÞ A F; T � B

� �����
����

¼ B A
Z

4

� �����Orb~ZZðBÞ A F; Orb~ZZðTÞ is incident with Orb~ZZðBÞ
� �����

����
¼ jfOrb~ZZðBÞ A F jOrb~ZZðTÞ is incident with Orb~ZZðBÞgj

¼ 2 if Orb~ZZðTÞ A VnT 00;

1 if Orb~ZZðTÞ A T 00

�

where the second equality follows by Lemma 3.4 and the last equality follows

by the assumption on F. By (3.2), if B A
S

O AQ0
O and T A B

3

� �
, then Orb~ZZðTÞ A

T 0 tT 00. Therefore, F t Q0 forms a simple 3-ð@0; 4; 2Þ design, because F \ Q0 ¼
q by Lemma 3.18. r

Proposition 3.23. There exists a ½0; 1�-factor of G in which f½x; 3x� j
x A Znf0gg is the set of isolated vertices.

Proof of Proposition 3.23. For an integer x > 0, let

Ux ¼ f½x; xþ y� j x < yg:

Then V ¼
F

x>0 Ux; recall Remark 3.13. The set Uxnf½x; 3x�g can be partitioned

into pairs of vertices as follows:

ff½x; 2xþ y�; ½x; 3xþ y�g j 1a ya x� 1g

t
Gy
z¼0

ff½x; 4xþ 2zxþ y�; ½x; 5xþ 2zxþ y�g j 0a ya x� 1g:
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By Lemma 3.3 (i) and Proposition 3.6, this pairing gives a one-factor FðxÞ of the

subgraph induced from Uxnf½x; 3x�g, namely,

FðxÞ ¼ f½x; 2xþ y; 3xþ y� j 1a ya x� 1gð3:20Þ

t
Gy
z¼0

f½x; 4xþ 2zxþ y; 5xþ 2zxþ y� j 0a ya x� 1g:

In summary,

F1 :¼
Gy
x¼1

FðxÞð3:21Þ

is a ½0; 1�-factor covering all vertices of G exactly once, except for the vertices

½x; 3x�. r

Proposition 3.24. There exists a one-factor F2 of G which is disjoint to F1

given in (3.21).

Proof of Proposition 3.24. Let

G1 ¼ G \ fðx; yÞ A N2 j 2x > y > xg; G2 ¼ GnG1:

With h defined in (3.14), we inductively partition hðG1Þ into pairs of vertices as

follows. First, consider the half lines

l a1 : f
ðaÞ
1 ðxÞ ¼ xþ 1; l b1 : f

ðbÞ
1 ðxÞ ¼ 2x� 1:

Let a
½1�
min ¼ 2 and

A1 ¼ fðxðaÞ
1 ; y

ðaÞ
1 Þ A N2 j yðaÞ1 ¼ f

ðaÞ
1 ðxðaÞ

1 Þ; xðaÞ
1 b a

½1�
ming;

B1 ¼ fðxðbÞ
1 ; y

ðbÞ
1 Þ A N2 j yðbÞ1 ¼ f

ðbÞ
1 ðxðbÞ

1 Þ; xðbÞ
1 b f

ðaÞ
1 ða½1�minÞg:

Then take the pairing

P1 ¼ ffðx; xþ 1Þ; ðxþ 1; 2xþ 1Þg j xb a
½1�
min; x A Ng;

see Figure 1. Next, consider the half lines

l a2 : f
ðaÞ
2 ðxÞ ¼ xþ 2; l b2 : f

ðbÞ
2 ðxÞ ¼ 2x� 2:

Let a
½2�
min (¼ 4) be the smallest integer x

ðaÞ
2 such that

ðxðaÞ
2 ; y

ðaÞ
2 Þ B B1 and ðxðaÞ

2 ; y
ðaÞ
2 Þ A l a2 \ G1;
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and

A2 ¼ fðxðaÞ
2 ; y

ðaÞ
2 Þ A N2 j yðaÞ2 ¼ f

ðaÞ
2 ðxðaÞ

1 Þ; xðaÞ
2 b a

½2�
ming;

B2 ¼ fðxðbÞ
2 ; y

ðbÞ
2 Þ A N2 j yðbÞ2 ¼ f

ðbÞ
2 ðxðbÞ

1 Þ; xðbÞ
2 b f

ðaÞ
1 ða½2�minÞg:

