
TSUKUBA J. MATH.
Vol. 32 No. 2 (2008), 361–382
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Abstract. In [1], J. Berndt and H. Tamaru classified all the

cohomogeneity one actions on Riemannian symmetric spaces of

noncompact type with a totally geodesic singular orbit. Also they

provided that there is a one-to-one correspondence between the

totally geodesic singular orbits of cohomogeneity one actions on a

Riemannian symmetric space of noncompact type and those on its

dual simply connected compact Riemannian symmetric space. In this

paper, we determine stability of the totally geodesic singular orbits in

simply connected compact symmetric spaces which obtained by the

duality stated above.

Introduction

Totally geodesic submanifolds in symmetric spaces are also symmetric spaces

and they are the so-called subspaces in the category of symmetric spaces. In [4],

we classified all the maximal totally geodesic submanifolds in compact symmetric

spaces of rank two. If the ambient symmetric space is not of type G2, then the

maximal totally geodesic submanifolds are reflective submanifolds. When we turns

from rank two to three, the cases which we should take in account much increase.

The motivation for this parer is the determination of stability for all the

totally geodesic submanifolds as minimal submanifolds in compact Riemannian

symmetric spaces. Research on their stability often fails to grasp geometric

structure. But there are some results in which we can find relation between

stability and geometric structure. In [8], Mashimo proved that if a Cartan
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embedding of a compact symmetric space has its orthogonal complement with

non-trivial center, then it is unstable. Also, in [13] Tanaka proved that if a

monomorphism between compact symmetric spaces has a smooth section of the

normal bundle with a trivial line bundle, then it is unstable. Also there is a known

result about the stability of symmetric R-spaces in Hermitian symmetric spaces

([12]): If a symmetric R-space is simply connected, then it is stable. If it is not

simply connected, then it is unstable. As we know on, all the geometric structure

of stable totally geodesic submanifolds in compact Riemannian symmetric spaces

have not yet been solved. In [5], we determined the stability of maximal totally

geodesic submanifolds in compact symmetric spaces of rank two. This paper is a

part of the author’s doctoral thesis, Tokyo University of Science ([4], [5]).

We consider the cohomogeneity one actions on compact Riemannian sym-

metric spaces. Let M be a totally geodesic submanifold of a compact Riemannian

symmetric space N. Then M arises as a singular orbit of cohomogeneity one

action on N if and only if the isotropy representation of M acts transitively on

the unit sphere in the normal space of M.

Thus, what we wish to show in this paper is the determination of stability of

totally geodesic singular orbits which are obtained by the cohomogeneity one

actions on compact symmetric spaces.

This paper is organized as follows. In Section 1, we will explain the theory of

totally geodesic submanifolds in compact Riemannian symmetric spaces. In

Section 2, we will refer to the results of cohomogeneity one actions on Rie-

mannian symmetric spaces of noncompact type which were provided by Berndt

and Tamaru ([1]). In Section 3, we recall the stability of totally geodesic sub-

manifolds in compact Riemannian symmetric spaces. In Section 4, we determine

the stability of totally geodesic submanifolds in compact irreducible simply

connected Riemannian symmetric spaces which are obtained in Section 2.
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1 Totally Geodesic Submanifolds in Compact Symmetric Spaces

We introduce a ‘‘polar’’ and the ‘‘meridian’’ in a compact symmetric space

which were introduced by Chen-Nagano.
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Definition 1.1 ([3]). Let o be a point in a symmetric space N. We call a

connected component of the fixed-point set of so, the symmetry at o, in N a polar

of o and we denote it by Nþ or NþðpÞ for a point p in Nþ. We call the

connected component of the fixed-point set of sp � so in N through p the meridian

of NþðpÞ in N and denote it by N�ðpÞ or simply by N�. When a polar consists

of a single point, which di¤ers from o, we call it a pole.

Remark 1.2. Polars and meridians are totally geodesic submanifolds in N;

they are thus symmetric spaces. Every polar and the corresponding meridian are

known for each compact connected Riemannian symmetric space ([3], [9], [10]).

One of the most important properties of them is that every compact connected

symmetric space N is determined by one pair of ðNþðpÞ;N�ðpÞÞ completely ([10]).

Nþ is an isotropy orbit and N� has the same rank as N has.

Definition 1.3. Let M be a totally geodesic submanifold of N and let p be

a point in M. We denote by T?
p M the orthogonal complement of TpM in TpN.

If there is a totally geodesic submanifold M? of N through p whose tangent

space at p coincides with T?
p M , then M? is called the orthogonal complement to

M in N at p.

Remark 1.4. A polar NþðpÞ and the meridian N�ðpÞ are the orthogonal

complements to each other in N at p.

We introduce a reflective submanifold in a Riemannian manifold which was

first introduced by Leung.

Definition 1.5 ([6]). Let N be a Riemannian manifold and let M be a

submanifold in N. M is a reflective submanifold if M is a connected component

of the fixed-point set of some involutive isometry of N.

Remark 1.6. Any reflective submanifold is a totally geodesic submanifold.

Hence any reflective submanifold in a Riemannian symmetric space is a Rie-

mannian symmetric space.

Proposition 1.7 ([6]). Let M be a submanifold of a Riemannian symmetric

space N, then M is a reflective submanifold if and only if M and M? are totally

geodesic submanifolds.
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Next we refer to a Hermann action. There is close relation between Hermann

actions and reflective submanifolds.

Definition 1.8. An isometric action of a compact Lie group H on a

compact Riemannian symmetric space N ¼ U=L is called a Hermann action if the

pair ðU ;HÞ is a symmetric pair.

The following proposition is very useful for the determination of stability of a

reflective submanifold in compact Riemannian symmetric spaces.

Proposition 1.9 ([5]). Let N ¼ U=L be a compact Riemannian symmetric

space and let M be a reflective submanifold of N. Then M is a totally geodesic

orbit of a Hermann action.

