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STABILITY OF CERTAIN REFLECTIVE SUBMANIFOLDS
IN COMPACT SYMMETRIC SPACES

By

Taro KiMURA

Abstract. In [1], J. Berndt and H. Tamaru classified all the
cohomogeneity one actions on Riemannian symmetric spaces of
noncompact type with a totally geodesic singular orbit. Also they
provided that there is a one-to-one correspondence between the
totally geodesic singular orbits of cohomogeneity one actions on a
Riemannian symmetric space of noncompact type and those on its
dual simply connected compact Riemannian symmetric space. In this
paper, we determine stability of the totally geodesic singular orbits in
simply connected compact symmetric spaces which obtained by the
duality stated above.

Introduction

Totally geodesic submanifolds in symmetric spaces are also symmetric spaces
and they are the so-called subspaces in the category of symmetric spaces. In [4],
we classified all the maximal totally geodesic submanifolds in compact symmetric
spaces of rank two. If the ambient symmetric space is not of type G, then the
maximal totally geodesic submanifolds are reflective submanifolds. When we turns
from rank two to three, the cases which we should take in account much increase.

The motivation for this parer is the determination of stability for all the
totally geodesic submanifolds as minimal submanifolds in compact Riemannian
symmetric spaces. Research on their stability often fails to grasp geometric
structure. But there are some results in which we can find relation between
stability and geometric structure. In [8], Mashimo proved that if a Cartan
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embedding of a compact symmetric space has its orthogonal complement with
non-trivial center, then it is unstable. Also, in [13] Tanaka proved that if a
monomorphism between compact symmetric spaces has a smooth section of the
normal bundle with a trivial line bundle, then it is unstable. Also there is a known
result about the stability of symmetric R-spaces in Hermitian symmetric spaces
([12]): If a symmetric R-space is simply connected, then it is stable. If it is not
simply connected, then it is unstable. As we know on, all the geometric structure
of stable totally geodesic submanifolds in compact Riemannian symmetric spaces
have not yet been solved. In [5], we determined the stability of maximal totally
geodesic submanifolds in compact symmetric spaces of rank two. This paper is a
part of the author’s doctoral thesis, Tokyo University of Science ([4], [5]).

We consider the cohomogeneity one actions on compact Riemannian sym-
metric spaces. Let M be a totally geodesic submanifold of a compact Riemannian
symmetric space N. Then M arises as a singular orbit of cohomogeneity one
action on N if and only if the isotropy representation of M acts transitively on
the unit sphere in the normal space of M.

Thus, what we wish to show in this paper is the determination of stability of
totally geodesic singular orbits which are obtained by the cohomogeneity one
actions on compact symmetric spaces.

This paper is organized as follows. In Section 1, we will explain the theory of
totally geodesic submanifolds in compact Riemannian symmetric spaces. In
Section 2, we will refer to the results of cohomogeneity one actions on Rie-
mannian symmetric spaces of noncompact type which were provided by Berndt
and Tamaru ([1]). In Section 3, we recall the stability of totally geodesic sub-
manifolds in compact Riemannian symmetric spaces. In Section 4, we determine
the stability of totally geodesic submanifolds in compact irreducible simply
connected Riemannian symmetric spaces which are obtained in Section 2.
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1 Totally Geodesic Submanifolds in Compact Symmetric Spaces

We introduce a “polar” and the “meridian” in a compact symmetric space
which were introduced by Chen-Nagano.
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DermniTION 1.1 ([3]). Let 0 be a point in a symmetric space N. We call a
connected component of the fixed-point set of s,, the symmetry at o, in N a polar
of o and we denote it by N* or Nt(p) for a point p in Nt. We call the
connected component of the fixed-point set of s, 05, in N through p the meridian
of N*(p) in N and denote it by N~ (p) or simply by N~. When a polar consists
of a single point, which differs from o, we call it a pole.

REMARK 1.2. Polars and meridians are totally geodesic submanifolds in N;
they are thus symmetric spaces. Every polar and the corresponding meridian are
known for each compact connected Riemannian symmetric space ([3], [9], [10]).
One of the most important properties of them is that every compact connected
symmetric space N is determined by one pair of (N*(p), N~ (p)) completely ([10]).
Nt is an isotropy orbit and N~ has the same rank as N has.

DermviTION 1.3, Let M be a totally geodesic submanifold of N and let p be
a point in M. We denote by T piM the orthogonal complement of 7,M in T,N.
If there is a totally geodesic submanifold M* of N through p whose tangent
space at p coincides with 7,"M , then M is called the orthogonal complement to
M in N at p.

REmMARK 1.4. A polar N*(p) and the meridian N~ (p) are the orthogonal
complements to each other in N at p.

We introduce a reflective submanifold in a Riemannian manifold which was
first introduced by Leung.

DrerFINITION 1.5 ([6]). Let N be a Riemannian manifold and let M be a
submanifold in N. M is a reflective submanifold if M is a connected component
of the fixed-point set of some involutive isometry of N.