Then take the pairing

P2 ¼ ffðx; xþ 2Þ; ðxþ 2; 2xþ 2Þg j xb a
½2�
min; x A Ng;

see Figure 2. In general, given half lines l a1 ; . . . ; l
a
n , l

b
1 ; . . . ; l

b
n , subsets A1; . . . ;An,

B1; . . . ;Bn of G1, and integers a
½1�
min; . . . ; a

½n�
min, we consider the half lines

l anþ1 : f
ðaÞ
nþ1ðxÞ ¼ xþ nþ 1; l bnþ1 : f

ðbÞ
nþ1ðxÞ ¼ 2x� n� 1:

Figure 1: Parings points with rational slopes, I

Figure 2: Parings points with rational slopes, II
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Let a
½nþ1�
min be the smallest integer x

ðaÞ
nþ1 such that

ðxðaÞ
nþ1; y

ðaÞ
nþ1Þ B

[n
k¼1

Bk and ðxðaÞ
nþ1; y

ðaÞ
nþ1Þ A l anþ1 \ G1;

and

Anþ1 ¼ fðxðaÞ
nþ1; y

ðaÞ
nþ1Þ A N2 j yðaÞnþ1 ¼ f

ðaÞ
nþ1ðx

ðaÞ
nþ1Þ; x

ðaÞ
nþ1 b a

½nþ1�
min g;

Bnþ1 ¼ fðxðbÞ
nþ1; y

ðbÞ
nþ1Þ A N2 j yðbÞnþ1 ¼ f

ðbÞ
nþ1ðx

ðbÞ
nþ1Þ; x

ðbÞ
nþ1 b f

ðaÞ
nþ1ða

½nþ1�
min Þg:

Then take the pairing

Pnþ1 ¼ ffðx; xþ nþ 1Þ; ðxþ nþ 1; 2xþ nþ 1Þg j xb a
½nþ1�
min ; x A Ng:

By the construction, fPngnb1 is a partition of G1 which produces a one-factor F 0
2

of the subgraph induced from hðG1Þ as follows:

F 0
2 ¼

Gy
n¼1

f½x; 2xþ n; 3xþ n� j xb a
½n�
min; x A Ng:ð3:22Þ

Next, we partition hðG2Þ into pairs as follows:

Gy
x¼1

ff½x; 3xþ 2zxþ y�; ½x; 4xþ 2zxþ y�g j 0a ya x� 1; z A Zb0g:

By Proposition 3.6 and Lemma 3.3 (i), this pairing produces a one-factor F 00
2 of

the subgraph induced from hðG2Þ, namely,

F 00
2 ¼ f½x; 3xþ 2zxþ y; 4xþ 2zxþ y� j 0a ya x� 1; z A Zb0g:

In summary, by noting that F2 and F1 are disjoint, we see that

F2 :¼ F 0
2 tF 00

2ð3:23Þ

is the desired one-factor covering all vertices of G. r

Finally we get the following theorem:

Theorem 3.25. There exists a Dihedral simple l-fold QS over Z if and only

if l ¼ 2.

Proof of Theorem 3.25. The ‘‘only if part’’ is shown in Proposition 3.20.

To prove the ‘‘if part’’, we use F1, F2 given in Propositions 3.23 and 3.24,
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in order to get a ½1; 2�-factor of G. The theorem thus follows by Theorem

3.22. r

Remark 3.26. With F1 given in (3.21), we moreover take the quad-

ruples

F3 ¼
Gy
x¼1

Gy
y¼�y

ðf0; x; 2x; 3xg þ 2yÞ:

Then F1 [F3 forms a partial 3-ð@0; 4; 1Þ design, ðZ;BÞ say, where the triples

of the form f0; x; 3xg þ ð2yþ 1Þ or f0; 2x; 3xg þ ð2yþ 1Þ are missing. This is

maximal, meaning that there is no way to extend B, in order to cover the ‘‘odd

translates’’ of the triples f0; x; 3xg or f0; 2x; 3xg. Of course, the one-factor F2

of (3.23) provides another maximal partial 3-ð@0; 4; 1Þ design, which is how-

ever based on an inductive argument and may not be ‘non-iteratively’ construc-

tive for researchers in finite combinatorics. We can obtain a ‘completely’ non-

iterative construction of 3-ð@0; 4; 2Þ designs if the monotone-increasing sequence

a
½1�
min; a

½2�
min; . . . can be written explicitly.

