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INDEFINITE EXTRINSIC SPHERES

By

Sorin DrRAGOMIR'! and Krishan L. DuGGAL?

Abstract. We study the lightlike geometry of the second funda-
mental form of the intersection between an algebraic hypersurface in
C” and a pseudosphere S7"~!'(2/vk) including a class of extrinsic
spheres which are not homotopy spheres.

Let C" denote C" with the quadratic form —|z;|*—- - — |z]* +
|Zer1|* + - +|zs)*. Let FeC[z] be a homogenous polynomial and S =
{zeC{:F,(z) =0,1 < j <n} where F., = 0F/dz;. Then M=M(F)={zeC:
F(z) = 0}\S is a complex hypersurface. Let S~ (r) = {ze C] : 3| glz|* = r*}
be the pseudosphere of radius r >0 (where g = —1 for any 1< <s and
&4a =1 for any 1 <a <n-—s). We set

M = M(F) = MNS¥ ' (2/Vk)

(k > 0). We wish to study the geometry of the second fundamental form of M in
both M and C”. In the positive definite case (s=0) M is an example of an
extrinsic sphere (cf. B-Y. Chen, [5]) which is not even homeomorphic to a sphere
(cf. B-Y. Chen, [6]). Let Ag={zeC!: Z]f’:lsj|zj|2 =0} be the null cone and
C={zeC}: (F.,(2),...,F.,(2)) € Ao}. Our result is

THEOREM A. Assume that M(F) < C. Let V be the induced connection on
M = M(F) as a 2-lightlike submanifold of C". Then i) M = M(F) is an extrinsic
sphere in (M,§,V). ii) There is a free action of S' on M such that M/S" is
a complex manifold and S'— M — M/S' a principal circle bundle. iii) If
M/S" is 1-connected and dimc M/S' > 2 then either m (M) =my(M)=0 or
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m(M) =nmy(M) =17 so that in general M is not homeomorphic to a sphere. iv)
The immersion M — C! is totally umbilical of mean curvature —(k/4)¢ if and
only lfM is a complex hyperplane a\zy + -+ + ayz, = 0 with a = (a, ..., a,) € Ao.
Here & =2/0/0z/ +2/0/0z/. Moreover v) M is an indefinite CR submanifold of
C! and hence a CR manifold of CR dimension n — 2 whose extrinsic Levi form is
given by L(w) = —g|w/|*¢, for any w=w/(0/dz7) € T) o(M), and any x € M.
Here § is the first fundamental form of M — C”. Also m (M) is the k-th
homotopy group of M. An appealing question is whether CR functions on M (F)
extend (at least locally) holomorphically to C”. The convex hull of the image of
L, has empty interior in the transversal space tr(M), thus killing a hope to
generalize Theorem 1 in [4], p. 200-201, to the case of the extrinsic sphere M (F).
Throughout this paper we emphasize on the geometric features of M(F) and
relegate all analytic considerations to further work.

1. A Reminder of Lightlike Geometry

We adopt the notations and conventions in [8]. Let (M?'*2 J,G) be an
indefinite Kéhler manifold, of complex dimension n+1 (n>1) where J de-
notes the complex structure and G the indefinite Riemannian metric of index
2s (0<s<n+1), cf. eg. [1], p. 55. Then G(JX,JY)=G(X,Y) for any
X,YeT(M**?) and DJ =0 where D is the Levi-Civita connection of
(M?+2 G). Let M be a real m-dimensional lightlike submanifold of (M2 G)
i.e. G is degenerate on T(M). For each point x e M we set

(Rad TM), = {¢ & Tu(M) : g.(&, X) = 0,X & T (M)},

Here g = j*G is the induced metric on M and j: M < M?"*? is the inclusion. A
fundamental assumption in lightlike geometry is that Rad TM :xe M —
(Rad TM), is a smooth distribution on M of rank r > 1. Let T(M)" — M be
the normal bundle of j. Clearly (Rad TM) < T(M); for any xe M hence
r <min{m,k} where k=2(n+1)—m is the codimension of M in M?**2
Rad TM is referred to as the radical distribution of M. We shall also use the
terminology ([8], p. 141-150) in Table 1 below. Cf. also R. Rosca, [9]. One of
the main techniques used in this paper is that of screen distributions. Precisely we

consider smooth distributions S(7M) and S(TM*) on M such that
(1) T(M):S(TM) @orlhRad ™,

(2) T(M)* = S(TM*) @ Rad TM.
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Table 1. Classification of lightlike submanifolds
according to the rank of their radical distribution.

