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CONVEX FUNCTIONS AND p-BARYCENTER ON

CAT(1)-SPACES OF SMALL RADII

By

Takumi Yokota

Abstract. We establish unique existence of p-barycenter of any

probability measure for pb 2 on CAT(1)-spaces of small radii.

In our proof, we employ Kendall’s convex function on a ball of

CAT(1)-spaces instead of the convexity of distance function. Various

properties of p-barycenter on those spaces are also presented. They

extend the author’s previous work [Yo].

1. Introduction

In this paper, we extend our previous work [Yo] on barycenter of probability

measures on CAT(1)-spaces and study p-barycenter of them for some real

number pb 1. CATðkÞ-spaces are metric spaces with k A R as an upper bound

for the curvature in the sense of Alexandrov which is defined in terms of the

convexity of distance function. The precise definition is given in Definition 3

below.

Definition 1 (p-barycenter). For a metric space ðX ; dÞ and p A ½1;yÞ, we
let PðXÞ be the set of all Borel probability measures on X and PpðXÞ be the

set of all m A PðXÞ with
Ð
X
d pðx0; �Þ dm < y for some (hence all) x0 A X . For

a probability measure m A PpðXÞ, we call a point of X where the function

F p
m : X ! ½0;yÞ given by F p

m ðxÞ :¼ ð1=pÞ
Ð
X
d pðx; �Þ dm attains its global (resp.

local) minimum a p-barycenter (resp. a p-Karcher mean) of m.

In [Yo] we studied 2-barycenter, usually called barycenter, center of mass

or Fréchet mean in the literature, of probability measures on CAT(1)-spaces. We
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remark that 1-barycenter, also called median, e.g. Yang [Ya], is a generalization

of Fermat(–Torricelli) points of plane triangles and Steiner points in Sakai [Sa].

For example, p-barycenter appears in the works of Afsari [Af ], Naor–Silberman

[NS] and Kuwae [Ku2, Ku3].

The theory of barycenter of probability measures on CAT(0)-spaces has been

developed by many authors; See e.g. Sturm [St]. It is well-known that the distance

function d : Y � Y ! ½0;yÞ of a CAT(0)-space ðY ; dÞ is convex in the sense of

Definition 2 below. The following theorem is the main tool that we use in our

approach, which states that any small ball in a CATðkÞ-space with k > 0 also

admits such a convex function. Here and hereafter, Bðo; �Þ and Bðo; �Þ denote

open and closed metric balls centered at o A Y respectively. We also use Rk :¼
p=

ffiffiffi
k

p
and cosk r :¼ cosð

ffiffiffi
k

p
� rÞ for k > 0 and r > 0.

Theorem A (Kendall [Ke2], Jost [Jo2] and [Yo]). Let ðY ; dÞ be a CATðkÞ-
space with k > 0 and r < Rk=2. For any h > ~hh > 0 with ha cosk r, n A R and

o A Y , the function F
ðkÞ
n;~hh

: Bðo; rÞ � Bðo; rÞ ! ½0;yÞ given by

ðx; yÞ 7! 1

k
� 1� cosk dðx; yÞ
cosk dðx; oÞ cosk dðy; oÞ � ~hh2

 !nþ1

is convex provided 2ð2nþ 1Þ~hh2ðh2 � ~hh2Þb 1.

Kendall [Ke2] proved Theorem A for the unit sphere of the Euclidean space

and remarked that it also holds for Riemannian manifolds. Jost [Jo2] gave an

application of Theorem A. A detailed proof of Theorem A can be found in the

appendix of [Yo].

We now state the main theorem of this paper. We say that a measure m

on a space X is concentrated on a subset S � X if mðXnSÞ ¼ 0. We notice that

m A PpðXÞ for any p A ½1;yÞ if m A PðXÞ is concentrated on a bounded subset of

a metric space X . The radius of a metric space ðX ; dÞ is defined as radðXÞ :¼
infx AX supy AX dðx; yÞ.

Theorem B. Let ðY ; dÞ be a complete CATðkÞ-space with k > 0. Suppose

m A PðYÞ is concentrated on a ball Bðo; rÞ with o A Y and r < Rk=2. Then m admits

a p-barycenter for any pb 1, which is the unique p-barycenter in Y and the unique

p-Karcher mean in Bðo; rÞ if pb 2. In particular, if radðYÞ < Rk=2 and pb 2, any

m A PðYÞ admits a unique p-barycenter bpðmÞ in Y.
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This generalizes the main result of [Yo]. The upper bound Rk=2 for the

radius is almost sharp, cf. Remark 66 below. The combination of our result, i.e.,

Theorem B, Corollary 42 and Theorem 57 below, extends the result [Af, Theorem

2.1] of Afsari to general CATðkÞ-spaces.
In addition to Theorem B above, we also establish an analogue of the

Banach–Saks–Kakutani type theorem for p-barycenter on CATðkÞ-spaces as

Theorems C and D below. They extend the theorems of Jost [Jo, Theorem 2.2]

and the author [Yo, Theorem C].

The structure of this paper is as follows: Section 2 consists of several

definitions and properties of CAT-spaces. In Section 3, we prove propositions

pertaining to the local convexity of CAT(1)-spaces, which might be of inde-

pendent interest. We prove Theorem B in Section 4. Then Sections 5 and 6

are devoted to a collection of several properties of p-barycenter of probability

measures on CATðkÞ-spaces, some of which might also be new on CAT(0)-

spaces.

In this paper, we reuse almost all of the materials from our previous work

[Yo]. For this reason, there must be substantial text overlap between them.

2. Preliminaries

In this section, we recall some rudimentary definitions and facts on the

geometry of CAT-spaces. The textbook [BBI] by Burago–Burago–Ivanov is one

of the standard references of the Alexandrov geometry. A reader who is familiar

with them can safely skip this section.

Definition 2 (Convex function). Let ðX ; dÞ be a metric space. A geodesic

is a curve g : I ! X defined on an interval I � R for which there is a constant

jg 0jb 0 with dðgðsÞ; gðtÞÞ ¼ jg 0j � js� tj for any s; t A I .

We say that a function f : X ! R [ fyg is convex if the function f ðgð�ÞÞ
is convex on I for any geodesic g : I ! X . When X is a product of two

metric spaces Y1 and Y2 equipped with a natural product metric, this amounts

to that f ðg1ð�Þ; g2ð�ÞÞ is convex on I for any pair of geodesics gi : I ! Yi,

i ¼ 1; 2.

For a real number k A R, we let ðMk; dkÞ be the model surface, i.e., the

simply-connected surface with the distance induced by the complete Riemannian

metric of constant curvature k. We will also use ðS2; dS2Þ instead of ðM1; d1Þ
later. We let Rk :¼ p=

ffiffiffi
k

p
for k > 0 and Rk :¼ þy for ka 0.
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Definition 3 (CATðkÞ-space). We call a metric space ðY ; dÞ a CATðkÞ-
space if it is an Rk-geodesic space, i.e., any two points x; y A Y with dðx; yÞ < Rk

are connected by a geodesic, and

dðx; gðtÞÞa dkðx; gðtÞÞ

holds for any three points x; y; z A Y with dðx; yÞ þ dðy; zÞ þ dðz; xÞ < 2Rk, a

geodesic g : ½0; 1� ! Y with gð0Þ ¼ y and gð1Þ ¼ z and t A ½0; 1�. Here, fx; y; zg �
ðMk; dkÞ is an isometric copy of the three-point subset fx; y; zg � ðY ; dÞ and

g : ½0; 1� ! Mk is the geodesic with gð0Þ ¼ y and gð1Þ ¼ z.

We persist in using the letter Y to denote a CAT-space. Unit spheres of

Hilbert spaces and complete Riemannian manifolds with sectional curvature at

most k and injectivity radius at least Rk are typical examples of CATðkÞ-spaces.
CATðkÞ-spaces are also CATðk 0Þ-spaces for k 0 > k and the upper curvature

bound k A R of a CATðkÞ-space changes accordingly as its distance is rescaled

by a positive number.

In this paper, we stick to the same notations as in [Yo], which we here

recollect without giving precise definitions. In the rest of this section, ðX ; dÞ and

ðY ; dÞ denote a metric space and a CATðkÞ-space for some k A R respectively.
� ½x; y� :¼ fz A X : dðx; zÞ þ dðz; yÞ ¼ dðx; yÞg � X for x; y A X .
� gxy : ½0; 1� ! Y denotes the unique geodesic with gxyð0Þ ¼ x and gxyð1Þ ¼ y

for two points x; y A Y with dðx; yÞ < Rk.
� ~ffffkðx; y; zÞ A ½0; p� denotes the comparison angle for three points x; y; z A Y .

For example, it is defined for k > 0 by

cos ~ffffkðx; y; zÞ :¼
cosk dðy; zÞ � cosk dðx; yÞ cosk dðx; zÞ

k � sink dðx; yÞ sink dðx; zÞ

if x B fy; zg and dðx; yÞ þ dðy; zÞ þ dðz; xÞ< 2Rk, where cosk r :¼ cosð
ffiffiffi
k

p
� rÞ

and sink r :¼ sinð
ffiffiffi
k

p
� rÞ=

ffiffiffi
k

p
for r A R.

� ðSx; ffxÞ and ðCx; j � jÞ denote the space of directions and the tangent cone at

a point x A Y respectively with ox A Cx :¼ Sx � ½0;yÞ=Sx � f0g being the

vertex.
� "y

x A Sx denotes the equivalence class of a geodesic from x to y and

ffxðy; zÞ :¼ ffxð"y
x ; "z

xÞ A ½0; p� denotes the angle for x; y; z A Y with x B fy; zg.
� logx y :¼ dðx; yÞ � "y

x A Cx and logx x :¼ ox A Cx for x; y A Y with x0 y.
� juj :¼ ju� oxj and hu; vi :¼ ðjuj2 þ jvj2 � ju� vj2Þ=2 for vectors u; v A Cx at

x A Y .
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� For a function j defined on a neighborhood of x A Y , Dj½logx y� :¼
ðd=dtÞþjt¼0j � gxyðtÞ A R [ fGyg for y A Y with 0 < dðx; yÞ < Rk, if exists,

denotes the directional derivative. If j is locally Lipschitz at x, Dj is

extended to a Lipschitz function on ðCx; j � jÞ.
We list some basic facts on CATðkÞ-spaces which we will make use of later.