Our object is that we determine the stability of a reflective submanifold M in

a compact Riemannian symmetric space which has the orthogonal complement

M? of rank one. In order to reach this object, we need the following propo-

sitions.

Proposition 1.10. Let U be a compact connected Lie group and let s and t

be di¤erent commuting involutive automorphisms of U. We put L :¼ U t
o , H :¼ U s

o

and H 0 :¼ U ts
o , where U t, U s and U ts denote the fixed-point set of t, s and ts in

U , respectively. Also we denote their identity components by U t
o , U s

o and U ts
o ,

respectively. Then we have the following:

(1) LVH 0 ¼ H VH 0 ¼ LVH.

(2) The pair ðH;LVHÞ is a compact symmetric pair with the involutive

automorphism tjH.
(3) The pair ðH 0;LVHÞ is a compact symmetric pair with the involutive

automorphism tjH 0 ¼ sjH 0 .

(4) The pair ðL;LVHÞ is a compact symmetric pair with the involutive

automorphism sjL.

Proof. First we note that s and t are commuting involutive automorphisms,

thus we prove (1). An automorphism tjH leaves H invariant and is an involutive

automorphism of H. Thus we prove (2). Similarly, tjH 0 ¼ sjH 0 and sjL leave H 0

and L invariant, respectively. Also these are involutive automorphisms of H 0 and

L, respectively. Thus we prove (3) and (4). r
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The next proposition is an immediate consequence of Proposition 1.10.

Proposition 1.11. With the above notation, a compact symmetric space

H=LVH is a reflective submanifold in U=L and the orthogonal complement to

H=LVH is H 0=LVH.

Proof. Let u ¼ ll p be the canonical decomposition of U=L. By Prop-

osition 1.10, we have the canonical decomposition h ¼ ðhV lÞl ðhV l?Þ of

H=LVH, where l? is the orthogonal complement to l in u. Also we have the

canonical decomposition h 0 ¼ ðhV lÞl ðh? V l?Þ of H 0=LVH. Now hV l? and

h? V l? are the orthogonal complements to each other and both hV l? and h? V l?

are Lie triple systems. Thus H=LVH is a reflective submanifold in U=L by

Proposition 1.7. r

Remark 1.12. By Proposition 1.10 and Proposition 1.11 we can concretely

determine any reflective submanifold and its orthogonal complement as symmetric

pairs.

Lemma 1.13. We use the same notation in Proposition 1.10. If a compact

symmetric pair ðH;H VLÞ is not an e¤ective compact symmetric pair, then there

exists an almost e¤ective compact symmetric pair ðG;KÞ such that H=H VL is

isomorphic to G=K.

Proof. By the assumption, there is a suitable normal subgroup HN of

H such that HN is a subgroup of H VL. We put G :¼ H=HN and K :¼
ðH VLÞ=HN . Then the pair ðG;KÞ is an almost e¤ective compact symmetric pair.

Thus H=H VL is isomorphic to G=K as a symmetric space. r

2 Cohomogeneity One Actions on Riemannian Manifolds

In this section, we recall basic facts about cohomogeneity one actions on

Riemannian manifolds and introduce some results concerning the classification of

cohomogeneity one actions on Riemannian symmetric spaces of noncompact type

([1]).

Let M be a Riemannian manifold and let G be a Lie group acting smoothly

on M by isometries. An orbit G � p is a principal orbit at p A M if for each q A M,

Gp is conjugate with a subgroup of Gq, where Gp is the isotropy group at p.
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Each principal orbit is an orbit of maximal dimension. A non-principal orbit of

maximal dimension is called an exceptional orbit. An orbit whose dimension is

less than the dimension of a principal orbit is called a singular orbit. The

cohomogeneity of the action is the codimension of a principal orbit. We denote

this cohomogeneity by cohðG;MÞ.

Definition 2.1. An isometric action of a connected Lie group G on a

Riemannian manifold M is a cohomogeneity one action if the cohðG;MÞ is equal

to one.

Let g� ¼ klm� be the Cartan decomposition of Riemannian symmetric

spaces M � ¼ G �=K of noncompact type. We identify m� with the tangent space

ToM
� of M � at some point o� A M �. Let ðg�ÞC be the complexification of g�

and put g :¼ kl
ffiffiffiffiffiffiffi
�1

p
m�. Then g is a compact real form of ðg�ÞC. The simply

connected Riemannian symmetric space M ¼ G=K associated with the pair ðg; kÞ
is called the compact dual of M �, where G is the simply connected Lie group with

the Lie algebra g.

This dual relation gives the following correspondence. There is a corre-

spondence between the totally geodesic submanifolds of M and the totally

geodesic submanifolds of M �. Thus, the relation give rise to the following

proposition.

Proposition 2.2 ([1]). Let N � be a Riemannian symmetric space of non-

compact type and let N be a its dual simply connected compact Riemannian

symmetric space. Then, there is a one-to-one correspondence between the set of

totally geodesic singular orbits of cohomogeneity one actions on N � and the set of

those on N.

Also, they provided the following proposition.

Proposition 2.3 ([1]). Let M be a reflective submanifold of a connected

Riemannian symmetric space N of noncompact type. Then M is a singular orbit of

a cohomogeneity one action on N if and only if the rank of M? is one.

