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CONVEX FUNCTIONS AND p-BARYCENTER ON
CAT(1)-SPACES OF SMALL RADII

By

Takumi YokoTA

Abstract. We establish unique existence of p-barycenter of any
probability measure for p >2 on CAT(l)-spaces of small radii.
In our proof, we employ Kendall’s convex function on a ball of
CAT(1)-spaces instead of the convexity of distance function. Various
properties of p-barycenter on those spaces are also presented. They
extend the author’s previous work [Yo].

1. Introduction

In this paper, we extend our previous work [Yo] on barycenter of probability
measures on CAT(1)-spaces and study p-barycenter of them for some real
number p > 1. CAT(k)-spaces are metric spaces with x € R as an upper bound
for the curvature in the sense of Alexandrov which is defined in terms of the
convexity of distance function. The precise definition is given in Definition 3
below.

DrFINITION 1 (p-barycenter). For a metric space (X,d) and pe[l,00), we
let 2(X) be the set of all Borel probability measures on X and Z,(X) be the
set of all ue 2(X) with [, d”(xo,-) du < oo for some (hence all) xo € X. For
a probability measure e %,(X), we call a point of X where the function
FP:X —[0,00) given by F/(x):=(1/p) [, d’(x,-) du attains its global (resp.
local) minimum a p-barycenter (resp. a p-Karcher mean) of u.

In [Yo] we studied 2-barycenter, usually called barycenter, center of mass
or Fréchet mean in the literature, of probability measures on CAT(1)-spaces. We
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remark that 1-barycenter, also called median, e.g. Yang [Ya], is a generalization
of Fermat(—Torricelli) points of plane triangles and Steiner points in Sakai [Sa].
For example, p-barycenter appears in the works of Afsari [Af], Naor—Silberman
[NS] and Kuwae [Ku2, Ku3].

The theory of barycenter of probability measures on CAT(0)-spaces has been
developed by many authors; See e.g. Sturm [St]. It is well-known that the distance
function d : ¥ x Y — [0, 0) of a CAT(0)-space (Y,d) is convex in the sense of
Definition 2 below. The following theorem is the main tool that we use in our
approach, which states that any small ball in a CAT(x)-space with x > 0 also
admits such a convex function. Here and hereafter, B(o,-) and B(o,-) denote
open and closed metric balls centered at o € Y respectively. We also use R, :=
n/y/x and cos, r:= cos(y/x-r) for k >0 and r > 0.

THeorREM A (Kendall [Ke2], Jost [Jo2] and [Yo]). Let (Y,d) be a CAT(k)-
space with k >0 and r < R./2. For any h > h>0 with h <cos.r, veR and
o€ Y, the function CI)SK})z : B(o,r) x B(o,r) — [0, 00) given by

v+1
1 1 —cos, d(x,y)
(xay)'_) <_ . )—il2>

K cos, d(x,0) cos, d(y,0

is convex provided 2(2v + 1)h2(h? — h*) > 1.

Kendall [Ke2] proved Theorem A for the unit sphere of the Euclidean space
and remarked that it also holds for Riemannian manifolds. Jost [Jo2] gave an
application of Theorem A. A detailed proof of Theorem A can be found in the
appendix of [Yo].

We now state the main theorem of this paper. We say that a measure u
on a space X is concentrated on a subset S C X if u(X\S)=10. We notice that
ue P, (X) for any pe|[l, ) if pe 2(X) is concentrated on a bounded subset of
a metric space X. The radius of a metric space (X,d) is defined as rad(X) :=

infycx sup,cy d(x, ).

THEOREM B. Let (Y,d) be a complete CAT(x)-space with i > 0. Suppose
ue P(Y) is concentrated on a ball B(o,r) with o € Y and r < R,/2. Then p admits
a p-barycenter for any p > 1, which is the unique p-barycenter in Y and the unique
p-Karcher mean in B(o,r) if p > 2. In particular, if rad(Y) < R./2 and p > 2, any
we P(Y) admits a unique p-barycenter b?(u) in Y.
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This generalizes the main result of [Yo]. The upper bound R,/2 for the
radius is almost sharp, cf. Remark 66 below. The combination of our result, i.c.,
Theorem B, Corollary 42 and Theorem 57 below, extends the result [Af, Theorem
2.1] of Afsari to general CAT (x)-spaces.

In addition to Theorem B above, we also establish an analogue of the
Banach—Saks—Kakutani type theorem for p-barycenter on CAT(x)-spaces as
Theorems C and D below. They extend the theorems of Jost [Jo, Theorem 2.2]
and the author [Yo, Theorem CJ.

The structure of this paper is as follows: Section 2 consists of several
definitions and properties of CAT-spaces. In Section 3, we prove propositions
pertaining to the local convexity of CAT(1)-spaces, which might be of inde-
pendent interest. We prove Theorem B in Section 4. Then Sections 5 and 6
are devoted to a collection of several properties of p-barycenter of probability
measures on CAT(x)-spaces, some of which might also be new on CAT(0)-
spaces.

In this paper, we reuse almost all of the materials from our previous work
[Yo]. For this reason, there must be substantial text overlap between them.

2. Preliminaries

In this section, we recall some rudimentary definitions and facts on the
geometry of CAT-spaces. The textbook [BBI] by Burago—Burago—Ivanov is one
of the standard references of the Alexandrov geometry. A reader who is familiar
with them can safely skip this section.

DrrFINITION 2 (Convex function). Let (X,d) be a metric space. A geodesic
is a curve y: I — X defined on an interval / C R for which there is a constant
[v'| =0 with d(y(s),y(¢)) =1|y'| - |s — ¢| for any s,z€ 1.

We say that a function f: X — RU{oo} is convex if the function f(y(-))
is convex on I for any geodesic y:I — X. When X is a product of two
metric spaces Y, and Y, equipped with a natural product metric, this amounts
to that f(y,(:),7(+)) is convex on I for any pair of geodesics y;: 1 — Y;
i=1,2.

For a real number x e R, we let (M,,d,) be the model surface, i.e., the
simply-connected surface with the distance induced by the complete Riemannian
metric of constant curvature x. We will also use (S? dg) instead of (M,,d;)
later. We let R, :=n/\/x for kx>0 and R, :=+o0 for x <0.
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DrrFINITION 3 (CAT(k)-space). We call a metric space (Y,d) a CAT(k)-
space if it is an R,-geodesic space, i.e., any two points x, y € ¥ with d(x, y) < R,
are connected by a geodesic, and

d(x,y(1)) < die(%,7(1))

holds for any three points x, y,ze Y with d(x,y)+d(y,z) +d(z,x) <2R,, a
geodesic y: [0,1] — Y with y(0) = y and y(1) =z and 7€ [0, 1]. Here, {X, 7,2z} C
(M, d,) is an isometric copy of the three-point subset {x, y,z} C (Y,d) and
7:10,1] — M, is the geodesic with 7(0) = y and 7(1) = Z.

We persist in using the letter ¥ to denote a CAT-space. Unit spheres of
Hilbert spaces and complete Riemannian manifolds with sectional curvature at
most x and injectivity radius at least R, are typical examples of CAT(i)-spaces.
CAT(k)-spaces are also CAT(x')-spaces for x’ >k and the upper curvature
bound x € R of a CAT(x)-space changes accordingly as its distance is rescaled
by a positive number.

In this paper, we stick to the same notations as in [Yo], which we here
recollect without giving precise definitions. In the rest of this section, (X,d) and
(Y,d) denote a metric space and a CAT(x)-space for some x € R respectively.

s,y i={zeX :d(x,z)+d(z,y) =d(x,y)} C X for x,ye X.

* 7y 1 [0,1] = Y denotes the unique geodesic with y,,(0) = x and y,,(1) =y

for two points x, y € ¥ with d(x, y) < R..
* /.(x;9,2) € [0, 7] denotes the comparison angle for three points x, y,z€ Y.
For example, it is defined for x > 0 by

- cos, d(y,z) — cos, d(x, y) cos, d(x,z)
ZK Vs = - -
cos £u(X; ,2) ic - sing d(x, ) sin, d(x, z)

if x¢ {y,z} and d(x, y) +d(y,z) +d(z,x) < 2R,, where cos, r:= cos(\/K - r)
and sin, r:= sin(y/x - r)/\/ic for reR.

+ (24, /) and (Cy, |- |) denote the space of directions and the tangent cone at
a point x € Y respectively with o, € C, := X, x [0, 0)/%, x {0} being the
vertex.

* 17 eX, denotes the equivalence class of a geodesic from x to y and
le(,2) == Lx(12,12) € [0, 7] denotes the angle for x, y,z € Y with x ¢ {y,z}.