Fact 4 (Angle monotonicity/comparison). For any three points x; y; z A Y

with x B fy; zg and dðx; yÞ þ dðy; zÞ þ dðz; xÞ < 2Rk and a point y 0 A ½x; y�nfxg,

~ffffkðx; y; zÞb ~ffffkðx; y 0; zÞb ffxðy; zÞ:

Fact 5 (Local uniform convexity). For any k; r; e > 0 with r < Rk=2, there is

dkðe; rÞ > 0 with

dðx;mðy; zÞÞa r� dkðe; rÞ

for any x A Y and y; z A Bðx; rÞ with dðy; zÞb er. Here mðy; zÞ :¼ gyzð1=2Þ A Y is

the midpoint of y and z.

It is known that d1ðe; rÞ ¼ r� arccosðcos r=cosðer=2ÞÞ for any e > 0 and

r < p=2, e.g. Espı́nola–Fernández-León [EF]. Propositions 9 and 21 below also

give estimates for dkðe; rÞ.
The following fact is used along with Theorem A in our argument.

Fact 6 (First variation formula, cf. [BBI, Exercise 4.5.10]). For any two

geodesics l; m : ½0; 1� ! Y representing l 0ð0þÞ A Cx and m 0ð0þÞ A Cy with x :¼ lð0Þ,
y :¼ mð0Þ and dðx; yÞ < Rk in ðY ; dÞ, we have

d

dt

þ ����
t¼0

dðlðtÞ; mðtÞÞ ¼ �hl 0ð0þÞ; "y
xi� hm 0ð0þÞ; "x

yi:

For k A R, we say that a subset C � X of a metric space ðX ; dÞ is Rk-convex

if any geodesic connecting points x; y A C with dðx; yÞ < Rk does not leave C.

For a subset S � Y of a CATðkÞ-space Y , convðSÞ � Y denotes the closed

convex hull of S, i.e., the smallest closed Rk-convex subset containing S.

Fact 7 (Chebyshev property of convex subsets). Suppose ðY ; dÞ is complete.

For any closed Rk-convex subset C � Y and a point x A Y of Y with dðx;CÞ <
Rk=2, there exists a unique point pCðxÞ A C with dðx; pCðxÞÞ ¼ dðx;CÞ. It also

holds that ~ffffkðpCðxÞ; x; cÞb ffpCðxÞðx; cÞb p=2 for any c A C if they are defined.
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Fact 8 (e.g. Lytchak [Ly, Lemma 7.3]). For a Lipschitz convex function j

defined on a neighborhood of a point x A Y , there exists a vector ‘�
x j A Cx with

Dj½h�b�h‘�
x j; hi for any h A Cx:

We call ‘�
x j the (negative) gradient of j at x.

3. Local Convexity of CAT(1)-Spaces

In this section, we make a detour and discuss local p-uniform convexity of

the distance function of CAT(1)-spaces. Propositions 9 and 21 below are the main

result of this section. They are not used in our proof of Theorem B but might be

of independent interest. A reader in a hurry can safely skip this section.

Proposition 9 (p-uniform convexity of CATðkÞ-spaces, cf. Ohta [Oh]). For

any k > 0, r < Rk=2 and p A ð1;yÞ, there exists a constant kp > 0 with the fol-

lowing property: Let ðY ; dÞ be a CATðkÞ-space with k > 0. Then

d pðx; gyzðtÞÞa ð1� tÞd pðx; yÞ þ td pðx; zÞ � kp

2
tð1� tÞdmaxfp;2gðy; zÞð10Þ

holds for any geodesic gyz : ½0; 1� ! Y connecting y; z A Bðx; rÞ with x A Y and

t A ½0; 1�.

Definition 11 (p-uniformly convex space, [NS], [Ku3, Ku2]). A geodesic

space, i.e., an y-geodesic space, ðX ; dÞ is called a p-uniformly convex space for

pb 2 if there exists a constant cp > 0 for which

d pðx; gðtÞÞa ð1� tÞd pðx; yÞ þ td pðx; zÞ � cptð1� tÞd pðy; zÞ

holds for any x A X , a geodesic g : ½0; 1� ! X with y :¼ gð0Þ and z :¼ gð1Þ and

t A ½0; 1�.

Corollary 12. Any CATðkÞ-space ðY ; dÞ with k > 0 and diam Y < Rk=2 is

a p-uniformly convex space for all p A ½2;yÞ.

Ohta [Oh] proved Inequality (10) with p ¼ 2 and the sharp constant

k2 ¼ 2r=tan r. We refer to Naor–Silberman [NS] and Kuwae [Ku2, Ku3] for

p-uniformly convex spaces. It is not possible to improve the power maxfp; 2g to

p in Inequality (10), e.g. [NS], [Ku3]. Inequality (10) might be a candidate for a

definition of p-uniformly convex spaces when p < 2, but it forces the space to

have finite diameter.
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Our proof of Proposition 9 is naturally divided into two cases. We only deal

with the case pa 2 here. The other case p > 2 follows from an argument in the

proof of a more general result (Proposition 67), which we defer to the appendix.

We start with the following observation.

Lemma 13. For any p A ½1; 2� and r < p=2, we have

cSp :¼ 8 inf
fx;y; zg

d
p

S2ðx; yÞ � d
p

S2ðx;mðy; zÞÞ
d 2
S2ðy; zÞ

> 0;ð14Þ

where the infimum is taken over all fx; y; zg � ðS2; dS2Þ with dS2ðx; yÞ ¼ dS2ðx; zÞa r

and y0 z.

Proof. We mimic the argument of Ohta [Oh]. For fx; y; zg � ðS2; dS2Þ with

y0 z, we put

a :¼ dS2ðx; yÞ; b :¼ dS2ðx; zÞ; c :¼ dS2ðy; zÞ=2; d :¼ dS2ðx; gyzð1=2ÞÞ

and

f ða; b; cÞ :¼ 2

c2
1

2
ap þ 1

2
bp � d p

� �
b 0:

The equality holds only if p ¼ 1 and fx; y; zg lies on a great circle.

If a ¼ b, we know d < a ¼ b and cos a ¼ cos c cos d. As the function a 7!
ap�1=tan a is nonincreasing in a on ð0; p=2Þ if pa 2, we have

q

qa
f ða; a; cÞ ¼ 2p

c2
tan a

ap�1

tan a
� d p�1

tan d

� �
< 0;

which implies f ða; a; cÞb f ðr; r; cÞ > 0 for any aa r and c > 0. Since

lim
c!0

f ðr; r; cÞ ¼ prp�1

tan r
and lim

c!r
f ðr; r; cÞ ¼ 2

r2�p
;

we know that the infimum in (14) is positive. r

Proof of Proposition 9 for pa 2. It su‰ces to prove Inequality (10) when

t ¼ 1=2, k ¼ 1 and ðY ; dÞ is isometric to ðS2; dS2Þ. We fix x; y; z A ðS2; dÞ with

y; z A Bðx; rÞ and put w :¼ mðy; zÞ A S2. The argument is divided into several

cases.

If dðx;wÞ < ð1=2Þðdðx; yÞ þ dðx; zÞÞ � ð1=8Þdðy; zÞ, we have
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d pðx;wÞ þ d 2ðy; zÞ
8pðRkÞ2�p

a d pðx;wÞ þ dðy; zÞ
8

� �p

a dðx;wÞ þ dðy; zÞ
8

� �p

<
1

2
ðdðx; yÞ þ dðx; zÞÞ

� �p

a
1

2
ðd pðx; yÞ þ d pðx; zÞÞ:

If ð1=2Þdðy; zÞ < jdðx; yÞ � dðx; zÞj, we use the following p-uniform convexity:

aþ b

2

� �p

þ
cRp

8
ða� bÞ2 a 1

2
ðap þ bpÞ for any 0a a; ba

Rk

2

with cRp :¼ pðp� 1ÞðRk=2Þp�2 > 0. This yields

d pðx;wÞ þ
cRp

32
d 2ðy; zÞ < 1

2
ðdðx; yÞ þ dðx; zÞÞ

� �p

þ
cRp

8
jdðx; yÞ � dðx; zÞj2

a
1

2
ðd pðx; yÞ þ d pðx; zÞÞ:

We now deal with the remaining case. We may assume dðx; yÞb dðx; zÞ. Let
E � S2 be the great circle passing through w and perpendicular to ½x;w�. We also

let y 0 be the point in E \ ½x; y� and z 0 A S2nfzg be the point for which fx; z 0;wg
is isometric to fx; z;wg. Then fw; y; y 0g is isometric to fw; z 0; y 0g.

With the triangle inequality, the assumptions yields

2dðw; y 0Þb dðw; yÞ þ dðx;wÞ � dðx; yÞ

b
dðy; zÞ

2
þ 1

2
ðdðx; zÞ � dðx; yÞÞ � dðy; zÞ

8
b

dðy; zÞ
8

;

while the choice of y 0 and z 0 yields

2dðx; y 0Þa dðx; y 0Þ þ dðy 0; z 0Þ þ dðx; z 0Þ ¼ dðx; yÞ þ dðx; zÞ:ð15Þ

We combine them with Lemma 13 to conclude

d pðx;wÞ þ
cSp

8

dðy; zÞ
8

� �2
a d pðx;wÞ þ

cSp

8
ð2dðw; y 0ÞÞ2

a d pðx; y 0Þ

a
1

2
ðd pðx; yÞ þ d pðx; zÞÞ:

This completes the proof of Proposition 9 for pa 2. r
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Corollary 16 (p-variance inequality, cf. [NS, Ku2]). Suppose m A PðYÞ is

concentrated on S � Y and its p-barycenter bpðmÞ lies in C :¼
T

s AS Bðs; rÞ � Y

for some r < Rk=2 and p A ð1;yÞ. Then, with the constant kp > 0 in Inequality

(10),

F p
m ðyÞ � F p

m ðbpðmÞÞb kp

2p
dmaxfp;2gðy; bpðmÞÞ

holds for any y A C.

Proof. We choose z :¼ bpðmÞ in Inequality (10). Then we divide it by 1� t

and let t ! 1 to obtain the desired inequality. r

Corollary 17 (cf. Kuwae [Ku2]). Suppose C � Y is a closed Rk-convex

subset and p A ð1;yÞ. Then, with the constant kp > 0 in Inequality (10) for r <

Rk=2,

d pðx; yÞ � d pðx; pCðxÞÞb
kp

2
dmaxfp;2gðy; pCðxÞÞ

holds for any x A Y and y A C with dðx; yÞ < r.