By Proposition 2.2 and Proposition 2.3, we can see that M is a singular orbit

of a cohomogeneity one action on N if and only if M? is a compact symmetric

space of rank one. Then we obtain Table 1.
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Table 1: Totally geodesic singular orbits of cohomogeneity one actions on simply

connected irreducible compact symmetric spaces

N Totally geodesic singular orbits with cohðG;NÞ ¼ 1 Remark

Go
k ðRnÞ Go

k�1ðRn�1Þ, Go
k ðRn�1Þ 1�

Go
k ðR

2kÞ Go
k�1ðR

2k�1Þ ¼ Go
k ðR

2k�1Þ kb 4

Go
2 ðR2nÞ S2n�2, Go

2 ðR2n�1Þ, CPn�1 nb 3

Go
3 ðR6Þ ¼ AIð4Þ Go

2 ðR5Þ ¼ Go
3 ðR5Þ, S1 � AIð3Þ

GkðCnÞ Gk�1ðCn�1Þ, GkðCn�1Þ 2�

GkðC2kÞ Gk�1ðC2k�1Þ ¼ GkðC2k�1Þ kb 3

G2ðC2nÞ G2ðC2n�1Þ, CP2n�2, HPn�1 nb 3

GkðHnÞ Gk�1ðHn�1Þ, GkðHn�1Þ 3�

GkðH2kÞ Gk�1ðH2k�1Þ ¼ GkðH2k�1Þ kb 2

AIðnÞ S1 � AIðn� 1Þ 4�

AIIðnÞ S1 � AIIðn� 1Þ nb 4

AIIð3Þ S1 � S5, SUð3Þ

DIIIðnÞ DIIIðn� 1Þ nb 5

CIðnÞ S2 � CIðn� 1Þ nb 3

SUðnÞ SðUð1Þ �Uðn� 1ÞÞ nb 5

SUð4Þ SðUð1Þ �Uð3ÞÞ, Spð2Þ

SUð3Þ S1 � S3, AIð3Þ

SpinðnÞ Spinðn� 1Þ 5�

SpðnÞ Spðn� 1Þ � Spð1Þ nb 3

EII FI

EIII OP2

EIV S1 � S9, AIIð3Þ

FI Go
4 ðR9Þ

F4 Spinð9Þ

1�: 1 < k < n� k, ðk; nÞ0 ð2; 2mÞ, m > 2, 2�: 1 < k < n� k, ðk; nÞ0 ð2; 2mÞ, m > 2,

3�: 1 < k < n� k, 4�: n ¼ 3 or nb 5 and 5�: n ¼ 5 or nb 7.
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3 On Stability of Totally Geodesic Submanifolds

In this section, we give a review of stability of totally geodesic submanifolds

in compact symmetric spaces.

Definition 3.1. Let M be a compact totally geodesic submanifold immersed

in a compact irreducible Riemannian symmetric space ðN; hÞ and we denote the

immersion by f : M ! N. Then f is stable if the second derivative of the volume

VolðM; f �
t hÞ at t ¼ 0 is non-negative for every smooth variation f ftg of f with

f0 ¼ f .

The second variation formula of VolðM; f �
t hÞ is given as follows:

d 2

dt2
VolðM; f �

t hÞ
����
t¼0

¼
ð
M

hJðVÞ;Vi dv;

where dv denotes the Riemannian measure of ðM; f �hÞ and V is an element of

GðNðMÞÞ, the space of smooth sections of the normal bundle of M. Here J is

defined as

J ¼ �D? � Af þ Rf ;

where D? is the rough Laplacian of NðMÞ, Af and Rf are smooth sections

of EndðNðMÞÞ defined by hAf ðuÞ; vi ¼ Trf �hðAuAvÞ and hRf ðuÞ; vi ¼PdimM
i¼1 hRNðei; uÞei; vi for u; v A GðNðMÞÞ, where we denote by feig , A and RN

an orthonormal frame of tangent bundle TðMÞ, the shape operator of f and the

curvature tensor of ðN; hÞ, respectively. J is a self-adjoint strongly elliptic linear

di¤erential operator and has discrete eigenvalues m1 < m2 < � � � < y. We put

Em ¼ fV A GðNðMÞÞ j JðVÞ ¼ mVg, then dim Em < y.

Definition 3.2. The index of f is a number
P

m<0 dim Em, denoted by

indexð f Þ. Clearly, f is stable if and only if indexð f Þ ¼ 0.

We assume that f : M ¼ G=K ! N ¼ U=L is a totally geodesic imbedding.

We choose U so that G is a Lie subgroup of U . We denote the Lie algebra of G

and U by g and u respectively. And let g ¼ klm and u ¼ ll p be the canonical

decompositions. We have the decomposition u ¼ gl g? as a G-module as well as

K-module decompositions l ¼ kl k? and p ¼ mlm?, where m (resp. m?) is

isomorphic with ToM (resp. T?
o M) as a K-module. We decompose g? into the

sum of simple G-modules g?i and denote by m and mi the corresponding rep-
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resentations of G ð1a ia kÞ. We have the decompositions g?i ¼ k?i lm?
i as

K-modules where k?i ¼ k? V g?i and m?
i ¼ m? V g?i for each i ð1a ia kÞ.

Theorem 3.3 ([11]). With the above notation, the index of f is given as

follows:

indexð f Þ ¼
Xk

i¼1

X
l ADðGÞ
al>ai

dim HomKðVl; ðm?
i Þ

CÞ dim Vl;ð1Þ

where DðGÞ denotes all the equivalence classes of complex irreducible repre-

sentations of G and Vl denotes the representation space of an element l in DðGÞ
and al denotes the eigenvalue of the Casimir operator of l. Here ai denotes the

eigenvalue of the Casimir operator of mi. HomKðVl; ðm?
i Þ

CÞ denotes the K-module

homomorphisms from Vl into the complexification ðm?
i Þ

C
of m?

i .

Also we consider the case that N is a compact connected semisimple Lie

group U with a bi-invariant Riemannian metric and M is a connected semisimple

subgroup G. Applying Theorem 3.3 to this case, we have the following:

Lemma 3.4. Indexð f Þ is given as follows:

indexð f Þ ¼
Xk

i¼1

X
l;m ADðGÞ
alþam>ai

dim HomGðVl nVm; ðg?i Þ
CÞ dimðVl nVmÞ;ð2Þ

where we follow the notation in Theorem 3.3.