REmMARK 1.6. Any reflective submanifold is a totally geodesic submanifold.
Hence any reflective submanifold in a Riemannian symmetric space is a Rie-
mannian symmetric space.

ProposiTION 1.7 ([6]). Let M be a submanifold of a Riemannian symmetric
space N, then M is a reflective submanifold if and only if M and M* are totally
geodesic submanifolds.



364 Taro KiMURA

Next we refer to a Hermann action. There is close relation between Hermann
actions and reflective submanifolds.

DerFINITION 1.8, An isometric action of a compact Lie group H on a
compact Riemannian symmetric space N = U/L is called a Hermann action if the
pair (U,H) is a symmetric pair.

The following proposition is very useful for the determination of stability of a
reflective submanifold in compact Riemannian symmetric spaces.

ProposITION 1.9 ([5]). Let N=U/L be a compact Riemannian symmetric
space and let M be a reflective submanifold of N. Then M is a totally geodesic
orbit of a Hermann action.

Our object is that we determine the stability of a reflective submanifold M in
a compact Riemannian symmetric space which has the orthogonal complement
M+ of rank one. In order to reach this object, we need the following propo-
sitions.

ProrosITION 1.10. Let U be a compact connected Lie group and let o and t
be different commuting involutive automorphisms of U. We put L := U}, H := U/
and H' := U[?, where U", U’ and U™ denote the fixed-point set of t, o and tc in
U, respectively. Also we denote their identity components by US, UZ and U}°,
respectively. Then we have the following:

(1) LNH'=HNH' = LNH.

(2) The pair (H,LNH) is a compact symmetric pair with the involutive
automorphism | .

(3) The pair (H',LNH) is a compact symmetric pair with the involutive
automorphism t|g, = ol

(4) The pair (L,LNH) is a compact symmetric pair with the involutive
automorphism a|;.

Proor. First we note that ¢ and 7 are commuting involutive automorphisms,
thus we prove (1). An automorphism 7|, leaves H invariant and is an involutive
automorphism of H. Thus we prove (2). Similarly, 7|, = o]y, and o|; leave H’
and L invariant, respectively. Also these are involutive automorphisms of H' and
L, respectively. Thus we prove (3) and (4). O
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The next proposition is an immediate consequence of Proposition 1.10.

ProposiTioN 1.11.  With the above notation, a compact symmetric space
H/LNH is a reflective submanifold in U/L and the orthogonal complement to
H/LNH is H/LNH.

Proor. Let u=1@®p be the canonical decomposition of U/L. By Prop-
osition 1.10, we have the canonical decomposition h= (hNI) @ (hNI*-) of
H/LNH, where [+ is the orthogonal complement to I in u. Also we have the
canonical decomposition §' = (hN1) @ (h* NIH) of H'/LNH. Now hNI*+ and
ht NI are the orthogonal complements to each other and both hN I+ and h NI+
are Lie triple systems. Thus H/LNH is a reflective submanifold in U/L by
Proposition 1.7. |

REMARK 1.12. By Proposition 1.10 and Proposition 1.11 we can concretely
determine any reflective submanifold and its orthogonal complement as symmetric
pairs.

LemMA 1.13. We use the same notation in Proposition 1.10. If a compact
symmetric pair (H,HNL) is not an effective compact symmetric pair, then there
exists an almost effective compact symmetric pair (G,K) such that H/HNL is
isomorphic to G/K.

PrOOF. By the assumption, there is a suitable normal subgroup HY of
H such that H" is a subgroup of HNL. We put G:= H/H" and K :=
(HNL)/H". Then the pair (G, K) is an almost effective compact symmetric pair.
Thus H/HNL is isomorphic to G/K as a symmetric space. Ol

2 Cohomogeneity One Actions on Riemannian Manifolds

In this section, we recall basic facts about cohomogeneity one actions on
Riemannian manifolds and introduce some results concerning the classification of
cohomogeneity one actions on Riemannian symmetric spaces of noncompact type
(1))

Let M be a Riemannian manifold and let G be a Lie group acting smoothly
on M by isometries. An orbit G - p is a principal orbit at p € M if for each ge M,
G, is conjugate with a subgroup of G,, where G, is the isotropy group at p.
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Each principal orbit is an orbit of maximal dimension. A non-principal orbit of
maximal dimension is called an exceptional orbit. An orbit whose dimension is
less than the dimension of a principal orbit is called a singular orbit. The
cohomogeneity of the action is the codimension of a principal orbit. We denote
this cohomogeneity by coh(G, M).

DerFmITION 2.1.  An isometric action of a connected Lie group G on a
Riemannian manifold M is a cohomogeneity one action if the coh(G, M) is equal
to one.

Let ¢*=f@ m* be the Cartan decomposition of Riemannian symmetric
spaces M* = G*/K of noncompact type. We identify m* with the tangent space
T,M* of M* at some point o* € M*. Let (g*)C be the complexification of g*
and put g:=f@® +v/—1m*. Then g is a compact real form of (g*)c. The simply
connected Riemannian symmetric space M = G/K associated with the pair (g, )
is called the compact dual of M*, where G is the simply connected Lie group with
the Lie algebra g.