M r
(I) r-lightlike submanifold | 1 <r < min{m,k}
(II) co-isotropic l<r=k<m
(III) isotropic l<r=m<k
(IV) totally lightlike l<r=m=k

We write V @ o W whenever the sum V' + W is direct and the spaces V', W are
orthogonal. A posteriori both S(TM) and S(TM*) are nondegenerate (cf. e.g.
Proposition 2.1 in [8], p. 5). S(TM) (respectively S(TM*1)) is referred to as
a tangential (respectively normal) screen distribution. Such a choice of screen
distributions on M leads to the construction of a vector bundle tr(7M) — M
which is complementary to T(M) in T(M?**2). Although tr(TM)— M will
prove to contain a lightlike vector bundle it may be used (as a lightlike analog to
the normal bundle of a nondegnerate submanifold of M?'*2) to build a theory
similar to that of the second fundamental form in Riemannian geometry (cf. [8]).

Let M be a real m-dimensional r-lightlike submanifold of the semi-
Riemannian manifold (M?'+2 G). As S(TM) is nondegenerate

T(M?>*2) = S(TM) @ oy S(TM)™*.

It is immediate that S(TM') < S(TM)*. Indeed, if X € S(TM*) = T(M)*
then X is orthogonal to T (M) = S(TM) hence X is orthogonal to S(TM) i.e.
X € S(TM)*. In particular

(3) S(TM)" = S(TM") @ orn S(TM™*)™.

Note that Rad TM < S(TM™*)". Indeed if X e Rad TM then X € T(M) and
X is perpendicular to T(M)" = S(TM™*) hence X e S(TM*)". Next we need
transversal vector bundles and the corresponding Gauss formula.

Let {&y,...,& =« T(U,Rad TM) be a local frame. Let F — M be a vector
bundle such that

S(TM*)" = (Rad TM) @ F
(so that F has rank r). Let {V1,...,V,} =« T'”(U,F) be a local frame. Let us set
gik =G, Vi), 1<jk<r

Then det[g] # 0 everywhere on U. Let [¢/*] := [gy] ' and let us set



338 Sorin DraGOMIR and Krishan L. DuGGaL

1 .. . "
(4) Ni — _Egkzg/jG( Vk, V/)fj + g"l Vj
Then G(N;,&;) =0d; and G(N;,N;) = 0. In particular it follows that {&,...,¢,,
Ni,...,N,} is a local frame of S(TM*)" on U. Moreover we set
(5) ltr(TM), =Y RN;,, xeU.
i1

By a result in [8] (cf. Theorem 1.2, p. 144) ltr(TM), is well defined i.e. its
definition doesn’t depend upon the local frames {&;: 1 < j <r} of Rad TM and
{V,:1<j<r} of Fatx. Also Itr((TM) =], _,, Itr(TM), is a vector bundle
over M and

(6) S(TM*)* = (Rad TM) @ Itr(TM).

We call Itr(TM) — M a lightlike transversal vector bundle with respect to the
screen distributions S(TM) and S(TM™). Note that the construction of a
lightlike transversal vector bundle does depend upon the choice of F — M. A
transversal vector bundle tr(TM) — M is given by

tr(TM) = tr(TM) @ o, S(TM™).
We emphasize that
T(M**?) = S(TM) ® S(TM)*
=S(TM) ® [S(TM*) @ S(TM™*)*]
=S(TM) @ S(TM*) ® (Rad TM) @ Itr(TM)
hence
(7) T(M*2) =T(M) @ tr(TM).

Let tan, : Tx(M*%) — T(M) and tra, : Ty(M*"*?) — tr(TM), be the projec-
tions associated with the direct sum decomposition (7). We set

VxY =tan(DyY), h(X,Y)=tra(DyxY),

for any X, Y € T(M). Then V is a torsion-free linear connection on M and / is
C®(M)-bilinear symmetric (as D is torsion-free). In particular

8) DxY =VyY +h(X,Y)
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In general however V is not a metric connection but rather
(Vxg)(Y,Z2) = G(h(X, Y), Zraa i) + G(W(X, Z), YRad TM)

for any X,Y,Ze T(M). Here Xradarym denotes the Rad TM-component of
X € T(M) with respect to the decomposition (1). Equation (8) is referred to as
the Gauss formula while V and & are respectively the induced connection and the
second fundamental form (of the given immersion M < M?>"*?) associated to the
transversal bundle tr(TM) — M.