Now we apply (1) to inclusion maps i : M ! N and i? : M? ! N of a

reflective submanifold M ¼ H=H VL and the orthogonal complement M? ¼
H 0=H VL in N ¼ U=L. Here we can take L ¼ U t, H ¼ U s and H 0 ¼ U ts by

Proposition 1.10 and Proposition 1.11. We fix a point o with LðoÞ ¼ o and

assume that o A M. Let h, h 0 and u be the Lie algebra of H, H 0 and U re-

spectively. And let h ¼ ðhV lÞl hV l?, h 0 ¼ ðhV lÞl h? V l? and u ¼ ll p be the

canonical decompositions, where hV l? (resp. h? V l?) is isomorphic to ToM

(resp. ToM
?) as a ðH VLÞ-module. Since p ¼ ðhV l?Þl ðh? V l?Þ, we have

ðhV l?Þ? ¼ h? V l? and ðh? V l?Þ? ¼ hV l?. Here we put hV l? :¼ m and

h? V l? :¼ m?. Also we have the following decompositions: m ¼ m1 l � � �lms

and m? ¼ m?
1 l � � �lm?

t as ðH VLÞ-modules. The next lemma is an immediate

consequence of Theorem 3.3.
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Lemma 3.5. IndexðiÞ is given as follows:

indexðiÞ ¼
Xt

i¼1

X
l ADðHÞ
al>ai

dim HomHVLðVl; ðm?
i Þ

CÞ dim Vl;ð3Þ

where we follow the notation in Theorem 3.3.

Also we apply (2) to Lie group case: Let i : G ! U and i? : G? ! U be

inclusion maps of a reflective submanifold G ¼ H �=H and the orthogonal

complement G? ¼ H 0=H in U ¼ U �=U , where H � and U � denote H � ¼ H �H

and U � ¼ U �U , respectively. Here we may take H ¼ U s and H 0 ¼ U ts by

Proposition 1.10 and Proposition 1.11. The next lemma is an immediate con-

sequence of Lemma 3.4 and Theorem 3.3.

Lemma 3.6. IndexðiÞ is given as follows:

indexðiÞ ¼
Xk

i¼1

X
l;m ADðHÞ
alþam>ai

dim HomHðVl nVm; ðh?i Þ
CÞ dimðVl nVmÞ;ð4Þ

where we follow the notation in Theorem 3.3 and ai is the eigenvalue for the

Casimir operator of each representation ðri; h?i Þ, where h? ¼
Pk

i¼1 h
?
i is a simple

H-module decomposition.

4 Stability of Totally Geodesic Submanifolds with Cohomogeneity One

Actions

In this section, we first introduce Freudenthal formula for complex irre-

ducible representation of a Lie group.

Theorem 4.1. Let ðV ; rÞ be a complex irreducible representation of G. Then

the eigenvalue al of the Casimir operator rðCÞ with respect to h ; i is given by the

following:

al ¼ �hl; lþ 2dðGÞi;

where dðGÞ is half the sum of positive roots of G and h ; i is the canonical inner

product on g.

Next, by Theorem 4.1 we calculate the eigenvalue al of the Casimir operator

with respect to the canonical inner product on g.
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Notation 4.2. We follow the notation in [2] concerning the numbering of

the fundamental weights.

Type Ar: g ¼ suðrþ 1Þ ðrb 1Þ,

a$i
¼ � iðrþ 2Þðrþ 1� iÞ

rþ 1
;

where we here note that a$1
¼ a$r

> a$2
¼ a$r�1

> � � � > a$½r=2� .

Type Br: g ¼ soð2rþ 1Þ ðrb 2Þ,

a$i
¼ �ið2r� i þ 1Þ; ð1a ia r� 1Þ;

a$r
¼ � rð2rþ 1Þ

4

where we here note that a$1
> a$2

> � � � > a$r�1
.

Type Cr: g ¼ spðrÞ ðrb 3Þ,

a$i
¼ �ið2r� i þ 2Þ;

where we here note that a$1
> a$2

> � � � > a$r
.

Type Dr: g ¼ soð2rÞ ðrb 4Þ,

a$i
¼ �ið2r� iÞ; ð1a ia r� 2Þ;

a$r�1
¼ a$r

¼ � rð2r� 1Þ
4

where we here note that a$1
> a$2

> � � � > a$r�2
.

Type E6: g ¼ e6,

a$1
¼ a$6

> a$2
> a$3

¼ a$5
> a$4

:

Type E7: g ¼ e7,

a$7
> a$1

> a$2
> a$6

> a$3
> a$5

> a$4
:

Type E8: g ¼ e8,

a$8
> a$1

> a$7
> a$2

> a$6
> a$3

> a$5
> a$4

:

Type F4: g ¼ f4,

a$4
> a$1

> a$3
> a$2

:
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Type G2: g ¼ g2,

a$1
> a$2

:

Remark 4.3. We note that the absolute value of a$1
is the minimum among

a$i
ð1e ie rÞ for type Ar, Br, Cr, Dr ðrf 4Þ and G2.

Let i : M ! N be a totally geodesic imbedding. Now, we consider the

following cases.

1. The case that N is not a Lie group.

2. The case that N is a Lie group.

Case 1. Let M be a reflective submanifold with a cohomogeneity one

action on a compact irreducible simply connected symmetric space N ¼ U=L. By

Proposition 2.3, M? is a compact symmetric space of rank one. Here we may

take M ¼ H=H VL and M? ¼ H 0=H VL by Proposition 1.9 and assume that

o A M. In order to study the stability of M in N, we use (3) in Section 3 in this

case. Since ðU ;HÞ is a compact symmetric pair, the representation of H on

ToU=HG h? is equivalent to the isotropy representation of U=H. On the other

hand, M? is a compact symmetric space of rank one and the representation of

H VL on m? is equivalent to the isotropy representation of M?.