Proof. The proof is essentially the same as that of Corollary 16. r

There is another notion of convexity of metric spaces.

Definition 18 (Uniform p-convex spaces, Foertsch [Fo], Kell [Kel]). Let

ðX ; dÞ be a geodesic space. For a; bb 0 and p A ½1;yÞ, we put Mpða; bÞ :¼
ððap þ bpÞ=2Þ1=p and Myða; bÞ :¼ maxfa; bg.

(1) We call ðX ; dÞ a uniformly p-convex space for p A ð1;y� if there exists

rpðeÞ > 0 for any e > 0 with

dðx;mðy; zÞÞa ð1� rpðeÞÞMpðdðx; yÞ; dðx; zÞÞð19Þ

for any x; y; z A X with dðy; zÞ > eMpðdðx; yÞ; dðx; zÞÞ.
(2) We call ðX ; dÞ a uniformly 1-convex space if there exists r1ðeÞ > 0 for

any e > 0 with Inequality (19) with p ¼ 1 holds for any x; y; z A X with

dðy; zÞ > jdðx; yÞ � dðx; zÞj þ eM1ðdðx; yÞ; dðx; zÞÞ:ð20Þ
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Foertsch [Fo] investigated the above uniform 1- and y-convexity under the

names uniform distance and ball convexity. Subsequently Kell [Kel] introduced

the above uniform p-convexity for p A ð1;yÞ. He proved that uniformly p-

convex spaces for some pb 1 are uniformly q-convex for all q A ½ p;y� and that

CAT(0)-spaces are uniformly p-convex for all p A ½1;y�. He also remarked that

p-uniformly convex spaces in the sense of Definition 11 are uniformly p-convex

spaces in the sense of Definition 18 for any p A ½2;yÞ.
As for CATðkÞ-spaces, we can prove

Proposition 21. On any CATðkÞ-space ðY ; dÞ with k > 0 and for any r <

Rk=2, Inequality (19) holds with p A ð1;yÞ for any x; y; z A Y with y; z A Bðx; rÞ
and with p ¼ 1 for any x; y; z A Y with y; z A Bðx; rÞ satisfying Inequality (20).

In particular, any CATðkÞ-space Y with diam Y < Rk=2 is a uniformly p-convex

space in the sense of Definition 18 for all p A ½1;y�.

Proof. Our proof is similar to that of Proposition 9 for pa 2 presented

above. It su‰ces to prove in the case ðY ; dÞ is isometric to the unit sphere

ðS2; dS2Þ and p ¼ 1. For any three points x; y; z A ðS2; dÞ satisfying Inequality

(20), we suppose dðx; yÞb dðx; zÞ and put w :¼ mðy; zÞ A S2. We reuse the nota-

tions y 0; z 0 A S2 used in our proof of Proposition 9 for pa 2.

We may assume

M :¼ M1ðdðx; yÞ; dðx; zÞÞ :¼
1

2
ðdðx; yÞ þ dðx; zÞÞb r=4:ð22Þ

If M < r=4, we have maxfdðx; yÞ; dðx; zÞg < r=2 and choose ŷy; ẑz A S2 with

dðx; ?̂?Þ ¼ 2dðx; ?Þ < r for ? A fy; zg and dð ŷy; ẑzÞ ¼ 2dðy; zÞ:

Then the CAT(1)-inequality for ðS2; 2dÞ implies 2dðx;wÞa dðx; ŵwÞ with ŵw :¼
mð ŷy; ẑzÞ and Inequality (19) for x, y, z follows from that for x, ŷy, ẑz.

We may also assume dðx;wÞ > ð1� ðe=4ÞÞM, because otherwise we have

nothing to prove. Inequality (20) yields

2ðdðw; yÞ � dðx; yÞÞ ¼ dðy; zÞ � dðx; yÞ þ dðx; zÞ � 2M > ðe� 2ÞM

and hence by the triangle inequality we obtain

2dðw; y 0Þb dðx;wÞ þ dðw; yÞ � dðx; yÞ > e

4
M:
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Inequality (15) means dðx; y 0ÞaM. Combining with Lemma 13 and In-

equality (22), we conclude

dðx;wÞa dðx; y 0Þ � cS1
8
ð2dðw; y 0ÞÞ2 a 1� cS1 r

512
e2

� �
M:

The last statement of the proposition follows from [Kel, Lemma 1.4] or Proposi-

tion 9 and Fact 5. This completes the proof. r

4. Proof of Theorem B

In this section, we present a proof of Theorem B stated in Introduction after

making some comment.

Theorem B is known for CAT(0)-spaces and other spaces, cf. Sturm [St],

Naor–Silberman [NS], Kuwae [Ku2, Ku3]. In those cases, the proof relies on the

convexity of the distance function of those spaces. We instead exploit Theorem A

to prove Theorem B for CATðkÞ-spaces. Theorem B with p ¼ 2 was proved in

[Yo].

The following examples explain the subtlety of the uniqueness of p-barycenter

when p is equal or close to 1.

Example 23. Let x0 y A X be two points of a metric space ðX ; dÞ. Suppose
a probability measure m A P1ðX Þ is concentrated on

fz A X : x A ½y; z� or y A ½x; z�g:

If x and y are 1-barycenters of m, then so is any point w A ½x; y� � X . This

happens for example when m ¼ ð1=2Þðdx þ dyÞ A PðX Þ.

Example 24 (e.g. Afsari [Af, Remark 2.4]). For four points x0; . . . ; x3 A

ðS2; dS2Þ with

r :¼ dS2ðx0; xiÞ and D :¼ dS2ðxi; xjÞ

for each 1a i0 ja 3, we consider m :¼ ð1=3Þ
P3

i¼1 dxi A PðS2Þ. If p and r are

close to 1 and p=2 respectively, we have F p
m ðxiÞ < F p

m ðx0Þ for i0 0 and m has at

least three p-barycenters.

Now we begin our proof of Theorem B. Our proof is naturally divided into

two parts.
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4.1. Existence. We start with the existence of p-barycenter. For this, we

prove the following more general theorem. Our proof was inspired by that of

Kendall [Ke, Theorem 7.3] and is similar to that of [Yo, Theorem B].

Theorem 25. Suppose Y , r < Rk=2 and m A PðY Þ are as in Theorem B in

Introduction and pb 1. Then any sequence ðxnÞn AN in Y with F p
m ðxnÞ ! infY F p

m

as n ! y has a subsequence which converges to a p-barycenter of m.

We first prove the following lemma. Inequality (27) is similar to the definition

of the weak convergence of Jost [Jo], cf. Lemma 29 below.

Lemma 26. Let ðY ; dÞ be a complete CATðkÞ-space with k A R. Suppose

Fðxn; �Þ : C ! ½0;yÞ is a convex function on a closed Rk-convex subset C � Bðo; rÞ
with o A Y and r < Rk=2 for all n A N with

sup
n AN;y AC

Fðxn; yÞ < y:

Then there exist an infinite subset N � N and a point xy A C with

lim inf
N C n!y

Fðxn; yÞ �Fðxn; xyÞb 0ð27Þ

for any y A C.

Proof. We let L0 :¼ N and take a decreasing sequence fLngn AN of infinite

subsets of N as follows: Suppose we have chosen Ln�1 � N. We put

jn :¼ inf
L

inf
y AC

sup
i AL

Fðxi; yÞ;

where L runs over all infinite subsets of Ln�1nfmin Ln�1g, and choose an infinite

subset Ln � Ln�1nfmin Ln�1g for which

j 0
n :¼ inf

y AC
sup
i ALn

Fðxi; yÞb jn

satisfies j 0
n � jn ! 0 as n ! y. Then jn is nondecreasing in n A N and hence the

limit value

jy :¼ lim
n!y

jn ¼ lim
n!y

j 0
n a sup

n AN;y AC
Fðxn; yÞ < y
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exists. We put

ry :¼ inf
ðynÞ

lim inf
n!y

dðo; ynÞ : sup
i ALn

Fðxi; ynÞ ! jy as n ! y

( )
a r;

where the infimum is taken over all such sequences ðynÞn AN in C.

Then there exists a sequence ðynÞn AN with

dðo; ynÞ ! ry and sup
i ALn

Fðxi; ynÞ ! jy as n ! y:

It follows from Fact 5 that ðynÞn AN is a Cauchy sequence in C � Y and hence

converges in Y . The infinite subset N :¼ fmin Ln : n A Ng and the limit point

xy :¼ limn!y yn A C fulfill Inequality (27). This finishes the proof. r

Definition 28 (Weak convergence [Jo]). Let ðxnÞn AN be a sequence of points

in a CATðkÞ-space ðY ; dÞ with lim supn!y dðxn; xyÞ < Rk=2 for some point

xy A Y . We say that ðxnÞn AN converges weakly to xy if pgðxnÞ ! xy as n ! y

for any geodesic g : ½0; 1� ! Y with gð0Þ ¼ xy. Here, pgðxnÞ A gð½0; 1�Þ �Y denotes

the closest point to xn on the image of g, cf. Fact 7.

The following is a Banach–Alaoglu type result for CATðkÞ-spaces.

Lemma 29 (cf. Jost [Jo, Theorem 2.1]). Let ðY ; dÞ be a complete CATðkÞ-
space with k > 0. Any sequence ðxnÞn AN of points in Bðo; rÞ with o A Y and r <

Rk=2 has a subsequence which converges weakly to a point in Y .

A proof of this lemma can be found in e.g. [Yo]. As hinted above, Lemma 29

follows from Lemma 26. For reader’s convenience, we give a proof here.

Proof of Lemma 29. We apply Lemma 26 with

Fðxn; �Þ :¼ dðxn; �Þ and C :¼
\
n AN

Bðxn;Rk=2Þ \ Bðo; rÞ

to obtain a subsequence, still denoted ðxnÞn AN, and a point xy A C for which

lim inf
n!y

dðxn; yÞ � dðxn; xyÞb 0ð30Þ

holds for any y A C. This yields lim supn!y dðxn; xyÞ < Rk=2.
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We now suppose that there is a geodesic g : ½0; 1� ! Y with gð0Þ ¼ xy

and

lim sup
n!y

dðxy; pgðxnÞÞ > 0:

Then by Inequality (30) and Fact 5 the midpoint wn :¼ mðxy; pgðxnÞÞ A gðð0; 1ÞÞ
of xy and pgðxnÞ satisfies

dðxn;wnÞ < dðxn; pgðxnÞÞ

for some large ng 1 and this is a contradiction. r

We will later use the following fact, which follows from Fact 7.