This dual relation gives the following correspondence. There is a corre-
spondence between the totally geodesic submanifolds of M and the totally
geodesic submanifolds of M*. Thus, the relation give rise to the following
proposition.

ProPOSITION 2.2 ([1]). Let N* be a Riemannian symmetric space of non-
compact type and let N be a its dual simply connected compact Riemannian
symmetric space. Then, there is a one-to-one correspondence between the set of
totally geodesic singular orbits of cohomogeneity one actions on N* and the set of
those on N.

Also, they provided the following proposition.

ProposiTiON 2.3 ([1]). Let M be a reflective submanifold of a connected
Riemannian symmetric space N of noncompact type. Then M is a singular orbit of
a cohomogeneity one action on N if and only if the rank of M* is one.

By Proposition 2.2 and Proposition 2.3, we can see that M is a singular orbit
of a cohomogeneity one action on N if and only if M~ is a compact symmetric
space of rank one. Then we obtain Table 1.
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Table 1: Totally geodesic singular orbits of cohomogeneity one actions on simply

connected irreducible compact symmetric spaces

N Totally geodesic singular orbits with coh(G,N) =1 | Remark
G¢(R") GL(R™Y), GE(R™™) .
GY(R™) G (R*) = Gp(R*) k>4
GZ"(RZ") §2-2, Gé’(Rz"’l), cpr! n>3

GY(R®) = 4I(4) | GS(R®) = G{(R°), S'-4I(3)
Gy (C™) Gi_1(C"Y), Gr(C™™ 2+
G (C%) Gi_1 (C* 1 = G (C* ) k>3
Gy (C*) Gy(C* 1, cp¥2 HP'! n>3
Gy(H") Gy (H"), Gy(H" ™) 3+
G (H*) G (H* ) = Ge(H* ) k=2
Al(n) St AI(n—1) 4*
All(n) S'-All(n—1) n>4
AIL(3) S'.835, SU(3)
DIII (n) DI (n—1) nx=Ss
ClI(n) S2x CI(n—1) n>3
SU(n) S(U() x Un—1)) n=5
SU4) S(U1) x U(3)), Sp(2)
SU(3) St.S3, AI(3)
Spin(n) Spin(n — 1) 5*
Sp(n) Sp(n— 1) x Sp(1) n>3
EIl FI
EIII op?
EIV St.S% All(3)
FI G{(R?)
Fy Spin(9)

1" 1<k<n—k, (kn) #(2,2m), m>2, 2" 1 <k<n-—k, (k,n) # (2,2m), m > 2,

3 1l<k<n—k, 4 :n=3orn>5and 5: n=5orn>"7.

367
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3 On Stability of Totally Geodesic Submanifolds

In this section, we give a review of stability of totally geodesic submanifolds
in compact symmetric spaces.

DermiTION 3.1.  Let M be a compact totally geodesic submanifold immersed
in a compact irreducible Riemannian symmetric space (N,%) and we denote the
immersion by f : M — N. Then f is stable if the second derivative of the volume
Vol(M, f;*h) at t =0 is non-negative for every smooth variation {f;} of f with

fo=1.
The second variation formula of Vol(M, f;*h) is given as follows:
2

d :
75 Vol(M, f"h)

- | vy a

=0 M

where dv denotes the Riemannian measure of (M, f*h) and V is an element of
['(N(M)), the space of smooth sections of the normal bundle of M. Here J is
defined as

J=—A"—4r + Ry,

where A" is the rough Laplacian of N(M), A, and R, are smooth sections
of End(N(M)) defined by <4y(u),v)="Trr(4,4,) and <(Re(u),v) =
SYImM RN (e, u)e;, vy for u,v e T(N(M)), where we denote by {e;} , 4 and RV
an orthonormal frame of tangent bundle 7T (M), the shape operator of f and the
curvature tensor of (N,h), respectively. J is a self-adjoint strongly elliptic linear
differential operator and has discrete eigenvalues u; < u, < --- < oo. We put
E,={Vel(NM))|J(V)=uV}, then dim E, < co.

dim E

DeFiNiTioN 3.2, The index of f is a number > ., denoted by

index(f). Clearly, f is stable if and only if index(f) = 0.

We assume that f: M = G/K — N = U/L is a totally geodesic imbedding.
We choose U so that G is a Lie subgroup of U. We denote the Lie algebra of G
and U by g and u respectively. And let g=1@® m and u=[@® p be the canonical
decompositions. We have the decomposition 1 = g @ g as a G-module as well as
K-module decompositions [ =f@ " and p=m @ mt, where m (resp. mt) is
isomorphic with T,M (resp. T;M) as a K-module. We decompose g* into the

sum of simple G-modules g and denote by x and g, the corresponding rep-



Stability of certain reflective submanifolds in compact symmetric spaces 369

resentations of G (1 <i<k). We have the decompositions g =t @ mi as
K-modules where & =t Ng and mj- = m* Ngt for each i (1 <i<k).