Theorem 4.4 Under the assumption of the case 1, we assume that the Lie

group H has a rank greater than four and that the restriction of the isotropy

representation of U=H to G is equivalent to $1ðGÞ, where G denotes some Lie

subgroup of H which was shown in Lemma 1.13. Then the index of the inclusion

map i is equal to zero.

Proof. By the assumption, M ¼ H=H VL is a totally geodesic singular

orbit of a Hermann action of H. We will consider the following cases.

(i) U=H is a Hermitian symmetric space.

(ii) Both U=H and M? are quaternionic Kähler symmetric spaces.

(iii) U=H is a compact symmetric space except for (i) and (ii).

Case (i).

Since U=H is a Hermitian symmetric space, the center of H is one-

dimensional. Thus, we denote the isotropy group H by H ¼ Uð1Þ � ĤH. We may
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take G as the semisimple part ĤH by Lemma 1.13. Also the Hermann action H on

N gives rise to the following G-module decomposition:

g? ¼ g?1 l g?2 ;

where g? is the orthogonal complement of g in u, g?1 GR and g?2 GToU=H. By

the assumption, ToU=H is isomorphic to V$1ðGÞ as a G-module. In order to count

dim HomKðVl; ðm?
i Þ

CÞ we must find the representation l which satisfies the

inequality al > ai ði ¼ 1; 2Þ for all l A DðGÞ. In this case, the representation

which satisfies the above condition is a trivial representation because a1 is equal to

zero and the absolute value of a2 ¼ a$1ðGÞ is less than or equal to a$jðGÞ ð jb 2Þ
except for type F4, E7 and E8. Also the orthogonal complement M? of M is a

compact symmetric space of rank one. Thus the isotropy representation of M? is

isomorphic to some isotropy representation in Table 3. Since m?
1 ¼ f0g and

m?
2 GToM

? as a K-module, we conclude the following:

indexðiÞ ¼ dim HomKðC; ðm?
2 Þ

CÞ:
Thus indexðiÞ ¼ 0.

Case (ii).

Since U=H is a quaternionic Kähler symmetric space, the isotropy group H

contains a simple normal subgroup isomorphic to Spð1Þ. Thus, we denote the

isotropy group H by H ¼ Spð1Þ � ĤH. Similarly in case (i), we can take G as ĤH by

Lemma 1.13 and we have the following decomposition:

g? ¼ g?1 l g?2 l g?3 l g?4 l g?5 ;

where g? is the orthogonal complement of g in u, g?i GR ði ¼ 1; 2; 3Þ and

g?4 l g?5 GToU=H and g?4 G g?5 . By the assumption, ToU=H is isomorphic to

V$1ðGÞ as a G-module. In order to count dim HomKðVl; ðm?
i Þ

CÞ we must find the

representation l which satisfies the inequality al > ai ð1a ia 5Þ for all l A DðGÞ.
In this case, the representation which satisfies the above condition is a trivial

representation because aiði ¼ 1; 2; 3Þ is equal to zero and the absolute value of

ai ¼ a$1ðGÞ ði ¼ 4; 5Þ is less than or equal to a$jðGÞ ð jb 2Þ except for type F4, E7

and E8. Also the orthogonal complement M? of M is a quaternionic projective

space. Thus the isotropy representation of M? ¼ HPn is isomorphic to the

representation $1ðC1Þ þ$1ðCnÞ in Table 3. Since m?
i ¼ f0gði ¼ 1; 2; 3Þ and

m?
j GV$1ðCnÞð j ¼ 4; 5Þ as a K-module, we conclude the following:

indexðiÞ ¼ dim HomKðC; ðm?
4 Þ

CÞ þ dim HomKðC; ðm?
5 Þ

CÞ:

Thus indexðiÞ ¼ 0.
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Case (iii).

Since U=H is a compact symmetric space except for (i) and (ii), the isotropy

group H is a simple Lie group. In this case, we can take G ¼ H by Lemma 1.13.

Thus g? is isomorphic to ToU=H and is a simple G-module. By the as-

sumption the representation G on g? is equivalent to $1ðGÞ. In order to count

dim HomKðVl; ðm?ÞCÞ we must find the representation l which satisfies the

inequality al > a for all l A DðGÞ. In this case, the representation is a trivial

representation because the absolute value of a ¼ a$1ðGÞ is less than or equal to

a$jðGÞ ð jb 2Þ except for type F4, E7 and E8. Also m? is a simple K-module,

therefore we have the following:

indexðiÞ ¼ dim HomKðC; ðm?ÞCÞ:

Thus indexðiÞ ¼ 0. r

Case 2. Let G be the connected component of the fixed-point set of some

involutive automorphism of U and let G be a singular orbit of a cohomogeneity

one action on a compact simply connected Lie group U ¼ U �=U , where U �

denotes U �U . By Proposition 2.3, G? is a compact symmetric space of rank

one. Here we may take G ¼ H �=H and G? ¼ H 0=H by Proposition 1.9. In

order to study the stability of G in U , we use (4) in Section 3 in this case.

Since ðU �;H �Þ is a compact symmetric pair, the representation of H � on

ToU
�=H � G h? l h? is equivalent to the isotropy representation of U=H �U=H.

On the other hand, G? is a compact symmetric space of rank one and the

representation of H on h? is equivalent to the isotropy representation of a

compact symmetric space of rank one.

Corollary 4.5. Under the assumption of the case 2, we assume that the Lie

group H has a rank greater than four and that the restriction of the isotropy

representation of U=H to G is equivalent to $1ðGÞ, where G denotes some Lie

subgroup of H which was shown in Lemma 1.13. Then the index of the inclusion

map i : G ! U is equal to zero.