Fact 31. For any sequence ðxnÞn AN which converges weakly to xy A Y in a

CATðkÞ-space ðY ; dÞ with lim supn!y dðxn; xyÞ < Rk=2,

lim inf
n!y

dðxn; yÞ > lim inf
n!y

dðxn; xyÞ and lim inf
n!y

dðxn; yÞb dðxy; yÞ

hold for any point y A Bðxy;Rk=2Þnfxyg.

We also invoke the following lemma.

Lemma 32 (Ekeland principle, e.g. Ekeland [Ek]). Let f : X ! R be a lower-

semicontinuous function on a complete metric space ðX ; dÞ with infX f > �y.

For any point x0 A X and e > 0, we can find a point xe A X for which dðxe; x0Þa
ð f ðx0Þ � infX f Þ=e and

f ðyÞb f ðxeÞ � e � dðy; xeÞ for any y A X :

Proof of Theorem 25. We recall that m A PðYÞ is concentrated on

Bðo; rÞ � Y for some o A Y and r < Rk=2 and we would like to find a point

where the function F :¼ F p
m attains its minimum for pb 1. According to

Theorem A, the function F :¼ F
ðkÞ
n;~hh

: Bðo; rÞ � Bðo; rÞ ! ½0;yÞ with appropriate
~hh < h :¼ cosk r and n A R is convex.

We start with the following observations. Similar claims are verified in [Yo]

when p ¼ 2 and their proofs can be easily adapted to our case pb 1.
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Claim 33 ([Yo, Claim 12], cf. Afsari [Af ], Claim 59 below). For any e > 0,

there exists d ¼ dðeÞ > 0 with

F ðxÞ > inf
Bðo; rÞ

F þ d for any x A YnBðo; rþ eÞ:

Claim 34 ([Yo, Claim 13]). There exist r 0 A ð0; rÞ and d 0 > 0 with

DF ½"o
x � < �d 0 for any x A Bðo;Rk=2ÞnBðo; r 0Þ:

We appeal to Lemma 32 to find a sequence ðznÞn AN � Y for which

dðxn; znÞ ! 0 as n ! y and

F ðyÞbFðznÞ �
1

n
� dðy; znÞ for any y A Y and n A N:

By the choice of zn, we have FðznÞ ! infY F as n ! y and

DF ½x� ¼ �
ð
Y

hx; logzn yid
p�2ðy; znÞ dmðyÞb� 1

n
jxjð35Þ

for any x A Czn . Then Claims 33 and 34 imply lim supn!y dðo; znÞa r 0 < r.

Lemma 26 states that there is a subsequence, still denoted ðznÞn AN, and a

point zy A Bðo; r 0Þ for which Inequality (27) holds. We intend to prove that a

subsequence of ðznÞn AN converges to zy and thus assume that this is not the

case. Inequality (27) allows us to take a further subsequence with

inf
m0n AN

Fðzm; znÞ >
1

2
lim sup
n!y

Fðzn; zyÞ > 0

and hence infm0n AN dðzm; znÞ > 2d for some small d > 0. Then the collection

fBðzn; dÞgn AN of the balls is mutually disjoint and mðBðzn; dÞÞ ! 0 as n ! y. We

put M :¼ maxfdp�2; ðRkÞp�2g < y.

We fix e > 0 and put ye A ½zy; y� as the point with dðzy; yeÞ ¼ edðzy; yÞ for

each y A Bðo; rÞ. The map y 7! ye is continuous on Bðo; rÞ.
We then use the convexity of F and Fact 6 to derive for any y A Bðo; rÞ

Fðy; yÞ �Fðzn; yeÞbDF½logðzn;yeÞðy; yÞ�

¼ DFðzn; �Þ½logye y� þDFð� ; yeÞ½logzn y�:

We put ddð� ; �Þ :¼ w½d;yÞðdð� ; �ÞÞdð� ; �Þ, where w½d;yÞðsÞ :¼ dsð½d;yÞÞ with ds A

PðRÞ being the Dirac measure centered at s A R. We shall estimate the integrals

of the above two terms multiplied by d
p�2
d ðzn; yÞ.
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First we have

ð
Y

DFðzn; �Þ½logye y�d
p�2
d ðzn; yÞ dmðyÞ

b
1� e

e

ð
Y

ðFðzn; yeÞ �Fðzn; zyÞÞdðzy; yÞd p�2
d ðzn; yÞ dmðyÞ

b
1� e

e

ð
Y

minfFðzn; yeÞ �Fðzn; zyÞ; 0gdðzy; yÞd p�2
d ðzn; yÞ dmðyÞ;

with which the dominated convergence theorem yields

lim inf
n!y

ð
Y

DFðzn; �Þ½logye y�d
p�2
d ðzn; yÞ dmðyÞb 0:

In the following, C < y denotes a fixed large constant depending only on k,

r and p. For example, we have

jDFð� ; yeÞ½logzn y� �DFð� ; zyÞ½logzn y�jaCe

for any y A Bðo; rÞ andð
Bðzn; dÞ

DFð� ; zyÞ½logzn y�d
p�2ðzn; yÞ dmðyÞaCmðBðzn; dÞÞdp�1:

Second we haveð
Y

DFð� ; yeÞ½logzn y�d
p�2
d ðzn; yÞ dmðyÞ þ CðmðBðzn; dÞÞ þMeÞ

b

ð
Y

DFð� ; zyÞ½logzn y�d
p�2ðzn; yÞ dmðyÞ

b�
ð
Y

h‘�
zn
Fð� ; zyÞ; logzn yid

p�2ðzn; yÞ dmðyÞ

b� 1

n
j‘�

zn
Fð� ; zyÞj

b�C

n
;

which yields

lim inf
n!y

ð
Y

DFð� ; yeÞ½logzn y�d
p�2
d ðzn; yÞ dmðyÞb�CMe:
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Therefore we conclude

lim sup
n!y

Fðzn; zyÞ
ð
Y

d
p�2
d ðzn; yÞ dmðyÞ

a lim sup
n!y

ð
Y

Fðzn; yeÞd p�2
d ðzn; yÞ dmðyÞ þ CMea 2CMe:

Since e > 0 is arbitrarily and

ð
Y

d
p�2
d ðzn; �Þ dmbminfdp�2; ðRkÞp�2gð1� mðBðzn; dÞÞÞ > 0;

we conclude that ðznÞn AN and hence ðxnÞn AN converge to zy A Bðo; rÞ and thus

F ðzyÞ ¼ lim
n!y

FðxnÞ ¼ inf
Y

F ;

which means that zy is a p-barycenter of m.

Now the proof of Theorem 25 is complete. r

4.2. Uniqueness. We now proceed to the uniqueness part of Theorem B.

For this, we prove the following more general theorem.

Theorem 36. Suppose Y , r < Rk=2 and m A PðYÞ are as in Theorem B in

Introduction and pb 2. Then a point z A Bðo; rÞ with

DF p
m ½x�b 0 for any x A Czð37Þ

is the unique p-barycenter of m. In particular, the p-barycenter bpðmÞ of m is unique

if pb 2.

To prove this, we need the following result from [Yo] for barycenter of

probability measures on CATðkÞ-spaces.

Proposition 38 (Variance inequality [Yo, Proposition 19]). Suppose ðY ; dÞ
and m A PðYÞ are as in Theorem 36. Let bðmÞ :¼ b2ðmÞ A Bðo; rÞ be the barycenter

of m. For any x A Bðo; rÞ, we have

ð
Y

d 2ðx; �Þ � d 2ðbðmÞ; �Þ dmb c � d aðx; bðmÞÞ

with some constants c > 0 and a > 2 depending only on k and r.
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Proposition 39. Suppose ðY ; dÞ and m A PðY Þ are as in Theorem 36.

If a point z A Bðo; rÞ satisfies Inequality (37) and Ep�2
m ðzÞ :¼

Ð
Y
d p�2ðz; �Þ dm A

ð0;yÞ, then z is the barycenter of the weighted probability measure ~mm :¼
ðEp�2

m ðzÞÞ�1
d p�2ðz; �Þm A PðY Þ.

Proof. By assumption, we have

DF 2
~mm ½x� ¼ �

ð
Y

hx; logz yi d ~mmðyÞ ¼ ðEp�2
m ðzÞÞ�1

DF p
m ½x�b 0

for any x A Cz. It follows from the characterization of the barycenter established

in [Yo, Corollary 15] that z is the barycenter of ~mm. r

Proof of Theorem 36. We may assume that m is not a Dirac measure.

Hölder’s inequality yields

ð
Y

d pðx; �Þ dm
� �2=p ð

Y

d pðz; �Þ dm
� �ðp�2Þ=p

�
ð
Y

d pðz; �Þ dm

bEp�2
m ðzÞ

ð
Y

d 2ðx; �Þ � d 2ðz; �Þ d ~mm

for any x A Bðo; rÞ, where ~mm is the probability measure defined in Proposition 39.

Then, Propositions 38 and 39 yield

ð
Y

d pðx; �Þ dm
� �2=p

�
ð
Y

d pðz; �Þ dm
� �2=p

ð40Þ

b cEp�2
m ðzÞ

ð
Y

d pðz; �Þ dm
� �ð2�pÞ=p

d aðx; zÞ

for any x A Bðo; rÞ. Combined with Claims 33 and 34, this implies that z A Bðo; rÞ
is the unique p-barycenter of m. r

4.3. The Other Cases. As for p-barycenter of probability measures on

CAT(1)-spaces with p A ½1; 2Þ, we can prove the following, cf. Afsari [Af ].

Theorem 41. Let ðY ; dÞ be a complete CATðkÞ-space with k > 0. Suppose

m A PðYÞ is concentrated on a subset S � Bðo; rÞ of diamðSÞaRk=2 with o A Y

and r < Rk=2. For an increasing convex function U : ½0;yÞ ! ½0;yÞ, consider the

function F ðxÞ :¼
Ð
Y
Uðdðx; �ÞÞ dm for x A Y. If U is not strictly convex, assume
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also that m is not concentrated on the union of images of geodesics passing through

two points (cf. Example 23). Then F admits a unique minimizer in Y , which is also

a unique local minimizer of F in Bðo; rÞ.