*log, y:=d(x,y) -1/ e C, and log, x := 0, € C, for x,ye Y with x # y.

* u| := |u— oy and <{u,v) := (|u]* + |v|* — |u — v]*)/2 for vectors u,v e C, at
xeY.
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« For a function ¢ defined on a neighborhood of xe Y, Dgllog, y] :=
(d/dr)"|_gp o 7,,(t) e RU{£oo} for ye Y with 0 < d(x,y) < R, if exists,
denotes the directional derivative. If ¢ is locally Lipschitz at x, D¢ is
extended to a Lipschitz function on (Cy,|-|).

We list some basic facts on CAT(x)-spaces which we will make use of later.

Fact 4 (Angle monotonicity/comparison). For any three points x,y,z€ Y
with x ¢ {y,z} and d(x,y)+d(y,z) +d(z,x) < 2R, and a point y' € [x, y]\{x},

Le(x33,2) = Le(x; 9, 2) = L3, 2).

Fact 5 (Local uniform convexity). For any ic,r,e > 0 with r < R,/2, there is
Ox(e;r) > 0 with

d(x,m(y,z)) <r—0(gr)

for any x €'Y and y,z € B(x,r) with d(y,z) > er. Here m(y,z) :=7y,.(1/2) € Y is
the midpoint of y and z.

It is known that J;(er) = r — arccos(cos r/cos(er/2)) for any &> 0 and
r < mn/2, e.g. Espinola—Fernandez-Ledn [EF]. Propositions 9 and 21 below also
give estimates for oJ.(e;r).

The following fact is used along with Theorem A in our argument.

Fact 6 (First variation formula, cf. [BBI, Exercise 4.5.10]). For any two
geodesics A, pu: [0,1] = Y representing A'(04) € Cy and u'(0+) € C, with x := A(0),
v :=u(0) and d(x,y) < R, in (Y,d), we have

d+ .

7 | dC0,p(0) = = 04), 1 = L (04), 17

=0

For x € R, we say that a subset C C X of a metric space (X,d) is R-convex

if any geodesic connecting points x, y € C with d(x, y) < R, does not leave C.

For a subset SC Y of a CAT(k)-space Y, conv(S) C Y denotes the closed
convex hull of S, i.e., the smallest closed R,-convex subset containing S.

Fact 7 (Chebyshev property of convex subsets). Suppose (Y,d) is complete.
For any closed R.-convex subset C C Y and a point xe Y of Y with d(x,C) <
R, /2, there exists a unique point nc(x) e C with d(x,nc(x)) =d(x,C). It also
holds that /,(nc(X);x,¢) = Lyo(x)(x,¢) = 7/2 for any ce C if they are defined.
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Fact 8 (e.g. Lytchak [Ly, Lemma 7.3]). For a Lipschitz convex function ¢
defined on a neighborhood of a point x € Y, there exists a vector V ¢ € Cy with

Doln| = =<V p,n) for any ne C.,.

We call V_¢ the (negative) gradient of ¢ at x.

3. Local Convexity of CAT(1)-Spaces

In this section, we make a detour and discuss local p-uniform convexity of
the distance function of CAT(1)-spaces. Propositions 9 and 21 below are the main
result of this section. They are not used in our proof of Theorem B but might be
of independent interest. A reader in a hurry can safely skip this section.

PROPOSITION 9 (p-uniform convexity of CAT(x)-spaces, cf. Ohta [Oh]). For
any x>0, r < R/2 and p € (1, 0), there exists a constant k, > 0 with the fol-
lowing property: Let (Y,d) be a CAT(x)-space with k > 0. Then

(10)  d”(x,7,.(1)) < (1 = 0)d”(x, y) + 1d”(x, 2) —%1(1 — )d" P2y, 2)

holds for any geodesic 7y, : [0,1] — Y connecting y,ze€ B(x,r) with xe Y and
tel0,1].

DerFNITION 11 (p-uniformly convex space, [NS], [Ku3, Ku2]). A geodesic
space, i.e., an oo-geodesic space, (X,d) is called a p-uniformly convex space for
p =2 if there exists a constant ¢, > 0 for which

dP(x,y(t)) < (1 = 0)dP(x,y) + td? (x,z) — cpt(1 — )d?(y, 2)

holds for any x e X, a geodesic y:[0,1] — X with y:=»(0) and z:= (1) and
te0,1].

COROLLARY 12.  Any CAT(x)-space (Y,d) with k >0 and diam Y < R, /2 is
a p-uniformly convex space for all p € [2,0).

Ohta [Oh] proved Inequality (10) with p =2 and the sharp constant
ky =2r/tanr. We refer to Naor-Silberman [NS] and Kuwae [Ku2, Ku3] for
p-uniformly convex spaces. It is not possible to improve the power max{p,2} to
p in Inequality (10), e.g. [NS], [Ku3]. Inequality (10) might be a candidate for a
definition of p-uniformly convex spaces when p < 2, but it forces the space to
have finite diameter.
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Our proof of Proposition 9 is naturally divided into two cases. We only deal
with the case p <2 here. The other case p > 2 follows from an argument in the
proof of a more general result (Proposition 67), which we defer to the appendix.

We start with the following observation.

LemMmA 13. For any pe([l,2] and r < /2, we have

S . dgz(xa)g —-dgz(x,ni(y,z))
(14) ¢, =8 inf 5
{x,,7} ds(y,2)

> 0,

where the infimum is taken over all {x, y,z} C (S*,dg2) with dg (x, y) = dg(x,2) <r
and y # z.

ProOF. We mimic the argument of Ohta [Oh]. For {x, y,z} C (S% dg) with
y # z, we put
a:=dg(x,y), b:=dg(x,z), c=dge(y,2)/2, d:=ds(x,7y,(1/2))

and

2 /1 1
f(a’b7c):::25 (56ﬂ7+'§bp _.dp> > 0.

The equality holds only if p =1 and {x, y,z} lies on a great circle.
If a=b, we know d < a=2>b and cos a =cos c cos d. As the function a —
a’~!/tan a is nonincreasing in a on (0,7/2) if p <2, we have

p—1 p—1
af(a,a,c):il;tana(a _d ><0,

tana tand

which implies f(a,a,c) = f(r,r,¢) >0 for any a <r and ¢ > 0. Since

p—1

. pr . 2
}E%f(r’r’c):tanr and 1}Ll}f(”;"ac):r2_pv

we know that the infimum in (14) is positive. O

PROOF OF PROPOSITION 9 FOR p < 2. It suffices to prove Inequality (10) when
t=1/2, k=1 and (Y,d) is isometric to (S? dg). We fix x,y,z e (S? d) with
y,z€ B(x,r) and put w:=m(y,z) €eS?. The argument is divided into several
cases.

If d(x,w) < (1/2)(d(x,y) +d(x,z)) — (1/8)d(y,z), we have
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d*(y,z) d(y,2)\"
dp(x, W) —+ W < dp(x, W) —+ <T)

< (d(x7 w) + d(? Z))p

< (3t n +dx)) < 3@ 00 + ()

If (1/2)d(y,z) < |d(x,y) — d(x,z)|, we use the following p-uniform convexity:

b\ 1 Ry
at ) +l(a_b)zg§(a1’+b1’) for any 0 <a,b <

2
with ¢® .= p(p— 1)( R./2)"* > 0. This yields

|d(x, y) = d(x,2)|”

oo 'EQ;;

d?(x, w) + G (x, ») +d(x, z)))p-i-—

< 3 (@P(x%, ) + d2(x,2).

We now deal with the remaining case. We may assume d(x, y) > d(x,z). Let
E C S? be the great circle passing through w and perpendicular to [x,w]. We also
let ' be the point in EN [x,y] and z’ € S?\{z} be the point for which {x,z’, w}
is isometric to {x,z,w}. Then {w, y, y'} is isometric to {w,z’, y'}.

With the triangle inequality, the assumptions yields

2d(w, y") = d(w, y) +d(x,w) —d(x, )

> WD 2, 2) — o,y - D22 A2

while the choice of y’ and z’ yields

(15) 2d(xa y/) < d(xv yl) + d(y/vzl) + d(xa Z/) - d(xa y) + d(xv Z)'

We combine them with Lemma 13 to conclude

S 2 S
a7 (x. w)+%’(@> < d”(x,w) + %’(w(w Ok

<d’(x,y")
< L+ dr(s )

This completes the proof of Proposition 9 for p < 2. O
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COROLLARY 16 (p-variance inequality, cf. [NS, Ku2]). Suppose pe 2(Y) is
concentrated on S C Y and its p-barycenter b?(p) lies in C:=(\,.g B(s,r)C Y

Sfor some r < R/2 and p e (1,00). Then, with the constant k, >0 in Inequality
(10),

k max
Fi(y) = Fi (0" (w) = ﬁd P2 (3, ()
holds for any ye C.