4. Conclusion, Further Remarks, and Discussions

In this paper we develop a Köhler theory for Dihedral countable quadruple

systems and discuss the gaps between the finite and countable cases. The fol-

lowing are the main results:

(i) To define the countable Köhler graph G and study the graph structure

such as degree sequence, connectedness and so on.

(ii) To show there is a simple 3-ð@0; 4; 2Þ design with a Dihedral point-

transitive automorphism group if and only if there is a ½1; 2�-factor of G

in which the triples in
Fy

x¼1½x; 3x� appear only once.

(iii) A necessary and su‰cient condition for the existence of a simple

Dihedral 3-ð@0; 4; lÞ design is l ¼ 2.

Finite projective planes PGð2; qÞ for prime powers q are 2-ðq2 þ qþ 1;

qþ 1; 1Þ designs, which are one of the most important objects in Finite Design

Theory. No iterative constructions have been found for such finite designs. But,

the situation is quite di¤erent in Infinite Design Theory and countable projective

planes can be constructed by Hrushovski’s amalgamation. This is a remarkable

gap between finite and infinite designs, which is however not fully recognized in

finite combinatorics at least. The observations we shall make in this section have

an aim to inform Hrushovski’s amalgamation and related ideas in model theory
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to researchers in finite combinatorics. An interesting question asks whether there

exist a generic graph M and a family of finite designs Dn ¼ ðVn;BnÞ such that

every Dn is embedded in M as a bipartite graph with vertex set Vn tBn. If this is

the case, one may regard M as ‘limit’ of finite designs Dn. Motivated by this, we

tried to find a generic graph in which all finite PGð2; qÞ are embedded. Though

our trials are not necessarily going well at present, we believe that it still provides

an insight to the finite-combinatorics society.

In the Zermelo-Fraenkel set theory with the Well-Ordering principle,

Cameron and Webb [4] tightened the definition of ‘infinite t-designs’ by allowing

uncountable sets V and removing the assumption of finiteness of k and l; see also

Beutelspacher and Cameron [3].

Definition 4.1 ([4]). A t-ðv; k; fli; jgi; jÞ design is a pair consisting of a

v-element set V and a collection B of k-element subsets of V , called blocks, such

that

(i) no block is a proper subset of any other block;

(ii) there is a non-zero cardinal k such that for any block B A B, VnB has

cardinality k.

(iii) for any non-negative integers i, j with i þ ja t, the cardinality li; j of the

set of blocks containing a given i-subset X but not intersecting a given

j-subset Y , where X and Y are disjoint, is independent of the choice of

X and Y .

A simple design is defined by replacing the condition (i) with ‘‘no block contains

any other block’’.

Remark 4.2. 3-ð@0; 4; 2Þ designs given in Theorem 3.25 naturally satisfy the

conditions (i) through (iii). More generally, countable t-designs with t; k finite (in

our definition) always satisfy the conditions (i) through (iii); see [21, Section 2] or

[4, Theorem 3.1, Proposition 4.1] for more details.

Cameron and Webb [4] gave some examples of infinite t-designs with k, li; j

infinite. An example is a 2-ð@0;@0; fli; jgi; jÞ design whose point set V and block

set B are the vertex set and the set of the maximal cliques/independent vertex sets

of the Rado graph, respectively. Another example is a t-ð@0;@0; fli; jgi; jÞ that

involves the a‰ne plane over the algebraic closure Fp (cf. [25]).

We now describe one more example of 2-ð@0;@0; fli; jgi; jÞ designs with

l2;0 constant. Some of the standard terminology used below can be found in

[1, 12].
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Let K be the set of all finite simple graphs. We define a Hrushovski’s

predimension function by

dðGÞ ¼ 2jVðGÞj � jEðGÞj for every G A K:ð4:1Þ

Let G;H A K with H � G, where ‘‘�’’ means H is an induced subgraph of G. We

say that H is a closed submodel of G if dðHÞa dðKÞ for every H � K � G, and

write HaG. Let K1=2 be a subclass of K consisting of finite graphs G with

qaG.