2. Indefinite CR Submanifolds

The complex structure J on M2 induces a “‘tangential” complex structure
on M (cf. e.g. (1.12) in [7], p. 5)

Tio(M), = T"O(M*"2) N[T(M)®gC], xeM.

If the spaces T (M), have the same dimension for any x € M then (M, T} 0(M))
is a CR manifold and H(M) = Re{T o(M) ® To,1(M)} is its Levi, or maximally
complex, distribution (cf. [7], p. 4). When the ambient space is endowed with
a Kdihler metric G it is a meaningful problem to study the extrinsic geometry of
M in (M?**+2 G). To this end A. Bejancu, [2], examined the class of the CR
submanifolds where one additionally requires the anti-invariance condition
JH(M)* = T(M)*. Though smaller than the class of real submanifolds pos-
sessing a well defined (i.e. of constant rank) induced CR structure, A. Bejancu’s
CR submanifolds do include the generic, totally real, and invariant (i.e. complex)
submanifolds as particular cases (and lead to an unifying treatment of the
geometry of their second fundamental forms, cf. e.g. [12]). When G is an
indefinite Kdhler metric, a lightlike analog to A. Bejancu’s class was proposed
by B. Sahin et al., [10]. Let us adopt the following definition. The synthetic
object (M,S(TM),S(TM*),2) is called an indefinite CR submanifold if 1)
Rad TM is J-invariant (that is J.(Rad TM), = (Rad TM), for any x € M) and
9 :xeMw— 2, is a C” distribution on M such that 2) 2, = S(TM), and the
distribution 2 ® Rad TM is J-invariant, 3) the perp distribution 9+ = S(TM)
satisfies J, 2+ < S(TM*)_ and 4) S(TM), = 2, ® Z+, for any xe M.

This slightly generalizes the concept in [10], p. 141, where one requests that &
(rather than 2 @ Rad TM) be J-invariant and the resulting notion is referred to
as a screen CR submanifold. Clearly both 2 and Z* are nondegenerate. Note that

X

no lightlike real hypersurface may be organized as an indefinite CR submanifold.
Indeed if M is an indefinite CR submanifold and m =2n+1 (and k = 1) then
r=1, a contradiction (r must be even). Also one checks easily
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PrOPOSITION 1. Let M be an indefinite CR manifold. If M is co-isotropic,
isotropic or totally lightlike then M is a complex submanifold of M*'*+2.

Cf. also Proposition 3.2 in [10], p. 144. In the positive definite case (s = 0)
the distribution Rad TM is trivial and (M, 2) is an ordinary CR submanifold of
M?*2 (in the sense of [2]). On the other hand, by a result of D. E. Blair & B-Y.
Chen, [3], any proper (i.e. Z # (0) and 2 # (0)) CR submanifold is a CR
manifold (in the sense of [7], p. 4). It will be shortly seen that an indefinite CR
submanifold of an indefinite Kdhler manifold is a CR manifold, as well.

Let (M,Z) be an indefinite CR submanifold of C"*!'. Let xe M and let
tra, : T(C"™) — tr(TM)_ be the projection associated to the decomposition (7)
(with M2 = C"™1). Exploiting the analogy between the transversal bundle of a
lightlike submanifold and the normal bundle of a nondegenerate submanifold we
introduce the following notion. The extrinsic Levi form of (M,9) is given by

L(w) :% tray(J[W, W)),, we Tio(M),,

where W is a C” section in T}o(M)={X —iJX : X € 2 ® Rad TM} such that
W, =w. By (7) and by the formal integrability property of 2 @ Rad TM (cf.
Lemma 5 in Section 4) the definition of L, (w) doesn’t depend upon the choice of
the section W extending w. An explicit description of Ly(w) (in terms of defining
functions) is given in Lemma 6.