Proor. We choose z := b”(u) in Inequality (10). Then we divide it by 1 — ¢
and let 1 — 1 to obtain the desired inequality. O

CoroLLARY 17 (cf. Kuwae [Ku2]). Suppose CC Y is a closed R.-convex
subset and p e (1,00). Then, with the constant k, > 0 in Inequality (10) for r <
RK/2>

ky

d’(x, ) — d’(x,nc(x)) 2 5 d™ P2 (y, me(x))

holds for any xe€ Y and ye C with d(x,y) <r.
Proor. The proof is essentially the same as that of Corollary 16. O
There is another notion of convexity of metric spaces.

DeriNiTION 18 (Uniform p-convex spaces, Foertsch [Fo], Kell [Kel]). Let
(X,d) be a geodesic space. For a,b >0 and pell,o), we put .#,(a,b):=
((a? +b?)/2)"? and .., (a,b) := max{a,b}.

(1) We call (X,d) a uniformly p-convex space for p e (1, 0] if there exists

py(e) >0 for any &> 0 with

(19) d(x,m(y,z)) < (1 = p,(&)Ap(d(x, y),d(x,z2))

for any x,y,ze X with d(y,z) > e, (d(x, y),d(x,z2)).
(2) We call (X,d) a uniformly 1-convex space if there exists p;(¢) >0 for
any ¢ > 0 with Inequality (19) with p =1 holds for any x, y,z € X with

(20) d(y,z) > d(x, y) — d(x,2)[ + &40 (d(x, y), d(x, 2)).
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Foertsch [Fo] investigated the above uniform 1- and oo-convexity under the
names uniform distance and ball convexity. Subsequently Kell [Kel] introduced
the above uniform p-convexity for pe (1,00). He proved that uniformly p-
convex spaces for some p > 1 are uniformly g-convex for all ¢ € [p, co] and that
CAT(0)-spaces are uniformly p-convex for all p € [1, co]. He also remarked that
p-uniformly convex spaces in the sense of Definition 11 are uniformly p-convex
spaces in the sense of Definition 18 for any p € [2, ).

As for CAT(x)-spaces, we can prove

ProposITION 21.  On any CAT(x)-space (Y,d) with k >0 and for any r <
R, /2, Inequality (19) holds with p e (1,00) for any x,y,z€ Y with y,z € B(x,r)
and with p=1 for any x,y,ze Y with y,ze€ B(x,r) satisfying Inequality (20).
In particular, any CAT(i)-space Y with diam Y < R,/2 is a uniformly p-convex
space in the sense of Definition 18 for all p e |[l, o).

Proor. Our proof is similar to that of Proposition 9 for p < 2 presented
above. It suffices to prove in the case (Y,d) is isometric to the unit sphere
(S?,dg>) and p = 1. For any three points x, y,z € (S* d) satisfying Inequality
(20), we suppose d(x, y) > d(x,z) and put w:=m(y,z) € S>. We reuse the nota-
tions ',z € S? used in our proof of Proposition 9 for p < 2.

We may assume

(22) M = 4(d(x,),d(x,2)) == (d(x,y) +d(x,2)) > r/4.

N —

If M < r/4, we have max{d(x,y),d(x,z)} < r/2 and choose J,%eS? with
d(x,%) =2d(x,x) <r for xe{y,z} and d(7,2) =2d(y,z).

Then the CAT(1)-inequality for (S? 2d) implies 2d(x,w) < d(x,w) with W :=

m(p,z) and Inequality (19) for x, y, z follows from that for x, y, Z.

We may also assume d(x,w) > (1 — (¢/4))M, because otherwise we have
nothing to prove. Inequality (20) yields

2(d(w, y) —d(x,y)) = d(y,z) —d(x,y) +d(x,2) =2M > (¢ = 2)M
and hence by the triangle inequality we obtain

2d(w, y/) > d(x, W) +d(w, y) - d(x’ y) > 2M
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Inequality (15) means d(x,y’) < M. Combining with Lemma 13 and In-
equality (22), we conclude

S 2 Sr o,
d(x,w) <d(x,y") — L 2dw,y"))" <1 -25e* | M.
8 512
The last statement of the proposition follows from [Kel, Lemma 1.4] or Proposi-
tion 9 and Fact 5. This completes the proof. O

4. Proof of Theorem B

In this section, we present a proof of Theorem B stated in Introduction after
making some comment.

Theorem B is known for CAT(0)-spaces and other spaces, cf. Sturm [St],
Naor-Silberman [NS], Kuwae [Ku2, Ku3]. In those cases, the proof relies on the
convexity of the distance function of those spaces. We instead exploit Theorem A
to prove Theorem B for CAT(k)-spaces. Theorem B with p =2 was proved in
[Yol.

The following examples explain the subtlety of the uniqueness of p-barycenter
when p is equal or close to 1.

ExampLE 23. Let x # y € X be two points of a metric space (X,d). Suppose
a probability measure u € 2(X) is concentrated on

{zeX:xe[yz or yelx,z]}.

If x and y are l-barycenters of u, then so is any point w e [x, ] C X. This
happens for example when u = (1/2)(0y +9J,) € 2(X).

ExampLE 24 (e.g. Afsari [Af, Remark 2.4]). For four points xp,...,x3€
(S?,dg>) with

ri=dg(x0,x;) and D :=dg(x;,Xx;)

for each 1 <i# j <3, we consider u:= (1/3)37 8, € 2(S?). If p and r are
close to 1 and 7/2 respectively, we have F7(x;) < F[(xo) for i # 0 and x has at
least three p-barycenters.

Now we begin our proof of Theorem B. Our proof is naturally divided into
two parts.
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4.1. Existence. We start with the existence of p-barycenter. For this, we
prove the following more general theorem. Our proof was inspired by that of
Kendall [Ke, Theorem 7.3] and is similar to that of [Yo, Theorem B].

THEOREM 25. Suppose Y, r < R./2 and pe P(Y) are as in Theorem B in
Introduction and p > 1. Then any sequence (Xn),.n in Y with FJ(x,) — infy F/
as n — o0 has a subsequence which converges to a p-barycenter of w.

We first prove the following lemma. Inequality (27) is similar to the definition
of the weak convergence of Jost [Jo], cf. Lemma 29 below.

LemmA 26. Let (Y,d) be a complete CAT(x)-space with x € R. Suppose
®(x,,-) : C — [0, 00) is a convex function on a closed R,-convex subset C C B(o,r)
with o€ Y and r < R,/2 for all ne N with

sup  D(xy,, y) < 0.
neN,yeC

Then there exist an infinite subset N C N and a point x,, € C with

(27) liminf ®(x,, y) — O (x4, X) =0

N an—o0

for any ye C.

Proor. We let Ay := N and take a decreasing sequence {A,}, .y of infinite
subsets of N as follows: Suppose we have chosen A,_; C N. We put

=inf inf sup ®(x;
¢ = Inf inf, sup ®(x;, ),

where A runs over all infinite subsets of A,_;\{min A,_;}, and choose an infinite
subset A, C A,—1\{min A,_;} for which

¢, = inf sup ®(x;,») > ¢,
YeC jen,

satisfies ¢, — ¢, — 0 as n — oco. Then ¢, is nondecreasing in n € N and hence the
limit value

9, = lim g, = lim ¢, < sup D(x,,p) < w©
n— o0

=0 neN,yeC
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exists. We put

ro = inf ¢ liminf d(o, y,) : sup ®(x;, yp) — ¢, as n— o0 p <7,
() | 17— ieA,
where the infimum is taken over all such sequences (y,),.n in C.
Then there exists a sequence (y,),.n With

d(o,y,) = re and sup ®(x;,y,) — ¢, as n— oo.
e,

It follows from Fact 5 that (y,),.n is @ Cauchy sequence in C C Y and hence
converges in Y. The infinite subset 4" := {min A, : n € N} and the limit point
Xoo :=lim,_,, y, € C fulfill Inequality (27). This finishes the proof. O

DEFINITION 28 (Weak convergence [Jo]). Let (x,),.n be a sequence of points
in a CAT(x)-space (Y,d) with limsup,_, . d(x,,Xxs) < R(/2 for some point
Xy € Y. We say that (x,),.n converges weakly to X if m,(x,) — X as n — o0
for any geodesic y : [0, 1] — Y with y(0) = x,,. Here, 7,(x,) € y([0,1]) C Y denotes
the closest point to x, on the image of p, cf. Fact 7.