Proof. We note that each irreducible part of the representation of H � on

ToU
�=H � is isomorphic to the representation of H on ToU=H. Thus we conclude

that this case is similar to the case 1. r

Now, we check whether each case in Table 2 satisfies the assumption in

Theorem 4.4 (or Corollary 4.5) or not. The following cases satisfy the as-
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sumption: ð1Þ; . . . ; ð5Þ, ð7Þ; . . . ; ð13Þ, ð15Þ; . . . ð20Þ, ð22Þ; . . . ð27Þ, ð29Þ, ð30Þ. These
cases are stable. Among these cases there are some exceptions which do not

satisfy the assumption of rank. We examine their stability case by case.

Under the low rank assumptions, we determine the stability of M ¼ G=K in

N ¼ U=L. That is to say 1a rankðGÞa 4. In Table 2 the cases of (1), (2), (3),

(4), (5) and (29) satisfy this condition.

Case (2).

For an inclusion map i : Go
k ðRn�1Þ ! Go

k ðRnÞ, we discuss 6e ne 9.

When n ¼ 6, we consider the following cases:

(i) i : Go
3 ðR5Þ ! Go

3 ðR6Þ
(ii) i : Go

4 ðR5Þ ! Go
4 ðR6Þ

Case (i).

Since Go
3 ðR5Þ is a reflective submanifold in Go

3 ðR6Þ, Go
3 ðR5Þ is a totally

geodesic orbit of Hermann action of H ¼ SOð5Þ by Proposition 1.9. The Hermann

action gives rise to a homomorphism r : g ! u, where g ¼ soð5Þ, u ¼ soð6Þ. We

have u ¼ rðgÞl g?, where g? is the orthogonal complement of rðgÞ in u. g? is a

g-module, g? GToS
5 GV$1ðSOð5ÞÞ. Thus we have the indexðiÞ:

indexðiÞ ¼
X

l A f0;$2ðB2Þg
dim HomSOð3Þ�SOð2ÞðVl; ðm?ÞCÞ dim Vl:

Since m? is isomorphic to ToS
3, we obtain ðm?ÞC GV$1ðSOð3ÞÞ as a SOð3Þ-

module. Also we have the following decomposition as a SOð3Þ-module:

V$2ðB2Þ GV$1ðC2Þ ¼ V3$1ðA1Þ. Therefore indexðiÞ ¼ 0.

Case (ii).

Because Go
4 ðR5ÞGS4 is a symmetric R-space of Go

4 ðR6ÞGGo
2 ðR6Þ, it is

stable ([12]).

When n ¼ 7, we consider the following cases:

(i) i : Go
3 ðR6Þ ! Go

3 ðR7Þ
(ii) i : Go

4 ðR6Þ ! Go
4 ðR7Þ

(iii) i : Go
5 ðR6Þ ! Go

5 ðR7Þ

Case (i).

Since Go
3 ðR6Þ is a reflective submanifold in Go

3 ðR7Þ, Go
3 ðR6Þ is a totally

geodesic orbit of Hermann action of H ¼ SOð6Þ by Proposition 1.9. The Hermann

action gives rise to a homomorphism r : g ! u, where g ¼ soð6Þ, u ¼ soð7Þ. We

375Stability of certain reflective submanifolds in compact symmetric spaces



have u ¼ rðgÞl g?, where g? is the orthogonal complement of rðgÞ in u. g? is a

g-module, g? GToS
6 GV$1ðSOð6ÞÞ. Thus we have the indexðiÞ:

indexðiÞ ¼
X

l A f0;$2ðD3Þg
dim HomSOð3Þ�SOð3ÞðVl; ðm?ÞCÞ dim Vl:

Since m? is isomorphic to ToS
3, we obtain ðm?ÞC GV$1ðSOð3ÞÞ. Also we have the

following decomposition as a K-module: V$2ðD3Þ GV$3ðA3Þ ¼ V$1ðA1Þ nV$1ðA1Þ.

Therefore indexðiÞ ¼ 0.

Case (ii).

Since Go
4 ðR7Þ is a quaternionic Kähler manifold and Go

4 ðR6Þ is a quaternionic

Kähler submanifold of Go
4 ðR7Þ, Go

4 ðR6Þ is stable ([14]).

Case (iii).

Because Go
5 ðR6ÞGS5 is a symmetric R-space of Go

5 ðR7ÞGGo
2 ðR7Þ, it is

stable ([12]).

When n ¼ 8, we consider the following cases:

(i) i : Go
3 ðR7Þ ! Go

3 ðR8Þ
(ii) i : Go

4 ðR7Þ ! Go
4 ðR8Þ

(iii) i : Go
5 ðR7Þ ! Go

5 ðR8Þ
(iv) i : Go

6 ðR7Þ ! Go
6 ðR8Þ

Case (i).

Since Go
3 ðR7Þ is a reflective submanifold in Go

3 ðR8Þ, Go
3 ðR7Þ is a totally

geodesic orbit of Hermann action of H ¼ SOð7Þ by Proposition 1.9. The Hermann

action gives rise to a homomorphism r : g ! u, where g ¼ soð7Þ, u ¼ soð8Þ. We

have u ¼ rðgÞl g?, where g? is the orthogonal complement of rðgÞ in u. g? is a

g-module, g? GToS
7 GV$1ðSOð7ÞÞ. Thus we have the indexðiÞ:

indexðiÞ ¼
X

l A f0;$3ðB3Þg
dim HomSOð3Þ�SOð4ÞðVl; ðm?ÞCÞ dim Vl:

Because G is isomorphic to SOð7Þ, the spin representation $3ðB3Þ is not

a representation of SOð7Þ. Since m? is isomorphic with ToS
3, we obtain

ðm?ÞC GV$1ðSOð3ÞÞ. We conclude the indexðiÞ:

indexðiÞ ¼ dim HomSOð3Þ�SOð4ÞðC; ðm?ÞCÞ:

Therefore indexðiÞ ¼ 0.
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Case (ii).