Definition 4.3 (Generic graph). Let K 0 � K1=2. We say that a countable

graph M is K 0-generic if it satisfies the following conditions:

(i) for H �fin M, there exists some finite graph G such that H � GaM;

(ii) if G �fin M, then G A K 0;

(iii) for H;G A K 0 with HaM and HaG, there is an isomorphic copy G 0

of G over H such that G 0 aM.

Definition 4.4 (Amalgamation class). A subset K 0 of K1=2 is called an

amalgamation class if, q A K 0, K 0 is closed under induced subgraphs, and for

H;K ;L A K 0, whenever embeddings f0 : H ! K and g0 : H ! L satisfy f0ðHÞaK

and g0ðHÞaL then there exist G A K 0 and embeddings f1 : K ! G and

g1 : L ! G such that f1ðKÞaG, g1ðLÞaG, and f1 � f0 ¼ g1 � g0.

The following fact is well known in model theory:

Fact 4.5 ([11]). Let K 0 be an amalgamation class of K1=2. Then there

uniquely exists a K 0-generic graph.

Baldwin [1] constructed a countable non-Desarguesian projective plane using

Hrushovski’s construction with a K 0-generic graph for some subclass K 0 of K1=2.

He also has shown that there are continuously many such non-isomorphic

countable non-Desarguesian projective planes. We shall simplify Baldwin’s argu-

ments and thereby give a family of infinite 2-designs.

Lemma 4.6. The subclass of K1=2 defined by

~KK :¼ fG A K1=2 jG : C4-freegð4:2Þ

is an amalgamation class.
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Proof of Lemma 4.6. Clearly, q A ~KK and ~KK is closed under induced sub-

graphs. Let H;K ;K 0 A ~KK be such that there exist embeddings f , f 0 of H into

K , K 0 with f ðHÞaK , f 0ðHÞaK 0, respectively. Identifying f ðHÞ with f 0ðHÞ,
we may assume that HaK and HaK 0. Let ~KK , ~K 0K 0 be maximal subgraphs of

K , K 0 for which

(i) H � ~KK aK and H � ~K 0K 0 aK 0, and

(ii) there is an isomorphism between ~KK and ~K 0K 0 preserving H.

We define a finite graph G by identifying ~KK with ~K 0K 0 and then amalgamating K ,

K 0 over ~KK . Since

dðGÞ ¼ dðKÞ þ dðK 0Þ � dð ~KKÞb dðKÞb 0;

we have G A K. It remains to prove the C4-freeness of G. Suppose the contrary.

By inspection, we can choose x; z A Vð ~KKÞ, y A VðKÞnVð ~KKÞ, y 0 A VðK 0ÞnVð ~KKÞ
such that the subgraph of G induced from fx; y; y 0; zg is a 4-cycle. Let L, L 0 be

the subgraphs induced from Vð ~KKÞ [ fyg, Vð ~KKÞ [ fy 0g, respectively. We claim

that there is no vertex w A Vð ~KKÞnfx; zg for which fy;wg A EðLÞ or fy 0;wg A

EðL 0Þ. In fact, if fy;wg A EðLÞ for some w A Vð ~KKÞnfx; zg, then there is an integer

lb 3 such that

dðLÞ ¼ 2ðjVð ~KKÞj þ 1Þ � ðjEð ~KKÞj þ lÞj ¼ 2jVð ~KKÞj � jEð ~KKÞj � ðl� 2Þ

< 2jVð ~KKÞj � jEð ~KKÞj ¼ dð ~KKÞ:

This is a contradiction since ~KKaK and ~KK � L � K. We thus conclude that L

and L 0 are isomorphic. Also, we have

dðLÞ ¼ 2ðjVð ~KKÞj þ 1Þ � ðjEð ~KKÞj þ 2Þj ¼ 2jVð ~KKÞj � jEð ~KKÞj

¼ dð ~KKÞ;

and dðL 0Þ ¼ dð ~K 0K 0Þ similarly. Hence, LaK and L 0 aK 0. This is again a con-

tradiction to the maximality of the choices of ~KK and ~K 0K 0. r

By combining Fact 4.5 with Lemma 4.6, we get a ~KK-generic graph M.