The following is a Banach—Alaoglu type result for CAT(x)-spaces.

LemMA 29 (cf. Jost [Jo, Theorem 2.1]). Let (Y,d) be a complete CAT(k)-
space with x > 0. Any sequence (xy),.n of points in B(o,r) with o€ Y and r <
R, /2 has a subsequence which converges weakly to a point in Y.

A proof of this lemma can be found in e.g. [Yo]. As hinted above, Lemma 29
follows from Lemma 26. For reader’s convenience, we give a proof here.

PrOOF OF LEMMA 29. We apply Lemma 26 with

O(xy,-) :=d(xy,-) and C:= ﬂ B(xn, Rc/2) N B(o,r)
neN

to obtain a subsequence, still denoted (x;) and a point x,, € C for which

neN>

(30) liminf d(x,, y) — d(xy,x) =0

n—oo

holds for any y e C. This yields limsup,_,., d(xn, xo) < Ri/2.
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We now suppose that there is a geodesic y:[0,1] — Y with p(0) = x
and

limsup d(x,7,(x,)) > 0.

n— o0

Then by Inequality (30) and Fact 5 the midpoint w, := m(x,7,(x,)) € »((0,1))
of x, and 7,(x,) satisfies

d (X, wn) < d(xp, 7y (xn))

for some large n > 1 and this is a contradiction. I
We will later use the following fact, which follows from Fact 7.

Fact 31. For any sequence (xy),.n Which converges weakly to x,, €Y in a
CAT(x)-space (Y,d) with limsup,_, ., d(xn,Xs) < Ri/2,

liminf d(x,, y) > liminf d(x,,x,) and liminf d(x,,y) = d(xs, )

n— o0 n— o0 n— o0

hold for any point y € B(xo, Rie/2)\{Xs}
We also invoke the following lemma.

Lemma 32 (Ekeland principle, e.g. Ekeland [Ek]). Let f: X — R be a lower-
semicontinuous function on a complete metric space (X,d) with infy f > —oc0.

For any point xo € X and ¢ > 0, we can find a point x, € X for which d(x.,xy) <

(f(xo) —infy f)/e and

f(y) = fx.) —e-d(y,x;) for any yeX.

PrOOF OF THEOREM 25. We recall that pue 2(Y) is concentrated on
B(o,r) C Y for some o€ Y and r < R,/2 and we would like to find a point
where the function F:=F} attains its minimum for p>1. According to
Theorem A, the function ® := (I)‘(’K;l : B(o,r) x B(o,r) — [0, 00) with appropriate
h<h:= cos, r and veR is convex.

We start with the following observations. Similar claims are verified in [Yo]

when p =2 and their proofs can be easily adapted to our case p > 1.
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Cramm 33 ([Yo, Claim 12], cf. Afsari [Af], Claim 59 below). For any ¢ > 0,
there exists 6 =0d(e) > 0 with

F(x) > Bi(nf) F+6 for any xe Y\B(o,r+¢).
0,r

CramM 34 ([Yo, Claim 13]). There exist r' € (0,r) and &' >0 with

DF[1¢] < &' for any x € B(o,R/2)\B(o,r").

We appeal to Lemma 32 to find a sequence (z,),.n C Y for which
d(xy,z,) — 0 as n — oo and

1
F(y) = F(zn) —;d(y,zn) for any ye Y and neN.
By the choice of z,, we have F(z,) — infy F as n — oo and

1
(35) DFIE) =~ || <logs, »0d” 2(3,2) duly) = = I

for any & e C.,. Then Claims 33 and 34 imply limsup,_ ., d(0,z,) <¥' <r.

Lemma 26 states that there is a subsequence, still denoted (z,),.n, and a
point z., € B(o,r’) for which Inequality (27) holds. We intend to prove that a
subsequence of (z,),.n converges to z,, and thus assume that this is not the
case. Inequality (27) allows us to take a further subsequence with

m;ingN D(zp,2,) >% lifqriscgp D(zy,24) >0
and hence inf,,.,en d(zm,z,) > 20 for some small § > 0. Then the collection
{B(z4,0)},n of the balls is mutually disjoint and u(B(z,,d)) — 0 as n — co. We
put M :=max{6" 2, (R,)"*} < .

We fix ¢ > 0 and put y, € [z, ] as the point with d(z.., y.) = ed(z, y) for
each y e B(o,r). The map y+ y, is continuous on B(o,r).

We then use the convexity of ® and Fact 6 to derive for any y € B(o,r)

O(y,y) — @24, y:) = D®[log ., \(, )]
= D®(z,, -)[logye ]+ DD(-, yg)[logzn V).

We put ds(-, ") := Y500y (d(-,-))d (-, ), where x5 ,.\(s) := J5([0, 00)) with J; €
2(R) being the Dirac measure centered at s € R. We shall estimate the integrals
of the above two terms multiplied by df 72(2,1, »).
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First we have

JY DOz, -)[log,, y]dl " (zs, ) du(y)

> 2 (@00 — Oz ) di(y)

I—-¢ . -
> 2| (@0, 2) ~ 02,0}z )] 5 ) i),

with which the dominated convergence theorem yields

n—oo

lim ian D®(z,,-)[log,, ydf > (za, ¥) du(y) = 0.
Y

In the following, C < oo denotes a fixed large constant depending only on x,

r and p. For example, we have

[DO(-, ye)[log., y] — DO(-, z,)[log., y]| < Ce
for any y e B(o,r) and

J DO(-,z0)[log, y]d" 2 (zu, ¥) du(y) < Cu(B(z,,6))5" .
B(z,,0)

Second we have

jy DO(-, y,)llog,, yld! (zn. ») du(y) + C(u(B(za,0)) + Me)
> j DO(-,z.,)[log., yd? (2, y) du(y)
> L (VZ0(-,2,) log, y>d" (2, y) du(y)

I _
> VL0 2,)

Zn

which yields

n—oo

lim ian DO(-, y,)[log,, VId? (20, y) du(y) = —CMe.
Y



p-Barycenter on CAT(1)-spaces 59

Therefore we conclude

lim sup (I)(z,,,zoo)J dfﬁz(zn, y) du(y)
Y

n—oo

< lim supJ (2, y:)d? (20, ¥) du(y) + CMe < 2CMe.
Y

n—o0

Since ¢ > 0 is arbitrarily and
J dl (20, ) dp = min{6”?, (R)” }(1 = p(B(z,,6))) > 0,
Y

we conclude that (z,),.n and hence (x,),.N converge to z., € B(o,r) and thus

F(z) = lim F(x,) :il’}llf F,

n—oo

which means that z,, is a p-barycenter of u.
Now the proof of Theorem 25 is complete. OJ

4.2. Uniqueness. We now proceed to the uniqueness part of Theorem B.
For this, we prove the following more general theorem.

THEOREM 36. Suppose Y, r < R./2 and pe Z(Y) are as in Theorem B in
Introduction and p > 2. Then a point z € B(o,r) with

(37) DFJ[E] =0 for any e C.

is the unique p-barycenter of w. In particular, the p-barycenter b?(u) of u is unique
if p=2.

To prove this, we need the following result from [Yo] for barycenter of
probability measures on CAT(x)-spaces.

ProposITION 38 (Variance inequality [Yo, Proposition 19]). Suppose (Y,d)

and ue #(Y) are as in Theorem 36. Let b(p) = b*(u) € B(o,r) be the barycenter
of u. For any x € B(o,r), we have

| @)= a0, ) duz e bl

with some constants ¢ >0 and o > 2 depending only on x and r.
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ProposITION 39. Suppose (Y,d) and pe P(Y) are as in Theorem 36.
If a point z € B(o,r) satisfies Inequality (37) and El‘l”z(z) = [y d"2(z,") due
(0,00), then z is the barycenter of the weighted probability measure fj :=
(ED2(z)"'dr 2z, )ue 2(Y).

ProOF. By assumption, we have
DF}E| =~ | <Elog. > dily) = (B () DEJIE > 0
Y

for any ¢ e C.. It follows from the characterization of the barycenter established
in [Yo, Corollary 15] that z is the barycenter of /. O

PrOOF OF THEOREM 36. We may assume that u is not a Dirac measure.
Holder’s inequality yields

(JY d(x,) dﬂ)Z/p (JY d’(z,) d/,t)(pzw - JY d’(z,-) du

> E72(2) JY d(x, ) — d(z,-) dii

for any x € B(o,r), where ji is the probability measure defined in Proposition 39.
Then, Propositions 38 and 39 yield

o (s (ern)

> cEP(2) (JY dar(z, ) dﬂ>(2p>/p i (x.2)

for any x € B(o,r). Combined with Claims 33 and 34, this implies that z € B(o,r)
is the unique p-barycenter of u. O

4.3. The Other Cases. As for p-barycenter of probability measures on
CAT(1)-spaces with p e[l,2), we can prove the following, cf. Afsari [Af].