Since Go
4 ðR8Þ is a quaternionic Kähler manifold and Go

4 ðR7Þ is a quaternionic

Kähler submanifold of Go
4 ðR8Þ, Go

4 ðR7Þ is stable ([14]).

Case (iii).

The case is similar to the case (i). Thus Go
5 ðR7Þ is stable in Go

5 ðR8Þ.

Case (iv).

Because Go
6 ðR7ÞGS6 is a symmetric R-space of Go

6 ðR8ÞGGo
2 ðR8Þ, it is

stable ([12]).

When n ¼ 9, clearly the inclusion map i : Go
k ðR8Þ ! Go

k ðR9Þ ð3e ke 6Þ is

stable.

Case (1).

We can conclude that these cases are stable similarly to the case (2).

Case (3).

This case is a special case of (1). Therefore this case is stable.

Case (4), Case (5).

Both the case (4) and the case (5) are cases of a complex submanifold in a

Kähler manifold. Thus these cases are stable.

Case (29).

For an inclusion map i : Spinðn� 1Þ ! SpinðnÞ, we discuss n ¼ 5; 7; 8; 9.

When n ¼ 5, we consider the inclusion map i : Spinð4Þ ! Spinð5Þ. Since

Spinð5Þ is isomorphic to Spð2Þ and Spinð4Þ is isomorphic to S3 � S3, it is stable

([13]).

When n ¼ 7, we consider the inclusion map i : Spinð6Þ ! Spinð7Þ.
We here note that Spinð6Þ is isomorphic to SUð4Þ. Since Spinð6Þ is a re-

flective submanifold in Spinð7Þ, Spinð6Þ is a totally geodesic orbit of Hermann

action of H � ¼ Spinð6Þ � Spinð6Þ by Proposition 1.9. The Hermann action

gives rise to a homomorphism r : h� ! u�, where h� ¼ soð6Þl soð6Þ, u� ¼
soð7Þl soð7Þ. We have u� ¼ rðh�Þl ðh�Þ?, where ðh�Þ? is the orthogonal

complement of rðh�Þ in u� and ðh�Þ? ¼ h? l h?. Also h? is a simple h-module

and h? GToS
6 GV$1ðSOð6ÞÞ GV$2ðSUð4ÞÞ. We conclude the indexðiÞ:

indexðiÞ ¼
X

l A f0;0þ$1ðA3Þ;$1ðA3Þþ0g
dim HomSUð4ÞðVl; ðh?ÞCÞ dim Vl:
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Since h? is isomorphic to ToS
6, we obtain ðh?ÞC GV$2ðSUð4ÞÞ as a SUð4Þ-module.

As for l ¼ 0þ$1ðA3Þ and l 0 ¼ $1ðA3Þ þ 0, we have Vl ¼ V$1ðA3Þ and

Vl 0 ¼ V$1ðA3Þ as a SUð4Þ-module. Therefore indexðiÞ ¼ 0.

When n ¼ 8, we consider the inclusion map i : Spinð7Þ ! Spinð8Þ.
Since Spinð7Þ is a reflective submanifold in Spinð8Þ, Spinð7Þ is a totally

geodesic orbit of Hermann action of H � ¼ Spinð7Þ � Spinð7Þ by Proposition

1.9. The Hermann action gives rise to a homomorphism r : h� ! u�, where

h� ¼ soð7Þl soð7Þ, u� ¼ soð8Þl soð8Þ. We have u� ¼ rðh�Þl ðh�Þ?, where

ðh�Þ? is the orthogonal complement of rðh�Þ in u� and ðh�Þ? ¼ h? l h?. Also h?

is a simple h-module and h? GToS
7 GV$1ðSOð7ÞÞ. Thus we have the indexðiÞ:

indexðiÞ ¼
X

l A f0;0þ$3ðSOð7ÞÞ;$3ðSOð7ÞÞþ0g
dim HomSOð7ÞðVl; ðh?ÞCÞ dim Vl:

Since h? is isomorphic to ToS
7, we obtain ðh?ÞC GV$1ðSOð7ÞÞ as a SOð7Þ-module.

As for l ¼ 0þ$3ðSOð7ÞÞ and l 0 ¼ $3ðSOð7ÞÞ þ 0, we have Vl ¼ V$3ðSOð7ÞÞ and

Vl 0 ¼ V$3ðSOð7ÞÞ as a SOð7Þ-module. Therefore indexðiÞ ¼ 0.

When n ¼ 9, clearly the inclusion map i : Spinð8Þ ! Spinð9Þ is stable.

Now we obtain the following theorem.

Theorem 4.6. Under the assumption of case 1 and 2, we assume that the

restriction of the isotropy representation of U=H to G is equivalent to $1ðGÞ,
where G denotes some Lie subgroup of H which was shown in Lemma 1.13. Then

the index of the inclusion map i : M ! N is equal to zero.

Also we examine the stability of cases in Table 2 which do not satisfy the

assumption in Theorem 4.4 (or Corollary 4.5).

Case (6).

Because Go
2 ðR2nÞ is a Hermitian symmetric space, we can conclude that

CPn�1 is stable.

Case (14).

Because G2ðC2nÞ is a quaternionic Kähler symmetric space, we can conclude

that HPn�1 is stable by [14].

Case (21).

In this case, it is unstable [5].
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Case (28).

Because an inclusion map f : AIð3Þ ! SUð3Þ is the Cartan embedding, it is

unstable by [8].

Case (31).

Since EII is a quaternionic Kähler manifold and FI is a quaternionic Kähler

submanifold of EII , FI is stable ([14]).

Case (32).

Because OP2 is a symmetric R-space of EIII , it is stable ([12]).

Case (33).

S1 � S9 is the meridian of EIII ([9]). Thus S1 � S9 is stable ([13]).

Case (34).

In this case, it is unstable [5].

Case (35).