THEOREM 3.3 ([11]). With the above notation, the index of f is given as
follows:

k
(1) index(f) = Z Z dim Homg (¥, (m")€) dim ¥,

i=1 jeD(G)

a,>a;

where D(G) denotes all the equivalence classes of complex irreducible repre-
sentations of G and V), denotes the representation space of an element A in D(G)
and ay denotes the eigenvalue of the Casimir operator of A. Here a; denotes the
eigenvalue of the Casimir operator of y;. Homg(V, (mﬁ)c) denotes the K-module
homomorphisms from V, into the complexification (mf-)C of mi-.

Also we consider the case that N is a compact connected semisimple Lie
group U with a bi-invariant Riemannian metric and M is a connected semisimple
subgroup G. Applying Theorem 3.3 to this case, we have the following:

LemMA 3.4. Index(f) is given as follows:

k
(2)  index(f)=>_ Y dim Homg(V; ® V. (g7) ) dim(V; ® V,,),

i=1 A,ueD(G)
a,+a,>a;

where we follow the notation in Theorem 3.3.

Now we apply (1) to inclusion maps 1: M — N and 1+ : M+ — N of a
reflective submanifold M = H/HNL and the orthogonal complement M+ =
H'/HNL in N =U/L. Here we can take L=U", H=U° and H = U™ by
Proposition 1.10 and Proposition 1.11. We fix a point o with L(o) =0 and
assume that o e M. Let h, b’ and u be the Lie algebra of H, H' and U re-
spectively. And let h = (hND) @HNT-, b = (HN) @ H NT- and u=1@ p be the
canonical decompositions, where hHNI* (resp. h= NI*+) is isomorphic to T,M
(resp. T,M™*) as a (HNL)-module. Since p= (hNT) @ (h* NI), we have
GNHE=pt Nt and (HE N =pNIE. Here we put hNIF:=m and
h NIt = mt. Also we have the following decompositions: m = m; @ - - - @
and m* = mlL @ - mf as (H N L)-modules. The next lemma is an immediate
consequence of Theorem 3.3.
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LemMa 3.5. Index(1) is given as follows:

!
(3) index(1) = Z Z dim Hom . (V;, (mi)€) dim V;,
i=1 Ale D(H)
a;>a;

where we follow the notation in Theorem 3.3.

Also we apply (2) to Lie group case: Let 1: G— U and i+ : G* — U be
inclusion maps of a reflective submanifold G = H*/H and the orthogonal
complement G* = H'/H in U= U*/U, where H* and U* denote H* = H x H
and U* = U x U, respectively. Here we may take H = U’ and H' = U™ by
Proposition 1.10 and Proposition 1.11. The next lemma is an immediate con-
sequence of Lemma 3.4 and Theorem 3.3.

LEMMA 3.6. Index(1) is given as follows:

k
(4) index (1) = Z Z dim Hompy (V; ® V,,, (6)€) dim(V; ® Vi),
i=1 J,je D(H)
a;+a,>a;
where we follow the notation in Theorem 3.3 and a; is the eigenvalue for the
Casimir operator of each representation (pi,bf), where ht = Zlkzl I)il is a simple
H-module decomposition.

4 Stability of Totally Geodesic Submanifolds with Cohomogeneity One
Actions

In this section, we first introduce Freudenthal formula for complex irre-
ducible representation of a Lie group.

THEOREM 4.1. Let (V,p) be a complex irreducible representation of G. Then
the eigenvalue a; of the Casimir operator p(C) with respect to {, ) is given by the
following:

a), = _<l7 A + 2(5(G)>7

where 6(G) is half the sum of positive roots of G and {,) is the canonical inner
product on g.

Next, by Theorem 4.1 we calculate the eigenvalue a; of the Casimir operator
with respect to the canonical inner product on g.
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NotaTioN 4.2. We follow the notation in [2] concerning the numbering of
the fundamental weights.

Type A,: g=su(r+1) (r=1),

L i(r+2)(r+ 1)
- r+1

wi ’

where we here note that aw, = dw, > dw, = dw, | > > dy,
Type B:: g=s0(2r+1) (r > 2),

/2"

= —12r—i+1), (1<i<r-1),

r(2r+1)
Ay, = B —

where we here note that a,, >a., > - > ag, .
Type C.: g =sp(r) (r=3),
am = —i(2r—i+2),

where we here note that a, >a., > - > ag,.
Type D,: g=s0(2r) (r>4),

g =—i(2r—1i), (1<i<r-2),

r(2r—1)
—

o = 0m, = —
where we here note that a, >ag, > > ag, ,.
Type Ee: g = e,
Uy = Qg > Uy > Uiy = Ags > Aoz,
Type E7: g= ey,
Ay > Oy > Aoy > Qg > Uy > Qg > Ao,

Type Eg: g = e,

Ay > Ay > Ay > Uiy > Az > Ay > Ui > i,
Type Fy: g =4,

Ay > Aoy > Ay > g, .
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Type Gy g =gy,

A > Ao, .