THEOREM 41. Let (Y,d) be a complete CAT(x)-space with x > 0. Suppose
weP(Y) is concentrated on a subset S C B(o,r) of diam(S) < R./2 with o€ Y
and r < R, /2. For an increasing convex function U : [0, 00) — [0, 00), consider the
function F(x):= [, U(d(x,-)) du for xe Y. If U is not strictly convex, assume
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also that u is not concentrated on the union of images of geodesics passing through
two points (cf. Example 23). Then F admits a unique minimizer in Y, which is also
a unique local minimizer of F in B(o,r).

CorROLLARY 42. Let (Y,d) be as in Theorem 41 and pe€|[l,2). Suppose
we P(Y) is concentrated on B(o,r) with o € Y and r < R./4 and also assume that
U is not concentrated on the union of geodesics passing through two points if p = 1.
Then u admits a unique p-barycenter b?(u) in Y, which is also a unique p-Karcher
mean of u in B(o,r).

ProoF oF THEOREM 41. We first notice that C:=conv(SU{o}) C Y is a
closed R,-convex subset with

Sccc () Blx,Re/2) N Blo,r).

xeC

Then it follows that F|.: C — [0,00) is a convex function. Indeed
1
(@3) Uld(w) < U (50 ) + d(x.2))

< 5 (U(d(x,y)) + Uld(x,2)))

N =

for any xe Y and y #ze B(x,R,/2) with w:=m(y,z) € B(x,R,/2) being a
midpoint of y, z with equalities only if either d(x,y) =d(x,z) € {0, R./2} or
U is not strictly convex and {x,y,z} is on a geodesic. This yields F(w) <
(1/2)(F(y) + F(z)) for any y # z e C by assumption and hence the uniqueness
of a minimizer of F|..

It is easy to check that F(x) > infc F for any x € Y\C. Indeed, we have
F(x) = U(R/2) > F(o) if d(x,C) = R,/2 and F(x) > F(nc(x)) by Fact 7 if
0 <d(x,C) < R:/2. Now the existence of a minimizer of F|. and hence of F
follows from e.g. [Yo, Theorem E].

If xe B(o,r)\C and x’ € [x,nc(x)]\{x}, then by Facts 4 and 7 we have
d(x',y) <d(x,y) for any y e C and hence F(x’) < F(x), which means that x is
not a local minimizer of F and a local minimizer of F in B(o,r) is a minimizer
of F.

Now the proof of Theorem 41 is complete. O

The following proposition characterizes 1-barycenter.
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PRrOPOSITION 44 (cf. Yang [Ya, Theorem 2.2]). Let (Y,d) be a CAT(k)-space
with k € R. Suppose ue P(Y) is concentrated on a subset S C Y. Define

H(z) := supJ (& 12> du(y) = — inf DF,[¢]
cex. Jr\{z} ce;
for ze Y with S C B(z,R;). Then z satisfies DF; [£] =0 for any e C. if and
only if H(z) < u({z}).

In particular, if (Y,d) and pe 2(Y) are as in Theorem 41, then z € B(o,r) is
a 1-barycenter of u if and only if H(z) < u({z}).

Proor. We set F:=F,. If DF[¢] >0 for any ¢ € C;, then we have H(z) <
0 < u({z}). For a fixed xe Y in a neighborhood of z and any x’ € [x,z] with
e:=d(x’,z) >0, Fact 6 and the dominated convergence theorem yield

F(x') — eu({z}) = Jm d(x',) dp

= F(z) + eDF[1Y] + o(e)

> F(z) —¢H(z) + o(e),

where o(¢)/e — 0 as ¢ — 0. This proves the proposition. O

DerFmvITION 45. We define an oo-barycenter of a probability measure ue
2(X) on a metric space (X,d) as a point where the function

X +— esssup d(x,-):= inf{sup d(x,"): N CX with u(N) = O}
X X\N

attains its minimum.

The definition and proof of the unique existence of co-barycenter is essentially
the same as those of circumcenter of subsets of CAT(x)-spaces.

For a subset 4 C X of a metric space (X,d), we define its circumradius as
rady(A) := inf,cx rad,(4), where rad,(4) := sup,. 4 d(a,x) for xe X. A point
x € X giving rad,(A4) =rady(A4) is called a circumcenter of A C X. The radius
of (X,d) is defined as rad(X) := rady(X).

It is easy to see by using Fact 5 that any subset 4 C Y of a complete
CAT(x)-space (Y,d) with ke R and rady(4) < R/2 has a unique circum-
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center contained in the closed convex hull conv(4) C Y of 4, cf. Balser—Lytchak
[BL).

PROPOSITION 46. Let (Y,d) be a complete CAT(x)-space with k € R. Suppose
we P(Y) is concentrated on a subset S C Y with rady(S) < R./2. Then u admits
a unique oo-barycenter b*(u) in Y and b*(u) is contained in the closed convex
hull conv(S) C Y of S.

We omit the proof of this proposition.

5. Properties of p-Barycenter

In this section, we establish several properties of p-barycenter of probability
measures on CAT (x)-spaces with x > 0, which we proved to exist in Theorem B.
We exploit Theorem A in our argument here as well.

A number of properties of barycenter of probability measures on CAT(0)-
spaces are known, e.g. Sturm [St]. We also add that Ohta [Oh2] investigated
barycenter of probability measures on proper Alexandrov spaces of curvature > x.
A couple of properties of barycenter on CAT(x)-spaces are established in [Yo].
Our results in this section extend some of them to the context of p-barycenter on
CAT(x)-spaces. We do not attempt to exhaust such possible extensions. Some of
them might be new on CAT(0)-space as well.

Throughout this section, we usually assume the following unless otherwise
stated.

AssuMPTION 47. + (Y,d) stands for a complete CAT(x)-space with x > 0.

cueP(Y) is a probability measure concentrated on B(o,r) with o€ Y and
r < Ry/2 and hence it admits a p-barycenter b?(u) € B(o,r) for pe|l, ]

- D= (Di"lz : B(o,r) x B(o,r) — [0,00) is the convex function in Theorem A
extended to the closure of the domain with suitable parameters v > —1/2 and
h>0 with h < h:= cos, r.

We remark that a simple estimate says
(48) Cldﬁ(xa y) < (I)(X, y) < Czdﬁ(x, y)

for any x, y € B(o,r), where f:=2(v+1) > 1,

4 v+1 1 v+1
Ci=——— and C) i =——— .
72(1 — h2) 2(h2 — h?)
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5.1. Variance Inequality.

PROPOSITION 49 (p-variance inequality). Suppose (Y,d) and pe 2(Y) are as
in Assumption 47. Let b?(u) € B(o,r) be the p-barycenter of u for p > 2. Then

F(y) = FL(0" (1) = - d™™ 0% (3,67 ()

holds for any y € B(o,r), where ¢ > 0 is a constant depending only on x, r and p
and o > 2 is from Proposition 38.

For the proof, we need

LemMA 50 (cf. Ohta—Palfia [OP]). For any k >0, r < R,/2 and p > 1, there
exists a constant K, <0 with

K
dp(x’ yyz(t)) < (1 - t)dp(xv y) + ldp(x7Z) _7[}1(1 - t)dz(y7 Z)
for any x,y,z € B(o,r) with o€ Y and t€|0,1].

Proor. It suffices to prove this when (Y,d) is isometric to (S? dg). The
proposition follows from the C? property of dgz (x,-) on B(x,m) c S* if p>2
and from Proposition 9 and the C? property of dé’z (x,-) on B(x,n)\{x} C 8* if
p<2. [

PROOF OF PrROPOSITION 49. We fix p>2 and put z:=b"(u). We choose
small ¢ > 0 with

(51) ky(1 — &) + K,(R)* e > k, /2,
where k, >0 and K, <0 are the constants from Proposition 9 and Lemma 50
respectively.