3. The Geometry of M(F)

Let F € C[z] be a homogeneous polynomial of degree d. A real vector field
X =770)0z) + Z70/07/ is tangent to M if and only if Z/F.; = 0. Let us set

0 0
=g F,; , W=Jr.
V= 6(_/6j—|- 621) J

Throughout ¢/ = ¢ and z/ = z;. Then ¥, W e T(M)". On the other hand {V, W}
are linearly independent at each point of C;\.S hence {V, W} is a global frame of
T(M)*. Note that X = AV + BW e Rad TM if and only if (A4 + iB)e/|F.;|* =0
along M, hence

(Rad TM)'M\C =(0), (Rad TM) Myne =T(M ) o
so that M is a 2-lightlike complex submanifold provided that M\C = .

Moreover X € T(M) if and only if Z/F,; =0 and ¢(Z/z; + Z/z;) = 0 along M.
Let us set & =z/0/0z/ +2/9/0z/. Then
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G(&,X) =¢(z;Z) +527) =0

for any X e T(S3~'(2/Vk)) hence ¢ée T(S7-'(2/vk))". Also (by complex
homogeneity) &(F) =z/F.; =dF =0 along M hence &e T(M). Note that
{&,V,W} are linearly independent at each point of M. Indeed aé+ AV +
BW =0 implies oz/ + (4 +iB)g;Fz =0 hence (by contraction with ¢Zz;) 0=
agj|z/|* + (A + iB)z/Fz; = 4a/k i.e. a(z) = 0 for any z € M, etc. Hence {&,V, W}

1

is a global frame of the normal bundle 7'(M)~ of the immersion M — C;. A

calculation shows that

Lemma 1. The radical distribution of M = M(F) is Rad TM = (Rad TM)|,,
and S(TM*) := R&|,, is a normal screen distribution. If M\C = ¢ then Rad TM
is smooth so that M is a 2-lightlike submanifold of Cj.

It should be observed that the assumptions in Theorem A do not
allow for quadrics M = Q, 1. Indeed if F=z{+4---+z¢ then C={zeC":
glz/|*“) = 0}. Next if d = 2 then C = Ag and M = Q, ;N S2~'(2/vk) doesn’t
intersect the null cone.

We assume from now on that M\C = . Then

LEMMA 2. J& =i(z/0/dz) — 2;0/0z;) is tangent to M. If E — M is a vector
bundle such that T(M) = E ® (Rad TM) @ RJ¢|,, then S(TM) := E ® RJE|,, is
a tangential screen distribution for the immersion M — C..

An extrinsic sphere is a totally umbilical submanifold of a Riemannian
manifold whose mean curvature vector is everywhere nonzero and parallel in
the normal bundle (cf. e.g. [5]). The notion admits the following generalization to
the semi-Riemannian context. Let M be a sumanifold of the semi-Riemannian
manifold (M, g). Let V be a linear connection on M. Let us assume that M is
r-lightlike with r > 0 (if r =0 then M is a semi-Riemannian submanifold). We
say M is V-totally umbilical in (M,§,V) if there is a transversal vector bundle
tr(TM) — M (if r =0 then tr(TM) — M is the normal bundle of the immer-
sion M — M) such that tra(VyY) = g(X, Y)H for some H e tr(TM) and any
X,Y e T(M). If additionally H (the V-mean curvature) can be chosen such that
H,#0 for any xe M and tra(VyH) =0 for any X e T(M) then M is a V-
extrinsic sphere in (M,§,V) (if r = 0 then tra : T(M) — tr(TM) is the orthogonal
projection).
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PrOOF OF THEOREM A. Let 1: M < M be the inclusion and N(:), re-
spectively Rad(di), the normal bundle and radical distribution of 1. As ¢ is
tangent to M and orthogonal to M it follows that N(i) = R&|,,. Next

Rad(di) = T(M)NRE|,, = (0)
because ¢ is space-like. Hence 7'(M) is nondegenerate in 7'(M,§) and
) T.(M) = Tu(M) ®orn RE,, x€ M.