RemARK 4.3, We note that the absolute value of a, is the minimum among
an, (1ZiZr) for type A4,, B,, C,, D, (r=4) and G.

Let 1: M — N be a totally geodesic imbedding. Now, we consider the
following cases.

1. The case that N is not a Lie group.
2. The case that N is a Lie group.

Case 1. Let M be a reflective submanifold with a cohomogeneity one
action on a compact irreducible simply connected symmetric space N = U/L. By
Proposition 2.3, M* is a compact symmetric space of rank one. Here we may
take M = H/HNL and M* = H'/HNL by Proposition 1.9 and assume that
0 € M. In order to study the stability of M in N, we use (3) in Section 3 in this
case. Since (U,H) is a compact symmetric pair, the representation of H on
T,U/H =" is equivalent to the isotropy representation of U/H. On the other
hand, M~ is a compact symmetric space of rank one and the representation of
HNL on m' is equivalent to the isotropy representation of M=.

THEOREM 4.4 Under the assumption of the case 1, we assume that the Lie
group H has a rank greater than four and that the restriction of the isotropy
representation of U/H to G is equivalent to w(G), where G denotes some Lie
subgroup of H which was shown in Lemma 1.13. Then the index of the inclusion
map 1 is equal to zero.

Proor. By the assumption, M = H/HNL is a totally geodesic singular
orbit of a Hermann action of H. We will consider the following cases.

(i) U/H is a Hermitian symmetric space.
(ii) Both U/H and M* are quaternionic Kihler symmetric spaces.
(i) U/H is a compact symmetric space except for (i) and (ii).

Case (i).
Since U/H is a Hermitian symmetric space, the center of H is one-
dimensional. Thus, we denote the isotropy group H by H = U(1) - H. We may
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take G as the semisimple part H by Lemma 1.13. Also the Hermann action H on
N gives rise to the following G-module decomposition:

g- =g gy,

where g* is the orthogonal complement of g in u, gf =R and gy =~ T,U/H. By
the assumption, 7, U/H is isomorphic to V(g as a G-module. In order to count
dim Homg (¥, (m%)c) we must find the representation A which satisfies the
inequality a; > a; (i=1,2) for all A€ D(G). In this case, the representation
which satisfies the above condition is a trivial representation because a; is equal to
zero and the absolute value of a; = ag, () is less than or equal to ag g (j=2)
except for type Fs4, E; and Es. Also the orthogonal complement M* of M is a
compact symmetric space of rank one. Thus the isotropy representation of M+~ is
isomorphic to some isotropy representation in Table 3. Since m; = {0} and
my = T,M* as a K-module, we conclude the following:

index(1) = dim Homg (C, (m3) ).

Thus index(z) = 0.

Case (ii).

Since U/H is a quaternionic Kéhler symmetric space, the isotropy group H
contains a simple normal subgroup isomorphic to Sp(1). Thus, we denote the
isotropy group H by H = Sp(1) - H. Similarly in case (i), we can take G as H by
Lemma 1.13 and we have the following decomposition:

0 =9 Doy Doy Oy Do,

where gt is the orthogonal complement of g in u, gt =R (i=1,2,3) and
g7 ®gs 2 T,U/H and gj = g+. By the assumption, 7,U/H is isomorphic to
Vzi(6) as a G-module. In order to count dim Homg(V7, (m})c) we must find the
representation A which satisfies the inequality @, > a; (1 <i <5) for all 1 € D(G).
In this case, the representation which satisfies the above condition is a trivial
representation because a;(i = 1,2,3) is equal to zero and the absolute value of
aj = dz,G) (i=4,5) is less than or equal to a5 ) (j = 2) except for type Fy, E7
and Eg. Also the orthogonal complement M+ of M is a quaternionic projective
space. Thus the isotropy representation of M+ = HP" is isomorphic to the
representation w@;(Cy) + @(C,) in Table 3. Since m; = {0}(i=1,2,3) and
mjL = Vo (c)(J=4,5) as a K-module, we conclude the following:

index(1) = dim Homg (C, (m})€) + dim Homg (C, (m)©).

Thus index(z) = 0.
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Case (iii).

Since U/H is a compact symmetric space except for (i) and (ii), the isotropy
group H is a simple Lie group. In this case, we can take G = H by Lemma 1.13.
Thus gt is isomorphic to 7T,U/H and is a simple G-module. By the as-
sumption the representation G on g’ is equivalent to w(G). In order to count
dim Homg (V;, (m*)€) we must find the representation A which satisfies the
inequality a; >« for all A€ D(G). In this case, the representation is a trivial
representation because the absolute value of a = a, () is less than or equal to
agc) (J = 2) except for type Fy, E; and Eg. Also m' is a simple K-module,
therefore we have the following:

index(1) = dim Homg (C, (m*) ).