Since

a’? — pr? > gb(”/z)_l(a—b) for any a > b >0,

\]

Inequality (40) yields

| @y du=| @y duz BEpe) e

> L[ @ du etz
Y
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If [ y d’(z,-) du > e"*!, we derive the desired inequality from this one.
Otherwise, Chebyshev’s inequality yields u(B(z,¢)) > 1 —e. Then

K

JY dP(y,) du> (1 —¢)e’ > JY d’(z,-) du+ (1 —2) (Rid(yaz)y

holds for any y € B(o,r)\B(z,2¢). The combination of Proposition 9, Lemma 50
and Inequality (51) yields

j d7(x,7,.(1)) du()
Y

<(1- ;)J & (x, y) du(x) + tjyd”(x, 2) du(x) —%t(l —0d(y,2)

Y

for any ye B(o,r) N B(z,2¢). We then divide this inequality by 1 —¢ and let
t — 1 to obtain

| @y dus | @ au-2arr.c)
Y Y 4
Now the proof is complete. U

REMARK 52. In the situation of Proposition 49, Holder’s inequality yields

[y d’2(z,-) du 1 . 2/p 1 .
Gy a2 e an) 2 o e

and hence Inequality (40) yields a useful inequality

(53) (], a0 du)z/p (] @ du)z/p

| @y du-ar.)

c
(R’
for any y e B(o,r), where ¢ >0 and « > 2 are the constants in Proposition 38
and hence independent of p.

5.2. Continuity of p-Barycenter. We here investigate the behaviour of
p-barycenter when the probability measure and p vary.
For probability measures u,ve #,(X) on a metric space (X,d),

Wy, v) = inf(Jxxxdp(x’ y) dn(x, y)>1/p

T
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denotes the so-called L?-Wasserstein distance between u and v usually defined for
p =1, where the infimum is taken over all couplings n e #(X x X) of u and v,
i.e., the push-forward measures of 7 by the projections pr; : X x X — X, i=1,2,
onto the factors satisfy (pr;),7 =u and (pr,),m = v.

It is known that W,(u, 1) — 0 as n — oo if and only if (u,),.n converges
weakly to u and FJ (x) — Ff(x) as n — oo for any x € X on a complete separable
metric space (X,d). In general we still have

| @y autn <+ |

d?(x,z) dv(z) + C(;J d?(y,z) dn(y,z)
X

XxX

for any ¢ >0 with some C; < o0, x€ X and any coupling 7€ 2(X x X) of u
and ve Z,(X). This implies that FJ (x) — FJ(x) for all xeX and p>1 if
Wy(u,, 1) — 0 as n — oo, cf. Villani [Vi, Theorem 6.9].

THEOREM 54. Let (Y,d) and pe P(Y) be as in Assumption 47. Suppose
sequences (U,),cx C 2P(Y) and (py),en C [1,0) of probability measures con-
centrated on B(o,r) and of real numbers satisfy Wi(u,, 1) — 0 and p, — p as
n— oo for some pe€|[l,c0). Then any sequence (z,),.n Of pa-barycenter of pu,
has a subsequence which converges to a p-barycenter of . In particular, if in
addition p admits a unique p-barycenter b?(u) € Y, the original sequence (z,),.N
converges to b?(u).

PrOOF. Our proof is similar to that of Theorem 25. We set F, := F!.

Hy

Cramm 55. If F,(z,) — 0 as n — oo, then u is a Dirac measure centered at
a point z € B(o,r) and (z,),.N converges to z = bP(u).

Proor. The triangle inequality yields
denn) < | [d5.2) + d(zs ) + d(z )] (. )
YxY
|ty | dedus | deno da,
YxY Y Y
for any coupling 7€ (Y x Y) of u, and w,. Since Holder’s inequality yields

p”
(J d(zy,-) d,un> < puFy(z4) = 0 as n— oo,
Y
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(zn),en 18 @ Cauchy sequence and hence converges to a point z € Y. It follows
that u =0. and hence b?(y) = z. This confirms the claim. O

Claim 55 allows us to assume liminf, .., F,(z,) > 0. We set p) := p, + (1/i)
and F!:= F;" for i,n e N. Then Holder’s inequality yields

. , 1
F,(z,) — 11)1/f F,<—

n

) 1/ipu
<RK>”’—(J dﬂn(zn,»dun) “ 07 (20, dyty < D,
Y Y

for some D; < oo with D; — 0 as i — oo.
We fix ¢ > 0 with & — 0 and D;/e; — 0 as i — co. By appealing to Lemma
32, we find z/ € B(o,r) with d(z},z,) < D;/¢; and

F(y) 2 F(z,) = &d(,2,)

for any ye Y and i,neN.
Lemma 26 states that for any i€ N there exist an infinite subset .4; C N
with A1 C A\ {min #;} and z! € Y with
liminf ®(z!, y) — ®(z},z ) >0
Nidan—ow
for any y e B(o,r).
We fix small ¢ > 0 and 0 > 0. For any x, y € B(o,r), the convexity of ® and
Fact 6 yield

(D(X7 y) - CI)(Z;];7 yr”) = D(D[log(z,ﬁ,yg)(x7 y)]

= DO(-, y;)[log.; x] + D®(z,,-)[log,, yl,

where . €[y,z! ] is the point with d(y.z. ) =ed(y,z.)). We also reuse the
symbol ds(-,-) used in our proof of Theorem 25 above.

In what follows, C < oo is a constant depending on x, r and p similar to the
one in our proof of Theorem 25. For example we have

|| DO yllog ¥ari 2z}, x) dun,(x) < Cuy(Blzh, 007"
B(z,0) !
We put M| := max{é”"i*z, (R,C)p“i*z} < oo and fix couplings 7, € (Y x Y) of u,

and u with [, , ®(-,-)dn, — 0 as n — oo.
Then we have
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J DO, y,)log.; xJd?* (2!, x) dmy(x, y) + C(Mjz + %)
YxY
> | DO 2L log a2z ) du (v
Y

> = | V002 logy W0dr ek, x) diy ()
Y n n
> —s,~|Vz’},;(D(-,zéc)|
> 7C8,’
and
J Dd)(zi’;7 -)[logy” y]d(,»p’ifz(zr’;, X) dmy(x, )
YxY

1—¢ i i i 20 i
> E| (@)~ O AL ) ()
YxY

&

1—¢
e

M| min{®(z), ) - €(1,2,),0)d (L ) duly),
Y
with which the dominated convergence theorem yields

lim inf J DO(z,,-)[log,, y}d(f;*z(z,’;,x) dm,(x,y) = 0.
YxY

Nian—oo

As ¢ > 0 is taken arbitrarily, we obtain

lim sup (I)(z,i,zéo)J dg"iiz(z,’;,x) du, (x) < Ce + CoP~1H1/D),
Y

Nian—owo
Then, since ¢ > 0 is taken arbitrarily and

P:;*Z i, 1 Pn( -1 . _ i Pn
[, 4G a2 ([, a7 hoo dy — sl

: i ;
we have limsup .., ., ®(z,,z,,) — 0 as i — oo.

Since

d(zm,zn) < d(zm,zfn) +d(z! 2 )+ d(zn,zfl) + d(zfl,ziw)

m? < oo
for any m,n e 4; and i € N, we conclude that (zmin .1;);.n 1S @ Cauchy sequence

and hence the limit z,, :=lim;_, o, Zmin .4; eXists. It follows that z,, is a p-barycenter
of u. Now the proof is complete. O
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PropoSITION 56 (cf. Al-Salman-Hajja [AH)). If (Y,d) and pe P(Y) are as
in Assumption 47, then d(b?(u),b* (1)) — 0 as p — oo.

Proor. We may assume that g is not a Dirac measure. Lemma 29 states
that any sequence (z,),.n Of pn-barycenter z,:= b (u)e B(o,r) of u with
pn — o0 as n— oo has a subsequence, still denoted (z,)
weakly to a point z,, € B(o,r). We put

1eN> Which converges

1/p
O, = ([ 1 dn) " and LFOIL = esssupl )

for a function f:Y — R and d_(-,-) := min{d(-,-), R./2}.
The combination of Hoélder’s inequality, Fatou’s lemma and Fact 31 yields

\Y

liminf ||d(zy, -)|,, = liminf[|d(z,, )],

Y

[[liminf d(z,,-)||

n— o0 P

> [[liminf d_(z,, ), = [ld-(z.r. ),

for any pe(1,0). Since [|d—(ze,")|l, = ll[d-(z0, )|, as p — oo, we have

0"

liminf (|d(z,, )|, = [|d- (200, )l = (1467 (1), -l

On the other hand, Inequality (53) states

1B (1), )y, = ld(zn, )y, = e()d* (6™ (1), z),

where c¢(u) >0 and o > 2 are constants independent of .
We conclude z, — b*(x) as n — oo and hence b”(y) — b*(u) as p — oo.
Now the proof is complete. O

5.3. Convex Hull Property of p-Barycenter. It is known that the bary-
center of a probability measure e % (Y) on a complete CAT(0)-space Y lies
in the closed convex hull of a subset on which u is concentrated, e.g. Sturm
[St, Proposition 6.1]. This was also proved in [Yo] for barycenter of probability
measures on CAT(x)-spaces as in Theorem B. We prove that this is the case for
p-barycenter on CAT (x)-spaces.