Under the assumptions in Theorem A one has 7'(M)" = Rad TM hence we may
take S(TM*) = (0) and tr(TM) = ltr(T M) while the lightlike transversal vector
bundle ltr(TM) — M is built as follows. Let S(TM) be a tangential screen
distribution for the immersion M < C" such that ¢ e S(TM). Then we may
decompose as T(C") = S(TM)® S(TM)" and Rad TM < S(TM)". Therefore
we may choose a complement F to Rad TM in S(TM)* and build {N|, N>}
such that {&, N, :i,je{1,2}} is a local frame of S(TM)" and

G(N:,&) =6, G(N,N;) =0,

where & = V]y; and & = W\ Finally one sets ltr(TM) =RN; ® RN,. We
shall need the Gauss formula (for the immersion M — C”)

DxY =VyY +h(X,Y), X,YeT(M).
In general V§ # 0 (so that V is not the Levi-Civita connection of (M,§)). Let us
observe that
(10) Dyé=X, XeT(S(2/VA)).
As ¢ e S(TM) it follows that S(TM)" is orthogonal to ¢ hence G(N;, &) =0.
Hence (by DG =0 and by (10))

G(VyY,&) = G(DyY,&) = X(G(Y,9) - G(Y, Dx&) = =G(Y, X)
for any X, Y € T(M) so that the normal component (with respect to (9)) of Vy Y
is —(k/4)g(X,Y)¢ and we may set H = —(k/4)E. Moreover
2

tra(VyH) = — % G(Dyé,&) = 0.

The first statement in Theorem A is proved. To prove the next assertion we
need the indefinite Hopf S'-fibration IT: S3"~'(2/Vk) — CP* (k) (cf. e.g. [1]).
If we set Ay ={zeC{:3> ", glz;|> = 0} then the base complex manifold is
the open subset of the complex projective space CP"~! given by CP" (k) =
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(A \Ap)/(C\{0}). As F is homogeneous the S'-action descends to an action
on M, and then on M, such that M/S' =TI(M). As S' — M —TI(M) is a
principal circle bundle the proof of Proposition 2 in [6], p. 205, implies
(M) ~ i (M/S") for and k > 3, ny(M/S') = Z, and the statement in Theorem
A about the homotopy groups of M.

Next we need to compute the second fundamental form /4 of the immersion
M — C;.

LemmA 3. For any X,YeT(M) if X =2/0/0z/ +Z/0/0/0z/ and Y =
Wid)oz/ + WId/0z/ then

h(X,Y)=—a'(X,Y)N; — lfg(X, Y)é

4
where
(11) (X, Y)=F . Z' Wk 4 F-2 ZVWF,
(12) P(X,Y) = i(F i Z Wr — F-2Z/WF),

and {Ni, N>} are given by (4) with & = V|, and & = W|,,.

PrOOF. As G(&,N;) = G(E,&) =0 then (by (10))
G(h(X, Y),€) = G(ira(Dy ¥), &) = ~G(Y, X).

Similarly «/(X, Y) = —G(Dx&;, Y). Moreover Dy V = e¥F., . 0/0z% yields (11)-
(12). Q.e.d.

If F(z)=ajz1+- -+ ayz, and ae Ay then C=C" and (by Lemma 3)
h=—(k/4)g ® £. Viceversa (11)—(12) yield F.;.«(z) =0 along M hence (by the
homogeneity of F) along M. Then (by the proof of Theorem 4 in [6], p. 206-207)
F must be linear (cf. also [11]).

Let us fix a bundle £ — M as in Lemma 2 and the consider the corre-
sponding tangential screen distribution S(7M). Moreover let Z(F) be the
orthogonal complement of RJ¢ in S(TM). We need

Lemma 4 (Cf. [10]). Let M be a m-dimensional 2p-lightlike submanifold of
the complex (n+ 1)-dimensional indefinite Kihler manifold (M*'*2,J,G). Let us
assume that 1) Rad TM is J-invariant, 2) r = 2p < m, and 3) the codimension k
of M in M**? is k=2p+1. Then M may be organized as an indefinite CR
submanifold.
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Any orientable real hypersurface in a Hermitian manifold is a CR sub-
manifold (in the sense of [2]) in a natural way. The lightlike analog to this
situation is provided by Lemma 4. No proof is provided in [10] and the proof of
Proposition 3.4 in [§], p. 203, doesn’t apply (as claimed in [10], p. 143). Therefore
we give a complete proof of Lemma 4 as follows. Let us choose any normal
screen distribution S(7TM*) so that the decomposition (2) holds. The assumption
k=r+1 implies that dimg S(TM*) =1 for any xe M. We claim that

(13) JS(TM*) < T(M).