Thus index(z) = 0. O

Case 2. Let G be the connected component of the fixed-point set of some
involutive automorphism of U and let G be a singular orbit of a cohomogeneity
one action on a compact simply connected Lie group U = U*/U, where U*
denotes U x U. By Proposition 2.3, G is a compact symmetric space of rank
one. Here we may take G= H*/H and G+ = H'/H by Proposition 1.9. In
order to study the stability of G in U, we use (4) in Section 3 in this case.
Since (U*,H*) is a compact symmetric pair, the representation of H* on
T,U*/H* ~ k" @ bh* is equivalent to the isotropy representation of U/H x U/H.
On the other hand, G' is a compact symmetric space of rank one and the
representation of H on h' is equivalent to the isotropy representation of a
compact symmetric space of rank one.

COROLLARY 4.5. Under the assumption of the case 2, we assume that the Lie
group H has a rank greater than four and that the restriction of the isotropy
representation of U/H to G is equivalent to w)(G), where G denotes some Lie
subgroup of H which was shown in Lemma 1.13. Then the index of the inclusion
map 1: G— U is equal to zero.

Proor. We note that each irreducible part of the representation of H* on
T,U*/H* is isomorphic to the representation of H on T,U/H. Thus we conclude
that this case is similar to the case 1. O

Now, we check whether each case in Table 2 satisfies the assumption in
Theorem 4.4 (or Corollary 4.5) or not. The following cases satisfy the as-
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sumption: (1),...,(5), (7),...,(13), (15),...(20), (22),...(27), (29), (30). These
cases are stable. Among these cases there are some exceptions which do not
satisfy the assumption of rank. We examine their stability case by case.

Under the low rank assumptions, we determine the stability of M = G/K in
N =U/L. That is to say 1 <rank(G) <4. In Table 2 the cases of (1), (2), (3),
(4), (5) and (29) satisfy this condition.

Case (2).
For an inclusion map 7: G¢(R"') — G2(R"), we discuss 6 <n <9.
When n =6, we consider the following cases:

(i) 1: GI(R®) — G§(R®)
(i) 1: GJ(R®) — G§(R®)

Case (i).

Since G§(R®) is a reflective submanifold in G{(R®), G§(R%) is a totally
geodesic orbit of Hermann action of H = SO(5) by Proposition 1.9. The Hermann
action gives rise to a homomorphism p : ¢ — u, where g = s0(5), u = s0(6). We
have u = p(g) ® g*, where g is the orthogonal complement of p(g) in u. g* is a
g-module, g+ =~ T,S° ~ Vi (sos))- Thus we have the index(z):

index (1) = Z dim Homgo3)xs002) (V7 (mi)c) dim V;.
).E{O,ZZQ(Bz)}

Since m' is isomorphic to 7,S?, we obtain (mY) =~V (so@3) as a SO(3)-
module. Also we have the following decomposition as a SO(3)-module:

1

Ve 8) = Ve (¢y) = V3w, (4,)- Therefore index(z) = 0.

Case (ii).

Because G(R’) = S* is a symmetric R-space of G{(R®) = G§(R®), it is
stable ([12]).

When n =7, we consider the following cases:

(i) 2:G{(R®) — Gy(R')

(i) 1: G{(R®) — GJ(R))

(iii) 7: G¢(R®) — G¢(R7)

Case (i).

Since G{(R®) is a reflective submanifold in G{(R7), G{(R®) is a totally

geodesic orbit of Hermann action of H = SO(6) by Proposition 1.9. The Hermann
action gives rise to a homomorphism p : g — u, where g = s0(6), u = so0(7). We
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have u = p(g) @ g, where g* is the orthogonal complement of p(g) in u. g* is a
g-module, gt ~ T,S8% ~ Vaisoe))- Thus we have the index(z):

index(z) = Z dim Homgo3)xs0(3)(Va, (mi)c) dim V.
AE{O.Wz(Dﬂ}

Since m* is isomorphic to T,S3, we obtain (mL)C = Vi (so3))- Also we have the
following decomposition as a K-module: Vo, p,) = V() = Vi) ® Vaoy(a)-
Therefore index (1) = 0.

Case (ii).
Since G¢(R”) is a quaternionic Kihler manifold and G¢(R®) is a quaternionic
Kihler submanifold of GJ(R”), G{(R®) is stable ([14]).

Case (iii).

Because G¢(R®) =~ S° is a symmetric R-space of G¢(R’) = G§(R7), it is
stable ([12]).

When n =8, we consider the following cases:

(i) 1:G{R") — GJR?Y)
(i) 7: GY(R") — GJ(R®)
(iii) 7: G¢(R") — GZ(R®)
(iv) 1: GZ(R") — G¢(R®)
Case (i).