THEOREM 57. Let (Y,d) be a complete CAT(x)-space with k >0 and p > 1.
Suppose pe P(Y) is concentrated on a subset S C Y with C :=vconv(S) C B(o,r)
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Sfor some o€ Y and r < R,/2. Then

Fi(x) > inf Ff(x)

holds for any x € Y\C. In particular, any p-barycenter of u lies in C.

We first prove a weaker inequality. For possible future application, we state
and prove it in general form.

ProposITION 58.  Suppose (Y,d), we P(Y) and C C B(o,r) are as in Theorem
57. Let U :[0,00) — [0,00) be a nondecreasing continuous function. Then

Jy U(d(x,-)) du > inf JY U(d(x,-)) du

xeC

holds for any xe Y.
Proor. We set F(x):= [, U(d(x,-)) du for xe Y.
Cramv 59 (cf. Claim 33). F(x)>infp,, F for any xe Y.

Proor. If x e Y\B(o,2r), we have F(x) > U(r) = F(o).

If xe B(o,2r)\B(o,r), we choose x'e€o,x] with d(x,x") =2(d(x,0)—r).
Then we have d(x',y) <d(x,y) for any ye B(o,r) and thus F(x) > F(x') >
infp, ) F, cf. [Af, Yo]. This verifies the claim. O

We fix small 6 > 0 and define a sequence (C}'),”, of closed R,-convex subsets

of Y as follows:

0

C):=C and C/™ .= {xe B(o,r) : ian O(x, y) 35}
yedy

for n > 0.
We fix x € B(o,r)\C. Then there exists a minimum number N € NU {0} for
which x e C{. Since

~ 5\I/ ~ 5\I/8
B| C7, (E) cctt e Bl ¢y, (6) ,

we have N < (Cy/0)Pd(x,C) < o0, where C, and C, are the constants in
Inequality (48). We then define a sequence (x?)Y, of points as follows:

N ._ n._ n+l1 n
x5 =x and xj=mnc(x5T) e G
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for n=0,...,N —1. We have

N S\ C, 1/8
Zd(xg”l,xg) < N(> < () d(x,C) =D < o0.
n=1 G Gi

Since /. (x}~';x7, ) = n/2 and
d(xi ' y) +d(xp, y) +d(x Xl < 4r < 2R,
for any y e C we have
d(xj', y) <d(x},y) if d(x},y) < Re/2;
Ay, y) <d(x, y) +ed(xpxp) if d(x},y) = Re/2,
where ¢ = &(d;r) > 0 is a constant with ¢ — 0 as 0 — 0, and hence
d(x3, v) < d(x, ) if d(x, ) < R/2:
d(x),y) <d(x,y)+ De if d(x,y) > R,/2.

Now the dominated convergence theorem yields

iréf F < limsup F(x)) < lin(l)J U(d(x,-) + De) du = F(x).
60 e=0 Jy

Combined with Claim 59, this finishes the proof. |

Proor oF THEOREM 57. We set F:= F/ and assume that there is a point
xo € Y\C with F(xy) =infy F. By Claims 33 and 34, we know x, € B(o,r)\C.
We repeat the argument in our proof of Proposition 58 with U(s) := (1/p)s? to
obtain a sequence (x,),.n of points x, := x?/n € C for which

limsup d(x,, y) < d(xy,y) for any ye C.

n—oo

Theorem 25 states that a subsequence of (x,), . converges to a point x,, € C
where F(x.) = F(x9) =infy F and

d(xy,y) =d(xo,y) for p-ae. yeVY.
We use the convexity of @ in Theorem A and Fact 6 to derive for any y e C
O(y,y) — O(x0, Xo0) = DD[logy, 1,1 (¥, )]
= D®(-, x)[log,, y] + DO(x, - )[log,, ]

= _<Vx_0q)('7x00)710gx0 ¥y - <V;7:(D(x07 ')710gx% .
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We integrate this inequality with the measure @”~2(xo,-)u to obtain
—(D(XO,XOC)J dp72(x07 y) d/,l(y)
Y
> = | OO0 ) Tog, 307 0. 5) du)

- j (V2 ®(x0, ), log,, y>d”2(x0, y) du(y)

= DF[V_®(-,xy)] + DF[V, ®(xo,-)] > 0.

Since
J d"2(x0,+) dp = min{d”*(xp, C), (R)" 7} > 0,
Y
we conclude xy = x., € C. This completes the proof. O

ReMARK 60. In [Ku2], a minimizer of the restriction of the function x —
[y d?(-,x) —dP(-,x0) du, with xo € (X,d) being fixed, on the closed convex hull
of the support of ue 2, i(X) is called a pure p-barycenter of u. The support of
a measure u on a metric space X is defined as

supp[y] := {x e X : u(B(x,r)) > 0 for any r > 0}.

On a complete separable metric space, supp[y| is the minimal closed subset
on which u is concentrated. Theorem 57 states that p-barycenter and pure p-
barycenter coincide for ye 2(Y) as in the theorem on a complete separable
CAT(x)-space (Y,d) with x> 0.

5.4. Jensen’s Inequality. Jensen’s inequality is also one of the properties
that we expect to hold for barycenter, cf. Kuwae [Ku, Ku2]. The following is a
direct consequence of Proposition 39 and Jensen’s inequality proved for bary-
center in [Yo, Proposition 10 and Theorem 25]. Due to the subtlety of Jensen’s
inequality for p-barycenter, also pointed out by Kell [Kel2], this is the best that
Wwe can prove now.

ProposITION 61 (Jensen’s inequality). Let (Y,d) be a complete CAT(x)-
space with k>0, ue 2(Y), p=2and ¢ : Y — RU {0} be a lower-semicontinuous
convex function. Suppose either y is concentrated on a ball of radius < R./2 in Y
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and hence it admits a unique p-barycenter b’(u) e Y or ¢ is locally Lipschitz at
a p-barycenter b?(u) of u and p is concentrated on B(b?(u),R,). Then

o(b7 (1)) < qu) d.

Here, e 2(Y) is the probability measure defined in Proposition 39.

6. Banach-Saks Property of CAT(x)-Spaces

In this section, we establish analogues of the Banach—Saks—Kakutani type
result formulated with p-barycenter on CAT(x)-spaces. They generalize the the-
orems of Jost [Jo, Theorem 2.2] and the author [Yo, Theorem C].

Kakutani [Ka] proved the Banach—Saks property of uniformly convex Banach
spaces: any bounded sequence (x,),.n of points of an uniformly convex Banach
space B has a subsequence, still denoted (x,), ., for which the sequence (m1,), N

of the arithmetic means m, := (1/n)> ", x; € B converges to a point of B. The
following theorems formulate this property with p-barycenter on CAT(x)-spaces.

THeOREM C. Let (Y,d) be a complete CAT(x)-space with k € R and (x,), N
be a sequence of points in B(o,r) with o€ Y and r < R/2. Then it has a sub-
sequence, still denoted (x,),.n, for which any sequence (m?),_n of p-barycenter
of finitely and uniformly supported probability measures (1/n)3 [0y, € P(Y)
converges to a point x, € Y for all pe[2,0).

THEOREM D. There exists hy € (1/4,1/2) which satisfies the following: Let
(Y,d) be a complete CAT(i)-space with k € R and (x,),.N be a sequence of points
in B(o,r) with o € Y and v < hoR,.. Then it has a subsequence, still denoted (x,), x>
Sor which any sequence (m%), N of p-barycenter of finitely and uniformly supported
probability measures (1/n)>"", 0y, € P(Y) converges to a point x,, € Y for all

pe[l, ).

In particular, Theorem D holds for any bounded sequence in complete
CAT(0)-spaces. It might be interesting if Theorems C and D could be generalized
as a theorem. Namely it is not clear now whether we can take /o =1/2 in
Theorem D. Our proof of Theorems C and D uses only a few properties of
CAT(x)-spaces and it also works for more general convex spaces, cf. Kell [Kel].

Now we begin our proof of Theorems C and D. They share several initial
steps in the proof.
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ProorF OF THEOREMS C AND D. We may assume that x > 0 because the
proof of the theorems for nonpositive ¥ < 0 is reduced to that for positive x > 0.
»en» Which
converges weakly to a point x., € B(o,r). By Fact 31, we may further assume

Lemma 29 states that (x,),.n has a subsequence, still denoted (x,)

that the limit p :=lim,_ ., d(x,,x) < r exists and

(62) lim inf d(xp, X0, X)) = p.

n—o0 m=>=n

We put

P(I) =
A(I) _;Egl Zd Xi, X ]

151

for a finite subset I C N of cardinality #I < co. We notice that 2A’(ITUJ) >
AN(I)+ AP(J) for any I,J C N with #I =#J and INJ = .
The following observation is the key.