Indeed let x € M and let us set {,> = G,. As S(TM™), is 1-dimensional we may
choose v e S(TM™*), such that v # 0. Now on one hand {v,J,v) =0 (as G and J
are compatible) so that

(14) Joo LS(TM™ ).

On the other hand if & e (Rad TM), then (by the J-invariance of Rad TM) one
has <&, Jv) = —<{J&,v) =0 hence

(15) Jwo L (Rad TM)..

Then (2) and (14)—(15) imply that Jyv € (T (M)")" = T (M) and (13) is proved.
Next we claim that the sum (Rad TM)+ JS(TM*') is direct. Indeed if X e
(Rad TM)NJS(TM*) then X =JV for some Ve S(TM*) and X L T(M) >
JS(TM+) implies that

0=G(X,JV)=GUV,JV)=G(V,V)

hence V' =0 because S(TM*) is a nondegenerate distribution of rank 1. Thus
X =0 ie.

(16) (Rad TM)NJS(TM*) = (0).

At this point we choose a tangential screen distribution S(7M) such that
S(TM) = JS(TM*). For instance, let us choose a complement E to
(Rad TM) ® JS(TM*) in T(M) ie.

T(M)=E® (Rad TM) @ JS(TM™),
and let us set by definition
S(TM) := E ® JS(TM™).

Finally let & be the perp of JS(TM™*) in S(TM). As JS(TM*) is nondegenerate
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S(TM) = 2 @ JS(TM™)

and 2+ = JS(TM™'). To complete the proof of Lemma 4 we need to check that
2 @® Rad TM is J-invariant. As Rad TM is J-invariant it suffices to show that
J% < 9 @®Rad TM. To this end let X € % and W e T(M)". Then (by (2))
W =Y +¢ for some Y e S(TM*) and & e Rad TM. We have

GUJX, W) =—-G(X,JY) — G(X,J&) =0.

Indeed G(X,JY) = 0 because X belongs to & while JY belongs to JS(TM~) and
these are orthogonal spaces. Also G(X,J¢) =0 because of the invariance of the
radical distribution. Summing up JX e (T(M)*)" = T(M) ie. JX is tangential.
Also if V e S(TM*) then G(JX,JV) = G(X,V) =0 as X is tangential and V is
normal. Hence

(17) JX LJS(TM™*)
and we may conclude that
(18) JX e 2 ®Rad TM.

To prove (18) we let JX =Y +JV +¢& for some Y e, VeS(TM') and
¢ e Rad TM then taking the inner product with JV gives (by (17)) G(V,V) =0
re. V=0. Q.e.d.

Let us go back to the proof of Theorem A. By Lemma 4 the pair (M, 2(F))
is an indefinite CR manifold hence a CR manifold of hypersurface type (of CR
dimension n — 2). Indeed any indefinite CR submanifold admits a natural CR
structure described by the following

LemmA 5. Let (M,S(TM),S(TM*),2) be a m-dimensional indefinite CR
submanifold of the complex (n+ 1)-dimensional indefinite Kdihler manifold
(M**2J,G) such that M is a r-lightlike submanifold of (M**?,G), 0 <r <
min{m,2n+2 —m}. Let HM):=2®RadTM and T o(M):={X —iJX :
X e H(M)}. Then (M, T, o(M)) is a CR manifold of type (p + p,q) where r =2p
and

2p =dimg Z,, q=dimgr 7L, xeM,

and H(M) its Levi distribution. Also the CR structure Ty o(M) and the induced
CR structure from M**2 coincide. In particular the inclusion j: M — M**? is a
CR immersion ie. (dyj)Tio(M) = T"O(M**2)  for any xe M. The CR
manifold (M, Ty o(M)) is generically embedded in M*** if n+1=m— p—p.
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PrOOF OF LEMMA 5. Let us consider the distribution H(M) = 2 @ Rad TM.
Then

T(M)=S(TM)®Rad TM = 9 ® 7" ® Rad TM

that is
(19) T(M)=HM)® 2"
Let X,Ye H(M) and Z e %*. Then (as D is symmetric and DJ = 0)

G([JX,JY),Z) = G(DyxJY — DyyJX,Z)