Corollary 42. Let ðY ; dÞ be as in Theorem 41 and p A ½1; 2Þ. Suppose

m A PðYÞ is concentrated on Bðo; rÞ with o A Y and r < Rk=4 and also assume that

m is not concentrated on the union of geodesics passing through two points if p ¼ 1.

Then m admits a unique p-barycenter bpðmÞ in Y , which is also a unique p-Karcher

mean of m in Bðo; rÞ.

Proof of Theorem 41. We first notice that C :¼ convðS [ fogÞ � Y is a

closed Rk-convex subset with

S � C �
\
x AC

Bðx;Rk=2Þ \ Bðo; rÞ:

Then it follows that F jC : C ! ½0;yÞ is a convex function. Indeed

Uðdðx;wÞÞaU
1

2
ðdðx; yÞ þ dðx; zÞÞ

� �
ð43Þ

a
1

2
ðUðdðx; yÞÞ þUðdðx; zÞÞÞ

for any x A Y and y0 z A Bðx;Rk=2Þ with w :¼ mðy; zÞ A Bðx;Rk=2Þ being a

midpoint of y, z with equalities only if either dðx; yÞ ¼ dðx; zÞ A f0;Rk=2g or

U is not strictly convex and fx; y; zg is on a geodesic. This yields FðwÞ <
ð1=2ÞðFðyÞ þ F ðzÞÞ for any y0 z A C by assumption and hence the uniqueness

of a minimizer of F jC .
It is easy to check that FðxÞ > infC F for any x A YnC. Indeed, we have

FðxÞbUðRk=2Þ > F ðoÞ if dðx;CÞbRk=2 and F ðxÞ > FðpCðxÞÞ by Fact 7 if

0 < dðx;CÞ < Rk=2. Now the existence of a minimizer of F jC and hence of F

follows from e.g. [Yo, Theorem E].

If x A Bðo; rÞnC and x 0 A ½x; pCðxÞ�nfxg, then by Facts 4 and 7 we have

dðx 0; yÞ < dðx; yÞ for any y A C and hence F ðx 0Þ < FðxÞ, which means that x is

not a local minimizer of F and a local minimizer of F in Bðo; rÞ is a minimizer

of F .

Now the proof of Theorem 41 is complete. r

The following proposition characterizes 1-barycenter.
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Proposition 44 (cf. Yang [Ya, Theorem 2.2]). Let ðY ; dÞ be a CATðkÞ-space
with k A R. Suppose m A PðY Þ is concentrated on a subset S � Y. Define

HðzÞ :¼ sup
x ASz

ð
Ynfzg

hx; "y
z i dmðyÞ ¼ � inf

x ASz

DF 1
m ½x�

for z A Y with S � Bðz;RkÞ. Then z satisfies DF 1
m ½x�b 0 for any x A Cz if and

only if HðzÞa mðfzgÞ.
In particular, if ðY ; dÞ and m A PðYÞ are as in Theorem 41, then z A Bðo; rÞ is

a 1-barycenter of m if and only if HðzÞa mðfzgÞ.

Proof. We set F :¼ F 1
m . If DF ½x�b 0 for any x A Cz, then we have HðzÞa

0a mðfzgÞ. For a fixed x A Y in a neighborhood of z and any x 0 A ½x; z� with

e :¼ dðx 0; zÞ > 0, Fact 6 and the dominated convergence theorem yield

Fðx 0Þ � emðfzgÞ ¼
ð
Ynfzg

dðx 0; �Þ dm

¼ F ðzÞ þ eDF ½"x
z � þ oðeÞ

bFðzÞ � eHðzÞ þ oðeÞ;

where oðeÞ=e ! 0 as e ! 0. This proves the proposition. r

Definition 45. We define an y-barycenter of a probability measure m A

PðXÞ on a metric space ðX ; dÞ as a point where the function

x 7! ess sup
X

dðx; �Þ :¼ inf sup
XnN

dðx; �Þ : N � X with mðNÞ ¼ 0

( )

attains its minimum.

The definition and proof of the unique existence of y-barycenter is essentially

the same as those of circumcenter of subsets of CATðkÞ-spaces.
For a subset A � X of a metric space ðX ; dÞ, we define its circumradius as

radX ðAÞ :¼ infx AX radxðAÞ, where radxðAÞ :¼ supa AA dða; xÞ for x A X . A point

x A X giving radxðAÞ ¼ radX ðAÞ is called a circumcenter of A � X . The radius

of ðX ; dÞ is defined as radðXÞ :¼ radX ðXÞ.
It is easy to see by using Fact 5 that any subset A � Y of a complete

CATðkÞ-space ðY ; dÞ with k A R and radY ðAÞ < Rk=2 has a unique circum-

62 Takumi Yokota



center contained in the closed convex hull convðAÞ � Y of A, cf. Balser–Lytchak

[BL].

Proposition 46. Let ðY ; dÞ be a complete CATðkÞ-space with k A R. Suppose

m A PðYÞ is concentrated on a subset S � Y with radY ðSÞ < Rk=2. Then m admits

a unique y-barycenter byðmÞ in Y and byðmÞ is contained in the closed convex

hull convðSÞ � Y of S.

We omit the proof of this proposition.

5. Properties of p-Barycenter

In this section, we establish several properties of p-barycenter of probability

measures on CATðkÞ-spaces with k > 0, which we proved to exist in Theorem B.

We exploit Theorem A in our argument here as well.

A number of properties of barycenter of probability measures on CAT(0)-

spaces are known, e.g. Sturm [St]. We also add that Ohta [Oh2] investigated

barycenter of probability measures on proper Alexandrov spaces of curvatureb k.

A couple of properties of barycenter on CATðkÞ-spaces are established in [Yo].

Our results in this section extend some of them to the context of p-barycenter on

CATðkÞ-spaces. We do not attempt to exhaust such possible extensions. Some of

them might be new on CAT(0)-space as well.

Throughout this section, we usually assume the following unless otherwise

stated.

Assumption 47. � ðY ; dÞ stands for a complete CATðkÞ-space with k > 0.
� m A PðYÞ is a probability measure concentrated on Bðo; rÞ with o A Y and

r < Rk=2 and hence it admits a p-barycenter bpðmÞ A Bðo; rÞ for p A ½1;y�.
� F :¼ F

ðkÞ
n;~hh

: Bðo; rÞ � Bðo; rÞ ! ½0;yÞ is the convex function in Theorem A

extended to the closure of the domain with suitable parameters n > �1=2 and
~hh > 0 with ~hh < h :¼ cosk r.

We remark that a simple estimate says

C1d
bðx; yÞaFðx; yÞaC2d

bðx; yÞð48Þ

for any x; y A Bðo; rÞ, where b :¼ 2ðnþ 1Þ > 1,

C1 :¼
4

p2ð1� ~hh2Þ

 !nþ1

and C2 :¼
1

2ðh2 � ~hh2Þ

 !nþ1

:
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5.1. Variance Inequality.

Proposition 49 (p-variance inequality). Suppose ðY ; dÞ and m A PðY Þ are as

in Assumption 47. Let bpðmÞ A Bðo; rÞ be the p-barycenter of m for pb 2. Then

F p
m ðyÞ � F p

m ðbpðmÞÞb c � dmaxfp;agðy; bpðmÞÞ

holds for any y A Bðo; rÞ, where c > 0 is a constant depending only on k, r and p

and a > 2 is from Proposition 38.

For the proof, we need

Lemma 50 (cf. Ohta–Palfia [OP]). For any k > 0, r < Rk=2 and p > 1, there

exists a constant Kp a 0 with

d pðx; gyzðtÞÞa ð1� tÞd pðx; yÞ þ td pðx; zÞ � Kp

2
tð1� tÞd 2ðy; zÞ

for any x; y; z A Bðo; rÞ with o A Y and t A ½0; 1�.

Proof. It su‰ces to prove this when ðY ; dÞ is isometric to ðS2; dS2Þ. The

proposition follows from the C2 property of d
p

S2ðx; �Þ on Bðx; pÞ � S2 if pb 2

and from Proposition 9 and the C2 property of d
p

S2ðx; �Þ on Bðx; pÞnfxg � S2 if

p < 2. r

Proof of Proposition 49. We fix pb 2 and put z :¼ bpðmÞ. We choose

small e > 0 with

kpð1� eÞ þ KpðRkÞ2�peb kp=2;ð51Þ

where kp > 0 and Kp a 0 are the constants from Proposition 9 and Lemma 50

respectively.

Since

ap=2 � bp=2
b

p

2
bð p=2Þ�1ða� bÞ for any ab bb 0;

Inequality (40) yieldsð
Y

d pðy; �Þ dm�
ð
Y

d pðz; �Þ dmb p

2
Ep�2
m ðzÞ � cd aðy; zÞ

b
p

2ðRkÞ2
ð
Y

d pðz; �Þ dm � cd aðy; zÞ:
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If
Ð
Y
d pðz; �Þ dmb epþ1, we derive the desired inequality from this one.

Otherwise, Chebyshev’s inequality yields mðBðz; eÞÞ > 1� e. Thenð
Y

d pðy; �Þ dm > ð1� eÞep >
ð
Y

d pðz; �Þ dmþ ð1� 2eÞ e

Rk
dðy; zÞ

� �p

holds for any y A Bðo; rÞnBðz; 2eÞ. The combination of Proposition 9, Lemma 50

and Inequality (51) yieldsð
Y

d pðx; gyzðtÞÞ dmðxÞ

< ð1� tÞ
ð
Y

d pðx; yÞ dmðxÞ þ t

ð
Y

d pðx; zÞ dmðxÞ � kp

4
tð1� tÞd pðy; zÞ

for any y A Bðo; rÞ \ Bðz; 2eÞ. We then divide this inequality by 1� t and let

t ! 1 to obtain ð
Y

d pðz; �Þ dma
ð
Y

d pðy; �Þ dm� kp

4
d pðy; zÞ:

Now the proof is complete. r

Remark 52. In the situation of Proposition 49, Hölder’s inequality yieldsÐ
Y
d p�2ðz; �Þ dm

ð
Ð
Y
d pðz; �Þ dmÞðp�2Þ=p b

1

ðRkÞ2
ð
Y

d pðz; �Þ dm
� �2=p

b
1

ðRkÞ2
ð
Y

d 2ðz; �Þ dm

and hence Inequality (40) yields a useful inequality

ð
Y

d pðy; �Þ dm
� �2=p

�
ð
Y

d pðz; �Þ dm
� �2=p

ð53Þ

b
c

ðRkÞ2
ð
Y

d 2ðz; �Þ dm � d aðy; zÞ

for any y A Bðo; rÞ, where c > 0 and a > 2 are the constants in Proposition 38

and hence independent of p.