Since G{(R”) is a reflective submanifold in G{(R®), G{(R") is a totally
geodesic orbit of Hermann action of H = SO(7) by Proposition 1.9. The Hermann
action gives rise to a homomorphism p : ¢ — u, where g = s0(7), u = s0(8). We
have u = p(g) @ g*, where g+ is the orthogonal complement of p(g) in u. g* is a
g-module, g- =~ 7,587 >~V

((so(7)- Thus we have the index():

index(1) = Z dim Homgo3)xsow (Vz, (mH)€) dim ¥;.
2e{0,w3(Bs3)}

Because G is isomorphic to SO(7), the spin representation cws(B;) is not

a representation of SO(7). Since m* is isomorphic with 7,S? we obtain

(ml)c = Vg so3))- We conclude the index(z):
index(z) = dim Homgo3)xs0@4)(C, (mi)c).

Therefore index (1) = 0.
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Case (ii).
Since G{(R®) is a quaternionic Kéhler manifold and G§(R”) is a quaternionic
Kihler submanifold of GJ(R®), G¢(R) is stable ([14)).

Case (iii).
The case is similar to the case (i). Thus G¢(R7) is stable in G¢(R®).

Case (iv).

Because G¢(R7) =~ S° is a symmetric R-space of G2(R®) = GJ(R®), it is
stable ([12]).

When 7 =9, clearly the inclusion map 1: G¢(R*) — GZ(R’) (3 <k £6) is
stable.

Case (1).
We can conclude that these cases are stable similarly to the case (2).

Case (3).
This case is a special case of (1). Therefore this case is stable.

Case (4), Case (5).
Both the case (4) and the case (5) are cases of a complex submanifold in a
Kéhler manifold. Thus these cases are stable.

Case (29).

For an inclusion map :: Spin(n — 1) — Spin(n), we discuss n =5,7,8,9.

When n =35, we consider the inclusion map :: Spin(4) — Spin(5). Since
Spin(5) is isomorphic to Sp(2) and Spin(4) is isomorphic to S3 x S3, it is stable
([13]).

When n =7, we consider the inclusion map 1 : Spin(6) — Spin(7).

We here note that Spin(6) is isomorphic to SU(4). Since Spin(6) is a re-
flective submanifold in Spin(7), Spin(6) is a totally geodesic orbit of Hermann
action of H* = Spin(6) x Spin(6) by Proposition 1.9. The Hermann action
gives rise to a homomorphism p:bh* — u*, where h* =s0(6) @ s0(6), u* =
s0(7) @so(7). We have u* =p(h*) @ (h*)*, where (h*)" is the orthogonal
complement of p(h*) in u* and (b*)L =b @bht. Also bt is a simple h-module
and b = T,8% = V,(s0(6)) = Vem(su(ay). We conclude the index(r):

index(1) = Z dim Homgy)(V7, (54)€) dim 7.
)v€{0,0+w1(/43)7w1(/43)+0}
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Since h* is isomorphic to 7,S°, we obtain (lf)L)C = Ve, (suw) as a SU(4)-module.
As for 2=0+w(43) and 1’ =w(43)+0, we have V, =V, 4, and
Vi = Va(4,) as a SU(4)-module. Therefore index(z) = 0.

When n =8, we consider the inclusion map 1 : Spin(7) — Spin(8).

Since Spin(7) is a reflective submanifold in Spin(8), Spin(7) is a totally
geodesic orbit of Hermann action of H* = Spin(7) x Spin(7) by Proposition
1.9. The Hermann action gives rise to a homomorphism p:)* — u*, where
h* =s0(7) @ s0(7), u* =s0(8) Dso(8). We have u* =p(h*)® (h*)", where
(b*)* is the orthogonal complement of p(h*) in u* and (h*)* = bh* @ h*. Also h*
is a simple h-module and h* = 7,57 ~ Vi (sor)- Thus we have the index(:):

index (1) = Z dim Homgo(7) (V;, (h1)€) dim V.
1.€{0,043(SO(T)), 3(SO(7))+0}

Since h* is isomorphic to 7,57, we obtain (I)L)C = Vo, (so7) as a SO(7)-module.
As for 2 =0+ w@3(SO(7)) and A’ = w3(SO(7)) + 0, we have V; = Vo, (s0(7)) and
Vi = Vaysomy as a SO(7)-module. Therefore index(z) = 0.

When n =9, clearly the inclusion map :: Spin(8) — Spin(9) is stable.

Now we obtain the following theorem.

THEOREM 4.6. Under the assumption of case 1 and 2, we assume that the
restriction of the isotropy representation of U/H to G is equivalent to w)(G),
where G denotes some Lie subgroup of H which was shown in Lemma 1.13. Then
the index of the inclusion map 1: M — N is equal to zero.

Also we examine the stability of cases in Table 2 which do not satisfy the
assumption in Theorem 4.4 (or Corollary 4.5).

Case (6).
Because G§(R*") is a Hermitian symmetric space, we can conclude that
cpP*! is stable.

Case (14).
Because GQ(CZ”) is a quaternionic Kédhler symmetric space, we can conclude
that HP""! is stable by [14].