CLAmM 63. For each k,N e N, we put I} :={(k—1)2V +1,...,k2"} c N.
If (xn),oN satisfies

(64) sup{li]£ninf AIYN):Ne N} =

Sfor some q =1 and p-barycenter ml satisfies ml € B(xo.,r) with r +1 < R./2 for

allneN if p € [q,2), then the sequence (m?), N converges to x, for all p € [q, ).

ne

Proor. Holder’s inequality yields
p = liminf (A7 (5" NP> lim inf (AI(IN))Ve
— 00 — 00

for any p > ¢ and N € N. This means that Equation (64) for some ¢ > 1 implies
the same equation for all p > q.
We fix p e [q,o0). By assumption, there exists N € N for any ¢ > 0 with

pr > hmmfl Zd Xi,m )1 11m1nf ZAP IN] >pP—¢

n—o0

and hence we have

1 n
P frd 1 — P . = P
(65) p ,,h_r,?@ [n E d?(xi,x) ] 1111317 [n E d? (x;,m 1

i=1
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If p > 2, Proposition 49 states
—Z (xir X20) = d” (xiymf)) = ¢ d™XP mf x,)

for neN. If 1 < p<2 Corollary 16 gives a smilar variance inequality on
B(x.,r). We then infer that d(m?

n’

We now consider the case p = 1 and suppose limsup,,_,., d(m!, x,) > 0. For
i <n, we define &' >0 by

Xp)— 0 asn— oo if p>1.

d(myy, xoc) = |d(xi,my) — d(xi, x00 )| + e M1 (d (xi,my ), d (xi, x20)),

where ./ (-,-) is defined in Definition 18. With w, := m(m}, x.,), it implies
1zn:d(x' wy) < 1zn:(l — p(eM)dty (d(x;,m)), d(x;, X))
n o H'Wn) = n o i I nlo (SRddee]

1 & |
< E;(d(xiamn) + d(xiaxoo))7

where p(-) =p;(-) >0 is the constant in Proposition 21 with p(0):=0.
Hence Equation (65) with p =1 gives #I(gn)/n— 1 as n— oo as well as
liminf,_., #I(gn)/n <1 for any & > 0, where

I(g;n) :={ie{l,...,n} ¢ <e};
Li(gn) = {ieI(e;n) : +(d(x;,m)) —d(x;,x,)) = 0}.

We choose an infinite subset 4" C N with

p = lim d(m) x,)=limsup d(m}! x,) >0

N an— 0 n—oo
and i(n), j(n) € I_(e(n);n) for some &(n) > 0 with i(n) < j(n), i(n) — oo and &(n)
— 0 as n — o0. We pick xlf(n> € [Xi(n), Xoo| for me A" with lim y5, o0 d(xlf(n),xoo)

= p’. Then we have lim_;5,_ d(m,l,xl(n)) =0,

lim  d(xi ,m)) = lim d(Xin), Xo) —d(m! x,)
N an—w N an—ow

lim  d(x, m!)
N an—wo

!

im  d(xj),x0) —d(my, X)) =p—p

N'an—wo
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and
p>p—p = i’nlim d(Xj(n)s X)) = limsup d (), [Xign), Xoo])-
N an—oo N an—owo
This contradicts Equation (62). The claim is confirmed. ]

ProoF oF THEOREM C. To prove Theorem C, we find a subsequence (x,), N
with

inf A*(IY) / p* as N / .
keN

This was done in the proof of [Yo, Theorem C] by using Fact 31 and Proposition
38. Then Theorem C follows from Claim 63. O

Proor oF THEOREM D. There exist /g € (1/4,1/2) and 6y > 0 with
h(x;p,2) <m/2 = 0o

for any x, y,z € (S?,dg) with dg(x,z) € [((1/2) — ho)m, hor], dg2(y,z) < hom and
dg2(x,y) > m/8.

We put r:=rif r < R./4 and r:= ((1/2) — ho) R, if R./4 <7 < hoR,. Then
r+r < R./2. We notice

d(x,x,) <d(x,x5) +d(xp, X)) <7471

for any xe B(x.,,r) and Fact 31 implies that we may assume that the set
{B(xn,p/2)},cn of balls is mutually disjoint.

For any probability measure v e 2(Y) which is finitely and uniformly sup-
ported on {x,:neN} C Blo,r), if #(supp[v]) € N is large enough, we have

DFP[13+] = — J €08 £4(y, %0 )d" (x, y) dv(y)

< —J oS J(X; y, X5 )dP " (x, y) dv(p) < 0
Y

for any xe B(x,,7)\B(x.,r) and hence b?(v) € B(xy,r). Then Corollary 16
states that the p-variance inequality holds for such ve 2(Y) on B(x,r) and

pe(l,2].
To prove Theorem D, we find a subsequence (x,),.n for which

A4(IY) > pfi for any keN and N > N..
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holds for any i e N with some ¢; \\ 1, p; /' p and N; /0 as i / o. This is
done in a way similar to the proof of [Yo, Theorem C] by using Fact 31 and
Corollary 16. Then Theorem D follows from Claim 63. |

Now the proof of Theorems C and D is complete. OJ
We conclude this paper with several remarks.

REMARK 66. It is not known now whether the condition p > 2 is optimal for
the uniqueness of the p-barycenter in Theorem B, cf. Example 24.

Buss—Fillmore [BF] proved that any finitely supported probability measure
we 2(S") which is concentrated on B(o,7/2) but not on the boundary dB(0,7/2)
for some 0 €S" admits a unique barycenter. The author does not know whe-
ther this can be generalized to p-barycenter of probability measures on general
CAT(1)-spaces.

Ohta—Palfia [OP] recently studied gradient flow on CAT(1)-spaces. It would
be interesting to establish convergence of gradient flow or some algorithm to a
p-barycenter, cf. Afsari-Tron—Vidal [ATV].

Appendix A. Proof of Proposition 9 for p > 2

In this appendix, we prove the following proposition, which might be of
independent interest. Proposition 9 for p > 2 follows from a similar argument.
Recall the definition of p-uniformly convex spaces in Definition 11.

PROPOSITION 67.  Any p-uniformly convex space (X,d) for some p>2 is a
q-uniformly convex space for all g > p.

Proor. We fix xe X, a geodesic y:[0,1] - X, t€0,1] and ¢ > p then
put y:=»(0), z:=y(1) and w:=p(f). We start our proof with the following
observation.

Cramm 68. If d(x,w) = ed(y,z) for some & >0, we have

d(x,w) < (1 — 0)d"(x, ) + td*(x,z) — LeTPc, - 1(1 — )d(y, z).
V4

In particular, the function d?(x,-) is convex on X for any x e X.
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PrOOF. To see this, we let J(s) := s9/7 be the increasing convex function on
[0,00). We have

J(d?(x, ) = T(d (x,w)) > T (d? (x, ) (@ (x, y) — d” (x, w));
J(d?(x,2)) = T(d (x,w)) = J'(d? (x, ) (@ (x, 2) — d” (x, w)

and hence
(1 =0)d(x,y) + td?(x,z) — d(x,w)
> J'(d?(x,w))[(1 — 0)d? (x, y) + td?(x,z) — d” (x, w)]
> %s"f”cp (1 =0d¥(y,z).
This verifies the claim. O

We put ¢, = (¢/157p)c, > 0. Now we suppose d(x,w) < (1/5)d(y,z). We
may also assume 7€ [l1/2,1) and put y’' :=y(¢/3) and y” := y(2¢/3).
Since d(x,y’) =d(w,y’) —d(x,w) = (1/5)d(y, y"), Claim 68 implies

di(x,y) —d(x,y") _dx,y") —dx,y")

A=
t t
4% gacy o
2 Sip 207 (")
= ¢yd*(y,72)
as well as
q N _ q " q ny _ q y
g ) —di(xy")  di(x, y") —di(x,w) > 0:
t t
q " _ ga Ax. w) — d?
C::d (x, ") —di(x,w) d(x,w) —d(x,z) >0,
t/3 1—¢

Now we gather

di(x,y) —d(x,w) di(x,w) —di(x,z)

=A+2B+C
t 1—1¢

= chq(y7z)7

which is equivalent to the desired inequality. This completes the proof. O
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Proposition 67 implies that CAT(0)-spaces are p-uniformly convex spaces for
all p > 2. In literature, e.g. Naor—Silberman [NS], Kuwae [Ku2, Ku3], this fact
is stated as a consequence of an isometric embedding of the Euclidean plane R>

into L7”-space.
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