5.2. Continuity of p-Barycenter. We here investigate the behaviour of

p-barycenter when the probability measure and p vary.

For probability measures m; n A PpðX Þ on a metric space ðX ; dÞ,

Wpðm; nÞ :¼ inf
p

ð
X�X

d pðx; yÞ dpðx; yÞ
� �1=p
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denotes the so-called Lp-Wasserstein distance between m and n usually defined for

pb 1, where the infimum is taken over all couplings p A PðX � X Þ of m and n,

i.e., the push-forward measures of p by the projections pri : X � X ! X , i ¼ 1; 2,

onto the factors satisfy ðpr1Þ	p ¼ m and ðpr2Þ	p ¼ n.

It is known that Wpðmn; mÞ ! 0 as n ! y if and only if ðmnÞn AN converges

weakly to m and F p
mn
ðxÞ ! F p

m ðxÞ as n ! y for any x A X on a complete separable

metric space ðX ; dÞ. In general we still have

ð
X

d pðx; yÞ dmðyÞa ð1þ eÞ
ð
X

d pðx; zÞ dnðzÞ þ Ce

ð
X�X

d pðy; zÞ dpðy; zÞ

for any e > 0 with some Ce < y, x A X and any coupling p A PðX � X Þ of m

and n A PpðXÞ. This implies that F p
mn
ðxÞ ! F p

m ðxÞ for all x A X and pb 1 if

Wpðmn; mÞ ! 0 as n ! y, cf. Villani [Vi, Theorem 6.9].

Theorem 54. Let ðY ; dÞ and m A PðY Þ be as in Assumption 47. Suppose

sequences ðmnÞn AN � PðY Þ and ðpnÞn AN � ½1;yÞ of probability measures con-

centrated on Bðo; rÞ and of real numbers satisfy W1ðmn; mÞ ! 0 and pn ! p as

n ! y for some p A ½1;yÞ. Then any sequence ðznÞn AN of pn-barycenter of mn
has a subsequence which converges to a p-barycenter of m. In particular, if in

addition m admits a unique p-barycenter bpðmÞ A Y , the original sequence ðznÞn AN
converges to bpðmÞ.

Proof. Our proof is similar to that of Theorem 25. We set Fn :¼ F pn
mn
.

Claim 55. If FnðznÞ ! 0 as n ! y, then m is a Dirac measure centered at

a point z A Bðo; rÞ and ðznÞn AN converges to z ¼ bpðmÞ.

Proof. The triangle inequality yields

dðzm; znÞa
ð
Y�Y

½dðx; yÞ þ dðzm; xÞ þ dðzn; yÞ� dpðx; yÞ

¼
ð
Y�Y

dð� ; �Þ dpþ
ð
Y

dðzm; �Þ dmm þ
ð
Y

dðzn; �Þ dmn

for any coupling p A PðY � Y Þ of mm and mn. Since Hölder’s inequality yields

ð
Y

dðzn; �Þ dmn
� �pn

a pnFnðznÞ ! 0 as n ! y;
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ðznÞn AN is a Cauchy sequence and hence converges to a point z A Y . It follows

that m ¼ dz and hence bpðmÞ ¼ z. This confirms the claim. r

Claim 55 allows us to assume lim infn!y FnðznÞ > 0. We set pi
n :¼ pn þ ð1=iÞ

and F i
n :¼ F

pi
n

mn for i; n A N. Then Hölder’s inequality yields

F i
nðznÞ � inf

Y
F i
n <

1

pi
n

ðRkÞ1=i �
ð
Y

d pnðzn; �Þ dmn
� �1=ipn" # ð

Y

d pnðzn; �Þ dmn aDi

for some Di < y with Di ! 0 as i ! y.

We fix ei > 0 with ei ! 0 and Di=ei ! 0 as i ! y. By appealing to Lemma

32, we find zin A Bðo; rÞ with dðzin; znÞaDi=ei and

F i
nðyÞbF i

nðzinÞ � eidðy; zinÞ

for any y A Y and i; n A N.

Lemma 26 states that for any i A N there exist an infinite subset Ni � N

with Niþ1 � Ninfmin Nig and ziy A Y with

lim inf
Ni C n!y

Fðzin; yÞ �Fðzin; ziyÞb 0

for any y A Bðo; rÞ.
We fix small e > 0 and d > 0. For any x; y A Bðo; rÞ, the convexity of F and

Fact 6 yield

Fðx; yÞ �Fðzin; yeÞbDF½logðz in;yeÞðx; yÞ�

¼ DFð� ; yeÞ½logz in x� þDFðzin; �Þ½logye y�;

where ye A ½y; ziy� is the point with dðye; ziyÞ ¼ edðy; ziyÞ. We also reuse the

symbol ddð� ; �Þ used in our proof of Theorem 25 above.

In what follows, C < y is a constant depending on k, r and p similar to the

one in our proof of Theorem 25. For example we have

ð
Bðz in; dÞ

DFð� ; yeÞ½logz in x�d
pi
n�2ðzin; xÞ dmnðxÞaCmnðBðzin; dÞÞd

p i
n�1:

We put Mi
n :¼ maxfdp i

n�2; ðRkÞp
i
n�2g < y and fix couplings pn A PðY � Y Þ of mn

and m with
Ð
Y�Y

Fð� ; �Þ dpn ! 0 as n ! y.

Then we have
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ð
Y�Y

DFð� ; yeÞ½logz in x�d
pi
n�2

d ðzin; xÞ dpnðx; yÞ þ CðMi
neþ dp

i
n�1Þ

b

ð
Y

DFð� ; ziyÞ½logz in x�d
pi
n�2ðzin; xÞ dmnðxÞ

b�
ð
Y

h‘�
z in
Fð� ; ziyÞ; logz in xid

pi
n�2ðzin; xÞ dmnðxÞ

b�eij‘�
z in
Fð� ; ziyÞj

b�Cei

and ð
Y�Y

DFðzin; �Þ½logye y�d
pi
n�2

d ðzin; xÞ dpnðx; yÞ

b
1� e

e

ð
Y�Y

ðFðzin; yeÞ �Fðzin; ziyÞÞdðziy; yÞd pi
n�2

d ðzin; xÞ dpnðx; yÞ

b
1� e

e
Mi

n

ð
Y

minfFðzin; yeÞ �Fðzin; ziyÞ; 0gdðziy; yÞ dmðyÞ;

with which the dominated convergence theorem yields

lim inf
Ni C n!y

ð
Y�Y

DFðzin; �Þ½logye y�d
pi
n�2

d ðzin; xÞ dpnðx; yÞb 0:

As e > 0 is taken arbitrarily, we obtain

lim sup
Ni C n!y

Fðzin; ziyÞ
ð
Y

d
pi
n�2

d ðzin; xÞ dmnðxÞaCei þ Cdp�1þð1=iÞ:

Then, since d > 0 is taken arbitrarily andð
Y

d
pi
n�2

d ðzin; �Þ dmn b
1

ðRkÞ2�ð1=iÞ

ð
Y

d pnðzin; �Þ dmn � mðBðzin; dÞÞd
pn

� �
;

we have lim supNi C n!y Fðzin; ziyÞ ! 0 as i ! y.

Since

dðzm; znÞa dðzm; zimÞ þ dðzim; ziyÞ þ dðzn; zinÞ þ dðzin; ziyÞ

for any m; n A Ni and i A N, we conclude that ðzmin Ni
Þi AN is a Cauchy sequence

and hence the limit zy :¼ limi!y zmin Ni
exists. It follows that zy is a p-barycenter

of m. Now the proof is complete. r
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Proposition 56 (cf. Al-Salman–Hajja [AH]). If ðY ; dÞ and m A PðYÞ are as

in Assumption 47, then dðbpðmÞ; byðmÞÞ ! 0 as p ! y.

Proof. We may assume that m is not a Dirac measure. Lemma 29 states

that any sequence ðznÞn AN of pn-barycenter zn :¼ bpnðmÞ A Bðo; rÞ of m with

pn ! y as n ! y has a subsequence, still denoted ðznÞn AN, which converges

weakly to a point zy A Bðo; rÞ. We put

k f ð�Þkp :¼
ð
Y

j f ð�Þjp dm
� �1=p

and k f ð�Þky :¼ ess sup
Y

j f ð�Þj

for a function f : Y ! R and d�ð� ; �Þ :¼ minfdð� ; �Þ;Rk=2g.
The combination of Hölder’s inequality, Fatou’s lemma and Fact 31 yields

lim inf
n!y

kdðzn; �Þkpn b lim inf
n!y

kdðzn; �Þkp

b k lim inf
n!y

dðzn; �Þkp

b k lim inf
n!y

d�ðzn; �Þkp b kd�ðzy; �Þkp

for any p A ð1;yÞ. Since kd�ðzy; �Þkp ! kd�ðzy; �Þky as p ! y, we have

lim inf
n!y

kdðzn; �Þkpn b kd�ðzy; �Þky b kdðbyðmÞ; �Þky:

On the other hand, Inequality (53) states

kdðbyðmÞ; �Þk2pn � kdðzn; �Þk2pn b cðmÞd aðbyðmÞ; znÞ;

where cðmÞ > 0 and a > 2 are constants independent of n.

We conclude zn ! byðmÞ as n ! y and hence bpðmÞ ! byðmÞ as p ! y.

Now the proof is complete. r

5.3. Convex Hull Property of p-Barycenter. It is known that the bary-

center of a probability measure m A P1ðYÞ on a complete CAT(0)-space Y lies

in the closed convex hull of a subset on which m is concentrated, e.g. Sturm

[St, Proposition 6.1]. This was also proved in [Yo] for barycenter of probability

measures on CATðkÞ-spaces as in Theorem B. We prove that this is the case for

p-barycenter on CATðkÞ-spaces.

Theorem 57. Let ðY ; dÞ be a complete CATðkÞ-space with k > 0 and pb 1.