Case (21).
In this case, it is unstable [5].
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Case (28).
Because an inclusion map f : A1(3) — SU(3) is the Cartan embedding, it is
unstable by [8].

Case (31).
Since EII is a quaternionic Kdhler manifold and FI is a quaternionic Kéhler
submanifold of EII, FI is stable ([14]).

Case (32).
Because OP? is a symmetric R-space of EIII, it is stable ([12]).

Case (33).
S'. 8% is the meridian of EII ([9]). Thus S!'-S° is stable ([13]).

Case (34).
In this case, it is unstable [5].

Case (395).
Since FI is a quaternionic Kihler manifold and G§(R®) is a quaternionic
Kihler submanifold of FI, GJ(R’) is stable ([14)).

Case (36).

Because Spin(9) is a Lie subgroup of Dynkin index 1 in Fy, Spin(9) is stable
by [7].

Now we obtain the following theorem.

THEOREM 4.7.  All of the stability of totally geodesic singular orbits which are
obtained by the cohomogeneity one actions on compact simply connected irreducible
symmetric spaces are given in Table 2. The cases whose numbers are attached the
symbol * are unstable and the other cases are stable.
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Table 2: A totally geodesic singular orbit M = G/K of a cohomogeneity one action on a simply
connected irreducible compact symmetric space N = U/L associated with a Hermann action H and
the orthogonal complement M+ and the isotropy representation of U/H

N M M+ U/H isotropy representation of U/H

(1) | GR") G (R N N @ (SO(n - 1))

2 | GIR") GYR"™) Sk s @1 (SO(n — 1))

(3) | GeR*™) Gi (R st s @1 (SO(2k))

@ | Gy(R™) S22 §=2 s @ (SO(2n — 1))

(5) | GS(R™) Gy (R™) s? s @1 (S0(2n — 1))

6) | GyR™) cpr-! cp'-' | DHI(n) @y (A1)

(M) | G{(R®) G{(R%) s? §° @1(SO(5))

(8) G¢(R®) S'.A41(3) s3 s’ @1 (SO(5))

9) Gr(C™) Gr_1(C" 1) cprk | cpr! T 4 w1 (Ay_2)

10) | Gi(C" G(C" Y cp¥* | cpr! T + w1 (An2)

(11) | G(C*) G (C*h CP* CpF-1 T + @y (Asy2)

(12) | Gy(C™) Gy(C 1y cp? cp¥! T + @i (Az2)

(13) | Gy(C™) cpr2 cp¥2 | cp¥-! T + @i (Aw-2)

(14) | Gy(C™) HP"! HP" ! | All(n) @(Cp)

(15) | Gy(H") G (H" ) HP"* | HP"! @1 (C1) + @1 (Cazt)
(16) | Gy(H") Ge(H" ) HPK HP"! @1(C1) + @1 (Cazt)
(17) | Gu(H*) Gy (H* HP* HP*-! @1 (C1) + @1 (Ca1)
(18) AI(n) St AI(n—1) RP™! cpr-! T + @i (An—2)

(19) | All(n) S'-All(n—1) HP"' | Gy(C™) T + w1 (A1) + w1 (A2—3)
(20) | AII(3) st.s3 HP? G2(C*) T + @ (A)) + w1 (43)
Q1)* | AII(3) SU(3) Ccp? G5(C®) T + @y (As) + w1(42)
(22) | pmI(n) DI (n—1) Pl | GYR™) | @i(SO(2)) + = (SO(2n — 2))
(23) CI(n) S2x CI(n—1) cpr-! HP! @1 (C1) + w1 (Cu-1)
@4) | sUm) | SUQ)xUmn-1) | cpt | cpr! T + w1 (An2)

(25) SU(4) S(U(1) x U(3)) cp? cp? T + wi(4>)

26) | SU4) Sp(2) 53 s’ @ (SO(5))
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Table 2: Continued
N M M+ U/H isotropy representation of U/H

(27) SU(3) St.s3 cp? cp? T+ @i (4))
(28)* | SU(3) AI(3) RP? SU(3) (w1 + @2)(42)
(29) Spin(n) Spin(n — 1) Sn-l Sn-l w1 (SO(n —1))
(30) Sp(n) Sp(n—1) x Sp(1) | HP"' | HP"! @1 (C1) + @i (Cr-1)
(31) EIl FI HP? EIV w4 (Fy)
(32) EIT OP? OP? EIV wy(Fy)
(33) EIV S50 op? EII T + ws(Ds)
(34)* EIV AII(3) HP3 EIl @i (A)) + w3(A4s)
(35) FI G{(R%) HP? op? wy4(By)
(36) Fy Spin(9) op? op? w4(By)

Table 3: The isotropy representations of
compact symmetric spaces of rank one

M isotropy representation
ST (n>2) ©1(SO(n))
RP" (n>2) w1 (SO(n))
CP" (n=2) T+ (A1)
HP" (n>2) w@1(Cy) + @1 (Cy)
opr? w4(By)
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