Since FI is a quaternionic Kähler manifold and Go
4 ðR9Þ is a quaternionic

Kähler submanifold of FI , Go
4 ðR9Þ is stable ([14]).

Case (36).

Because Spinð9Þ is a Lie subgroup of Dynkin index 1 in F4, Spinð9Þ is stable

by [7].

Now we obtain the following theorem.

Theorem 4.7. All of the stability of totally geodesic singular orbits which are

obtained by the cohomogeneity one actions on compact simply connected irreducible

symmetric spaces are given in Table 2. The cases whose numbers are attached the

symbol � are unstable and the other cases are stable.
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Table 2: A totally geodesic singular orbit M ¼ G=K of a cohomogeneity one action on a simply

connected irreducible compact symmetric space N ¼ U=L associated with a Hermann action H and

the orthogonal complement M? and the isotropy representation of U=H

N M M? U=H isotropy representation of U=H

(1) Go
k ðRnÞ Go

k�1ðRn�1Þ Sn�k S n�1 $1ðSOðn� 1ÞÞ

(2) Go
k ðRnÞ Go

k ðRn�1Þ Sk Sn�1 $1ðSOðn� 1ÞÞ

(3) Go
k ðR

2kÞ Go
k�1ðR

2k�1Þ Sk S2k $1ðSOð2kÞÞ

(4) Go
2 ðR2nÞ S2n�2 S2n�2 S2n�1 $1ðSOð2n� 1ÞÞ

(5) Go
2 ðR2nÞ Go

2 ðR2n�1Þ S2 S2n�1 $1ðSOð2n� 1ÞÞ

(6) Go
2 ðR2nÞ CPn�1 CPn�1 DIIIðnÞ $2ðAn�1Þ

(7) Go
3 ðR6Þ Go

3 ðR5Þ S3 S5 $1ðSOð5ÞÞ

(8) Go
3 ðR6Þ S1 � AIð3Þ S3 S5 $1ðSOð5ÞÞ

(9) GkðCnÞ Gk�1ðCn�1Þ CPn�k CPn�1 T þ$1ðAn�2Þ

(10) GkðCnÞ GkðCn�1Þ CP2k CPn�1 T þ$1ðAn�2Þ

(11) GkðC2kÞ GkðC2k�1Þ CPk CP2k�1 T þ$1ðA2k�2Þ

(12) G2ðC2nÞ G2ðC2n�1Þ CP2 CP2n�1 T þ$1ðA2n�2Þ

(13) G2ðC2nÞ CP2n�2 CP2n�2 CP2n�1 T þ$1ðA2n�2Þ

(14) G2ðC2nÞ HPn�1 HPn�1 AIIðnÞ $2ðCnÞ

(15) GkðHnÞ Gk�1ðHn�1Þ HPn�k HPn�1 $1ðC1Þ þ$1ðCn�1Þ

(16) GkðHnÞ GkðHn�1Þ HPk HPn�1 $1ðC1Þ þ$1ðCn�1Þ

(17) GkðH2kÞ GkðH2k�1Þ HPk HP2k�1 $1ðC1Þ þ$1ðC2k�1Þ

(18) AIðnÞ S1 � AIðn� 1Þ RPn�1 CPn�1 T þ$1ðAn�2Þ

(19) AIIðnÞ S1 � AIIðn� 1Þ HPn�1 G2ðC2nÞ T þ$1ðA1Þ þ$1ðA2n�3Þ

(20) AIIð3Þ S1 � S5 HP2 G2ðC6Þ T þ$1ðA1Þ þ$1ðA3Þ

(21)� AIIð3Þ SUð3Þ CP3 G3ðC6Þ T þ$1ðA2Þ þ$1ðA2Þ

(22) DIIIðnÞ DIIIðn� 1Þ CPn�1 Go
2 ðR2nÞ $1ðSOð2ÞÞ þ$1ðSOð2n� 2ÞÞ

(23) CIðnÞ S2 � CIðn� 1Þ CPn�1 HPn�1 $1ðC1Þ þ$1ðCn�1Þ

(24) SUðnÞ SðUð1Þ �Uðn� 1ÞÞ CPn�1 CPn�1 T þ$1ðAn�2Þ

(25) SUð4Þ SðUð1Þ �Uð3ÞÞ CP3 CP3 T þ$1ðA2Þ

(26) SUð4Þ Spð2Þ S5 S5 $1ðSOð5ÞÞ
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Table 3: The isotropy representations of

compact symmetric spaces of rank one

M isotropy representation

Sn ðnb 2Þ $1ðSOðnÞÞ

RPn ðnb 2Þ $1ðSOðnÞÞ

CPn ðnb 2Þ T þ$1ðAn�1Þ

HPn ðnb 2Þ $1ðC1Þ þ$1ðCnÞ

OP2 $4ðB4Þ

Table 2: Continued

N M M? U=H isotropy representation of U=H

(27) SUð3Þ S1 � S3 CP2 CP2 T þ$1ðA1Þ

(28)� SUð3Þ AIð3Þ RP3 SUð3Þ ð$1 þ$2ÞðA2Þ

(29) SpinðnÞ Spinðn� 1Þ Sn�1 Sn�1 $1ðSOðn� 1ÞÞ

(30) SpðnÞ Spðn� 1Þ � Spð1Þ HPn�1 HPn�1 $1ðC1Þ þ$1ðCn�1Þ

(31) EII FI HP3 EIV $4ðF4Þ

(32) EIII OP2 OP2 EIV $4ðF4Þ

(33) EIV S1 � S9 OP2 EIII T þ$5ðD5Þ

(34)� EIV AIIð3Þ HP3 EII $1ðA1Þ þ$3ðA5Þ

(35) FI Go
4 ðR9Þ HP2 OP2 $4ðB4Þ

(36) F4 Spinð9Þ OP2 OP2 $4ðB4Þ
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