Suppose m A PðY Þ is concentrated on a subset S � Y with C :¼ convðSÞ � Bðo; rÞ
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for some o A Y and r < Rk=2. Then

F p
m ðxÞ > inf

x AC
F p
m ðxÞ

holds for any x A YnC. In particular, any p-barycenter of m lies in C.

We first prove a weaker inequality. For possible future application, we state

and prove it in general form.

Proposition 58. Suppose ðY ; dÞ, m A PðY Þ and C � Bðo; rÞ are as in Theorem

57. Let U : ½0;yÞ ! ½0;yÞ be a nondecreasing continuous function. Thenð
Y

Uðdðx; �ÞÞ dmb inf
x AC

ð
Y

Uðdðx; �ÞÞ dm

holds for any x A Y .

Proof. We set FðxÞ :¼
Ð
Y
Uðdðx; �ÞÞ dm for x A Y .

Claim 59 (cf. Claim 33). FðxÞb infBðo; rÞ F for any x A Y .

Proof. If x A YnBðo; 2rÞ, we have FðxÞbUðrÞbF ðoÞ.
If x A Bðo; 2rÞnBðo; rÞ, we choose x 0 A ½o; x� with dðx; x 0Þ ¼ 2ðdðx; oÞ � rÞ.

Then we have dðx 0; yÞ < dðx; yÞ for any y A Bðo; rÞ and thus FðxÞbF ðx 0Þb
infBðo; rÞ F , cf. [Af, Yo]. This verifies the claim. r

We fix small d > 0 and define a sequence ðCn
d Þ

y
n¼0 of closed Rk-convex subsets

of Y as follows:

C0
d :¼ C and Cnþ1

d :¼ x A Bðo; rÞ : inf
y ACn

d

Fðx; yÞa d

� �

for nb 0.

We fix x A Bðo; rÞnC. Then there exists a minimum number N A N [ f0g for

which x A CN
d . Since

B Cn
d ;

d

C1

� �1=b !
� Cnþ1

d � B Cn
d ;

d

C2

� �1=b !
;

we have Na ðC2=dÞ1=bdðx;CÞ < y, where C1 and C2 are the constants in

Inequality (48). We then define a sequence ðxn
d Þ

N
n¼0 of points as follows:

xN
d :¼ x and xn

d :¼ pCn
d
ðxnþ1

d Þ A Cn
d
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for n ¼ 0; . . . ;N � 1. We have

XN
n¼1

dðxn�1
d ; xn

d ÞaN
d

C1

� �1=b
a

C2

C1

� �1=b
dðx;CÞ ¼: D < y:

Since ~ffffkðxn�1
d ; xn

d ; yÞb p=2 and

dðxn�1
d ; yÞ þ dðxn

d ; yÞ þ dðxn�1
d ; xn

d Þ < 4r < 2Rk

for any y A C we have

dðxn�1
d ; yÞ < dðxn

d ; yÞ if dðxn
d ; yÞ < Rk=2;

dðxn�1
d ; yÞa dðxn

d ; yÞ þ edðxn�1
d ; xn

d Þ if dðxn
d ; yÞbRk=2;

where e ¼ eðd; rÞ > 0 is a constant with e ! 0 as d ! 0, and hence

dðx0
d ; yÞ < dðx; yÞ if dðx; yÞ < Rk=2;

dðx0
d ; yÞa dðx; yÞ þDe if dðx; yÞbRk=2:

Now the dominated convergence theorem yields

inf
C

F a lim sup
d!0

Fðx0
d Þa lim

e!0

ð
Y

Uðdðx; �Þ þDeÞ dm ¼ FðxÞ:

Combined with Claim 59, this finishes the proof. r

Proof of Theorem 57. We set F :¼ F p
m and assume that there is a point

x0 A YnC with F ðx0Þ ¼ infY F . By Claims 33 and 34, we know x0 A Bðo; rÞnC.

We repeat the argument in our proof of Proposition 58 with UðsÞ :¼ ð1=pÞsp to

obtain a sequence ðxnÞn AN of points xn :¼ x0
1=n A C for which

lim sup
n!y

dðxn; yÞa dðx0; yÞ for any y A C:

Theorem 25 states that a subsequence of ðxnÞn AN converges to a point xy A C

where FðxyÞ ¼ Fðx0Þ ¼ infY F and

dðxy; yÞ ¼ dðx0; yÞ for m-a:e: y A Y :

We use the convexity of F in Theorem A and Fact 6 to derive for any y A C

Fðy; yÞ �Fðx0; xyÞbDF½logðx0;xyÞðy; yÞ�

¼ DFð� ; xyÞ½logx0 y� þDFðx0; �Þ½logxy y�

b�h‘�
x0
Fð� ; xyÞ; logx0 yi� h‘�

xy
Fðx0; �Þ; logxy yi:
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We integrate this inequality with the measure d p�2ðx0; �Þm to obtain

�Fðx0; xyÞ
ð
Y

d p�2ðx0; yÞ dmðyÞ

b�
ð
Y

h‘�
x0
Fð� ; xyÞ; logx0 yid

p�2ðx0; yÞ dmðyÞ

�
ð
Y

h‘�
xy
Fðx0; �Þ; logxy yid p�2ðx0; yÞ dmðyÞ

¼ DF ½‘�
x0
Fð� ; xyÞ� þDF ½‘�

xy
Fðx0; �Þ�b 0:

Since ð
Y

d p�2ðx0; �Þ dmbminfd p�2ðx0;CÞ; ðRkÞp�2g > 0;

we conclude x0 ¼ xy A C. This completes the proof. r

Remark 60. In [Ku2], a minimizer of the restriction of the function x 7!Ð
X
d pð� ; xÞ � d pð� ; x0Þ dm, with x0 A ðX ; dÞ being fixed, on the closed convex hull

of the support of m A Pp�1ðXÞ is called a pure p-barycenter of m. The support of

a measure m on a metric space X is defined as

supp½m� :¼ fx A X : mðBðx; rÞÞ > 0 for any r > 0g:

On a complete separable metric space, supp½m� is the minimal closed subset

on which m is concentrated. Theorem 57 states that p-barycenter and pure p-

barycenter coincide for m A PðYÞ as in the theorem on a complete separable

CATðkÞ-space ðY ; dÞ with k > 0.

5.4. Jensen’s Inequality. Jensen’s inequality is also one of the properties

that we expect to hold for barycenter, cf. Kuwae [Ku, Ku2]. The following is a

direct consequence of Proposition 39 and Jensen’s inequality proved for bary-

center in [Yo, Proposition 10 and Theorem 25]. Due to the subtlety of Jensen’s

inequality for p-barycenter, also pointed out by Kell [Kel2], this is the best that

we can prove now.

Proposition 61 (Jensen’s inequality). Let ðY ; dÞ be a complete CATðkÞ-
space with k > 0, m A PðYÞ, pb2 and j : Y ! R [ fyg be a lower-semicontinuous

convex function. Suppose either m is concentrated on a ball of radius < Rk=2 in Y
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and hence it admits a unique p-barycenter bpðmÞ A Y or j is locally Lipschitz at

a p-barycenter bpðmÞ of m and m is concentrated on BðbpðmÞ;RkÞ. Then

jðbpðmÞÞa
ð
Y

j d ~mm:

Here, ~mm A PðY Þ is the probability measure defined in Proposition 39.

6. Banach–Saks Property of CAT(k)-Spaces

In this section, we establish analogues of the Banach–Saks–Kakutani type

result formulated with p-barycenter on CATðkÞ-spaces. They generalize the the-

orems of Jost [Jo, Theorem 2.2] and the author [Yo, Theorem C].

Kakutani [Ka] proved the Banach–Saks property of uniformly convex Banach

spaces: any bounded sequence ðxnÞn AN of points of an uniformly convex Banach

space B has a subsequence, still denoted ðxnÞn AN, for which the sequence ðmnÞn AN
of the arithmetic means mn :¼ ð1=nÞ

Pn
i¼1 xi A B converges to a point of B. The

following theorems formulate this property with p-barycenter on CATðkÞ-spaces.

Theorem C. Let ðY ; dÞ be a complete CATðkÞ-space with k A R and ðxnÞn AN
be a sequence of points in Bðo; rÞ with o A Y and r < Rk=2. Then it has a sub-

sequence, still denoted ðxnÞn AN, for which any sequence ðmp
n Þn AN of p-barycenter

of finitely and uniformly supported probability measures ð1=nÞ
Pn

i¼1 dxi A PðYÞ
converges to a point xy A Y for all p A ½2;yÞ.

Theorem D. There exists h0 A ð1=4; 1=2Þ which satisfies the following: Let

ðY ; dÞ be a complete CATðkÞ-space with k A R and ðxnÞn AN be a sequence of points

in Bðo; rÞ with o A Y and r < h0Rk. Then it has a subsequence, still denoted ðxnÞn AN,
for which any sequence ðmp

n Þn AN of p-barycenter of finitely and uniformly supported

probability measures ð1=nÞ
Pn

i¼1 dxi A PðYÞ converges to a point xy A Y for all

p A ½1;yÞ.

In particular, Theorem D holds for any bounded sequence in complete

CAT(0)-spaces. It might be interesting if Theorems C and D could be generalized

as a theorem. Namely it is not clear now whether we can take h0 ¼ 1=2 in

Theorem D. Our proof of Theorems C and D uses only a few properties of

CATðkÞ-spaces and it also works for more general convex spaces, cf. Kell [Kel].

Now we begin our proof of Theorems C and D. They share several initial

steps in the proof.
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Proof of Theorems C and D. We may assume that k > 0 because the

proof of the theorems for nonpositive ka 0 is reduced to that for positive k > 0.

Lemma 29 states that ðxnÞn AN has a subsequence, still denoted ðxnÞn AN, which
converges weakly to a point xy A Bðo; rÞ. By Fact 31, we may further assume

that the limit r :¼ limn!y dðxn; xyÞa r exists and

lim
n!y

inf
mbn

dðxm; ½xn; xy�Þ ¼ r:ð62Þ

We put

LpðIÞ :¼ inf
x AY

1

aI

X
i A I

d pðxi; xÞ
" #

for a finite subset I � N of cardinality aI < y. We notice that 2LpðI [ JÞb
LpðIÞ þLpðJÞ for any I ; J � N with aI ¼aJ and I \ J ¼ q.

The following observation is the key.

Claim 63. For each k;N A N, we put I Nk :¼ fðk � 1Þ2N þ 1; . . . ; k2Ng � N.