Proposition 4.7. With the above generic graph M, let V ¼ VðMÞ and B ¼
fBx j x A Vg, where

Bx ¼ fy A VðMÞ j fx; yg A EðMÞg for every x A VðMÞ:

Then the incidence structure ðV;B; AÞ is a projective plane, which produces a

2-ð@0;@0; fli; jgi; jÞ design with l2;0 ¼ 1.
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Proof of Proposition 4.7. Clearly, by the definition of B, Bx is the unique

block incident with a given point x A V. Moreover, there are four points where

no block is incident with more than two points because any set of four inde-

pendent vertices in VðMÞ belongs to ~KK. We finally show that jBx \ Bx 0 j ¼ 1 for

any distinct points x; x 0 A V. Let x; x 0 A V be two distinct points. Let X be a

finite induced subgraph of M such that X aM. Such a X exists since M is a

generic graph. If X contains a path of length two from x to x 0, there exists some

y A VðXÞ � VðMÞ such that fx; yg; fx 0; yg A EðMÞ. If X contains no path of

length two from x to x 0, then let X 0 be a graph such that VðX 0Þ ¼ VðXÞ [ fy 0g
and EðX 0Þ ¼ EðXÞ [ ffx; y 0g; fx 0; y 0gg. In this case, X aX 0 and X 0 A ~KK. Since

M is a generic graph for ~KK, we can embed X 0 into M over X . Therefore, there

exists some y A VðMÞ such that fx; yg; fx 0; yg A EðMÞ. The uniqueness of y

follows by the absence of 4-cycles in ~KK. r

A generic graph for a subclass of K1=2 is known to have a CM-trivial theory

[23]. Also, it is known that any structure with a CM-trivial theory cannot

interpret a field structure [22]. Since any Desarguesian projective plane interpets

a field structure in model theoretic sense above, the projective plane we have

constructed is non-Desarguesian.

Consider a projective plane of order n as a bipartite graph. It has

2ðn2 þ nþ 1Þ vertices and ðn2 þ nþ 1Þðnþ 1Þ edges (incidence relations). The

value of d is ð3� nÞðn2 þ nþ 1Þ. Therefore, it does not belong to ~KK if

n > 3.

By inspection, we can see that projective planes of order 2 and 3 belong to ~KK.

A projective plane of order 3 has a d-rank 0 and any proper induced subgraph

has a positive d-rank. Moreover, we have the following:

Lemma 4.8. Suppose G is a projective plane of order 2 or 3 as a bipartite

graph. Then for any induced subgraphs A, B, C of G, if AaB, AaC, A0B,

A0C, then G is not a free amalgam of B and C over A.

Proof. In the case that G is a projective plane of order 2, the lemma can

easily be checked by a computer. In the case that G is a projective plane of order

3, it can easily be checked by a computer that any proper subgraph of G has a

positive d-rank. Hence, a free amalgam of B and C over A has a positive d-rank.

But, dðGÞ ¼ 0. r

With this lemma, we have the following:
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Proposition 4.9. Let ~KK 0 be a class of graphs G A ~KK such that no projective

plane of order 2 or 3 is an induced subgraph of G. Then ~KK 0 is an amalgamation

class. No finite projective plane is an induced subgraph of a generic graph for ~KK 0.

The 2-ð@0;@0; 1Þ design D given in Proposition 4.7 has existential closure

number 0. The existential closure number XðDÞ, which is a finite analogue of the

axiom of the countable random graph, is defined by the minimum non-negative

integer n such that the block-intersection graph of D is n-existentially closed.

Here a graph G ¼ ðV ;EÞ is n-existentially closed if for every S A V
n

� �
and T � S,

there exists a vertex x B S which is adjacent to every vertex in T , and is not

adjacent to any vertex in SnT ; see e.g. [21]. In Example 2.5 and Example 2.6

of [10], Horsley et al. constructed a 2-ð@0;@0; 1Þ design with existential closure

number 1 or 2, which is di¤erent from our 2-design. But, using a technique by

Horsley et al. [10, pp. 323–324] similar to that of constructing a‰ne planes from

projective planes, we can reconstruct a 2-ð@0;@0; 1Þ design with XðDÞ ¼ 0 from

Horsley’s 2-design.
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