= —G(DyxY — DyyX,JZ) = G(h(JY,X) — h(JX, Y),JZ).
The last equality holds due to JZ eJZ+ = S(TM*') = T(M)". Next (as h is
symmetric)
G(JX,JY],Z) = G(h(X,JY) — h(Y,JX),JZ)
= G(DyJY — DyJX,JZ) = G(DyY — DyX,Z) = G([X, Y], Z)
hence [JX,JY]—[X, Y] is orthogonal to Z* so that
(20) UX,JY]—[X,Y|e HM), X,YeH(M).
Next
X —iJX,Y-iJY|=[X,Y] - [JX,JY] - i{[X,JY]+ [JX, Y]}
(by the integrability of J)
=[X,Y]-[JX,JY]-{[X, Y] - [JX,JY]}

hence (by (20)) [X —iJX,Y —iJY] e T, o(M) for any X,Y € H(M).

To prove that Ty o(M) = T (M>*2)N[T(M) ® C] we only need to check
the inclusion 2. Let X — i/ X € T"°(M?*"*?) be tangent to M. Then X = X + Y
for some X e H(M) and YeZ*. Then X —iJX +Y —iJY e T(M) ® C yet

JY e JZ* < S(TM*Y) = T(M)* hence JY € Rad TM. Thus (by the J-invariance
of Rad TM) Y e (Rad TM)NZ*+ «c HM)NZ+ = (0).  Q.e.d.

To end the proof of Theorem A we apply

LeMMA 6. Let M be an indefinite CR submanifold of C! and xe M. Let
us assume that M ={{e C' :p () =0,...,p(0) =0} and that {Dp,(x),...,
Dp,(x)} is a linear basis in (Rad TM), and {Dp,  (x),...,Dpi(x)} is a g,-
orthonormal basis in S(TM™).. Let {¢,,...,&¢} be a local frame of Rad TM
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such that &; . = (Dp;)(x). Let Itr(TM) — M be a lightlike transversal vector
bundle and {Ny,...,N,} a local frame of 1tr(TM) — M defined on a neighborhood
of x such that G(&;, N;) = 65 and G(N;, N;) = 0. Then the extrinsic Levi form at x
is given by

r ~2
(21) L(w) = — Z( il (x)wAwB> Nix

— \actacr

X

Note that M is given by p;(z) =0, i€ {1,2,3} where p,(z) = F(z) + F(z)
pa() = i(F(Z) — F(2)), and ps(z) = g1=/]” — 4/k. We set

5O = 2D =, i),

3

so that Dp; is an orthonormal vector field spanning S(7M*) while {Dp,, Dp,}
is a frame of Rad TM. Finally (by Lemma 6) L,(w) = —&40 4w w5¢&, for any
we T o(M),,

The gradient Dp, (in Lemma 6) is meant with respect to the flat indefinite
Kihler metric G on C". One may compare L, as given by (21) and the expression
of the extrinsic Levi form in Theorem 1 of [4], p. 160. It is likely that the use of
tr(TM) — M (rather than T(M)") may lead to new CR extension results for CR
functions on indefinite CR submanifolds. Indeed one may consider the convex
hull T, < tr(TM), of the image of L, : Ty (M), — tr(TM)_. It is known (cf. e.g.
[4], p. 200) that in the positive definite case I'y determines the geometry of the

x € M. The proof of Theorem A is complete.

open set to which CR functions extend holomorphically.

PROOF OF LEMMA 6. Let J*: T*(C!) — T*(C)) be the dual complex struc-
ture ie. (J*o)(v) = a(Jv). Then

AL(w) = — 3" G W, W), N
i=1

k—r
- Z G(Dpr+0(1 '][Wa W])xDpr—O—a(x)

=1

- - Z(‘]*dpl)([W5 W])le’v - Z(J*dpth)([W? W])xDpl+oz(x)

1 o
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As d=0+0 and J* 00 =i0 (respectively J* o0 = —id) the coeflicients in the
linear combination of {N;,Dp,,,(x): 1 <i<r 1 <a<k—r} above are

i((0 = 0)p, )W, W] = =2i(d(3 = 8)p,)(W, W)

at the point x hence (again by d = 0+ )

—%LAW) = Z(@gp,)(W, W)XNI‘,X + Z(aéprﬂc)(Wv W)Dpr+oc(x)

l

leading to (21). Q.ed.
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