If ðxnÞn AN satisfies

sup lim inf
k!y

LqðI Nk Þ : N A N

� �
¼ rqð64Þ

for some qb 1 and p-barycenter mp
n satisfies mp

n A Bðxy; rÞ with rþ r < Rk=2 for

all n A N if p A ½q; 2Þ, then the sequence ðmp
n Þn AN converges to xy for all p A ½q;yÞ.

Proof. Hölder’s inequality yields

rb lim inf
k!y

ðLpðI Nk ÞÞ1=p b lim inf
k!y

ðLqðI Nk ÞÞ1=q

for any p > q and N A N. This means that Equation (64) for some qb 1 implies

the same equation for all p > q.

We fix p A ½q;yÞ. By assumption, there exists N A N for any e > 0 with

rp
b lim inf

n!y

1

n

Xn
i¼1

d pðxi;mp
n Þ

" #
b lim inf

k!y

1

k

Xk
l¼1

LpðI Nl Þ
" #

> rp � e

and hence we have

rp ¼ lim
n!y

1

n

Xn
i¼1

d pðxi; xyÞ
" #

¼ lim
n!y

1

n

Xn
i¼1

d pðxi;mp
n Þ

" #
:ð65Þ
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If pb 2, Proposition 49 states

1

n

Xn
i¼1

ðd pðxi; xyÞ � d pðxi;mp
n ÞÞb c � dmaxfp;agðmp

n ; xyÞ

for n A N. If 1 < p < 2, Corollary 16 gives a smilar variance inequality on

Bðxy; rÞ. We then infer that dðmp
n ; xyÞ ! 0 as n ! y if p > 1.

We now consider the case p ¼ 1 and suppose lim supn!y dðm1
n ; xyÞ > 0. For

ia n, we define eni b 0 by

dðm1
n ; xyÞ ¼ jdðxi;m1

nÞ � dðxi; xyÞj þ eni M1ðdðxi;m1
nÞ; dðxi; xyÞÞ;

where M1ð� ; �Þ is defined in Definition 18. With wn :¼ mðm1
n ; xyÞ, it implies

1

n

Xn
i¼1

dðxi;wnÞa
1

n

Xn
i¼1

ð1� rðeni ÞÞM1ðdðxi;m1
nÞ; dðxi; xyÞÞ

a
1

2n

Xn
i¼1

ðdðxi;m1
nÞ þ dðxi; xyÞÞ;

where rð�Þ ¼ r1ð�Þ > 0 is the constant in Proposition 21 with rð0Þ :¼ 0.

Hence Equation (65) with p ¼ 1 gives aIðe; nÞ=n ! 1 as n ! y as well as

lim infn!y aIGðe; nÞ=n < 1 for any e > 0, where

Iðe; nÞ :¼ fi A f1; . . . ; ng : eni a eg;

IGðe; nÞ :¼ fi A Iðe; nÞ :Gðdðxi;m1
nÞ � dðxi; xyÞÞb 0g:

We choose an infinite subset N � N with

r 0 :¼ lim
N C n!y

dðm1
n ; xyÞ ¼ lim sup

n!y
dðm1

n ; xyÞ > 0

and iðnÞ; jðnÞ A I�ðeðnÞ; nÞ for some eðnÞ > 0 with iðnÞ < jðnÞ, iðnÞ ! y and eðnÞ
! 0 as n ! y. We pick x 0

iðnÞ A ½xiðnÞ; xy� for n A N with limN C n!y dðx 0
iðnÞ; xyÞ

¼ r 0. Then we have limN C n!y dðm1
n ; x

0
iðnÞÞ ¼ 0,

lim
N C n!y

dðxiðnÞ;m1
nÞ ¼ lim

N C n!y
dðxiðnÞ; xyÞ � dðm1

n ; xyÞ

¼ lim
N C n!y

dðxjðnÞ;m1
nÞ

¼ lim
N C n!y

dðxjðnÞ; xyÞ � dðm1
n ; xyÞ ¼ r� r 0
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and

r > r� r 0 ¼ lim
N C n!y

dðxjðnÞ; x 0
iðnÞÞb lim sup

N C n!y
dðxjðnÞ; ½xiðnÞ; xy�Þ:

This contradicts Equation (62). The claim is confirmed. r

Proof of Theorem C. To prove Theorem C, we find a subsequence ðxnÞn AN
with

inf
k AN

L2ðI Nk Þ % r2 as N % y:

This was done in the proof of [Yo, Theorem C] by using Fact 31 and Proposition

38. Then Theorem C follows from Claim 63. r

Proof of Theorem D. There exist h0 A ð1=4; 1=2Þ and y0 > 0 with

~ffff1ðx; y; zÞa p=2� y0

for any x; y; z A ðS2; dS2Þ with dS2ðx; zÞ A ½ðð1=2Þ � h0Þp; h0p�, dS2ðy; zÞa h0p and

dS2ðx; yÞb p=8.

We put r :¼ r if r < Rk=4 and r :¼ ðð1=2Þ � h0ÞRk if Rk=4a r < h0Rk. Then

rþ r < Rk=2. We notice

dðx; xnÞa dðx; xyÞ þ dðxn; xyÞa rþ r

for any x A Bðxy; rÞ and Fact 31 implies that we may assume that the set

fBðxn; r=2Þgn AN of balls is mutually disjoint.

For any probability measure n A PðY Þ which is finitely and uniformly sup-

ported on fxn : n A Ng � Bðo; rÞ, if aðsupp½n�Þ A N is large enough, we have

DF p
n ½"xy

x � ¼ �
ð
Y

cos ffxðy; xyÞd p�1ðx; yÞ dnðyÞ

a�
ð
Y

cos ~ffffkðx; y; xyÞd p�1ðx; yÞ dnðyÞ < 0

for any x A Bðxy; rÞnBðxy; rÞ and hence bpðnÞ A Bðxy; rÞ. Then Corollary 16

states that the p-variance inequality holds for such n A PðY Þ on Bðxy; rÞ and

p A ð1; 2�.
To prove Theorem D, we find a subsequence ðxnÞn AN for which

LqiðI Nk Þ > r
qi
i for any k A N and N > Ni:
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holds for any i A N with some qi & 1, ri % r and Ni % y as i % y. This is

done in a way similar to the proof of [Yo, Theorem C] by using Fact 31 and

Corollary 16. Then Theorem D follows from Claim 63. r

Now the proof of Theorems C and D is complete. r

We conclude this paper with several remarks.

Remark 66. It is not known now whether the condition pb 2 is optimal for

the uniqueness of the p-barycenter in Theorem B, cf. Example 24.

Buss–Fillmore [BF] proved that any finitely supported probability measure

m A PðSnÞ which is concentrated on Bðo; p=2Þ but not on the boundary qBðo; p=2Þ
for some o A Sn admits a unique barycenter. The author does not know whe-

ther this can be generalized to p-barycenter of probability measures on general

CAT(1)-spaces.

Ohta–Pálfia [OP] recently studied gradient flow on CAT(1)-spaces. It would

be interesting to establish convergence of gradient flow or some algorithm to a

p-barycenter, cf. Afsari–Tron–Vidal [ATV].

Appendix A. Proof of Proposition 9 for p > 2

In this appendix, we prove the following proposition, which might be of

independent interest. Proposition 9 for p > 2 follows from a similar argument.

Recall the definition of p-uniformly convex spaces in Definition 11.

Proposition 67. Any p-uniformly convex space ðX ; dÞ for some pb 2 is a

q-uniformly convex space for all q > p.

Proof. We fix x A X , a geodesic g : ½0; 1� ! X , t A ½0; 1� and q > p then

put y :¼ gð0Þ, z :¼ gð1Þ and w :¼ gðtÞ. We start our proof with the following

observation.

Claim 68. If dðx;wÞb edðy; zÞ for some eb 0, we have

d qðx;wÞa ð1� tÞd qðx; yÞ þ td qðx; zÞ � q

p
eq�pcp � tð1� tÞd qðy; zÞ:

In particular, the function d qðx; �Þ is convex on X for any x A X .
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Proof. To see this, we let JðsÞ :¼ sq=p be the increasing convex function on

½0;yÞ. We have

Jðd pðx; yÞÞ � Jðd pðx;wÞÞb J 0ðd pðx;wÞÞðd pðx; yÞ � d pðx;wÞÞ;

Jðd pðx; zÞÞ � Jðd pðx;wÞÞb J 0ðd pðx;wÞÞðd pðx; zÞ � d pðx;wÞÞ

and hence

ð1� tÞd qðx; yÞ þ td qðx; zÞ � d qðx;wÞ

b J 0ðd pðx;wÞÞ½ð1� tÞd pðx; yÞ þ td pðx; zÞ � d pðx;wÞ�

b
q

p
eq�pcp � tð1� tÞd qðy; zÞ:

This verifies the claim. r

We put cq :¼ ðq=15q pÞcp > 0. Now we suppose dðx;wÞ < ð1=5Þdðy; zÞ. We

may also assume t A ½1=2; 1Þ and put y 0 :¼ gðt=3Þ and y 00 :¼ gð2t=3Þ.
Since dðx; y 0Þb dðw; y 0Þ � dðx;wÞb ð1=5Þdðy; y 00Þ, Claim 68 implies

A :¼ d qðx; yÞ � d qðx; y 0Þ
t

� d qðx; y 0Þ � d qðx; y 00Þ
t

b
q

5q�pp

cp

2t
d qðy; y 00Þ

b cqd
qðy; zÞ

as well as

B :¼ d qðx; y 0Þ � d qðx; y 00Þ
t

� d qðx; y 00Þ � d qðx;wÞ
t

b 0;

C :¼ d qðx; y 00Þ � d qðx;wÞ
t=3

� d qðx;wÞ � d qðx; zÞ
1� t

b 0:

Now we gather

d qðx; yÞ � d qðx;wÞ
t

� d qðx;wÞ � d qðx; zÞ
1� t

¼ Aþ 2Bþ C

b cqd
qðy; zÞ;

which is equivalent to the desired inequality. This completes the proof. r
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Proposition 67 implies that CAT(0)-spaces are p-uniformly convex spaces for

all pb 2. In literature, e.g. Naor–Silberman [NS], Kuwae [Ku2, Ku3], this fact

is stated as a consequence of an isometric embedding of the Euclidean plane R2

into Lp-space.
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