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RELATION BETWEEN DIFFERENTIAL POLYNOMIALS
OF CERTAIN COMPLEX LINEAR DIFFERENTIAL
EQUATIONS AND MEROMORPHIC FUNCTIONS

OF FINITE ORDER

By

Benharrat BELAIDI and Abdallah EL FARissI

Abstract. In this paper, we investigate the relationship between
differential polynomials and meromorphic functions of finite order of
some second order linear differential equations with meromorphic
coefficients. We obtain some precise estimates.

1 Introduction and Statement of Results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna’s value dis-
tribution theory (see [9], [13]). In addition, we will use A(f) and A(1/f) to denote
respectively the exponents of convergence of the zero-sequence and the pole-
sequence of a meromorphic function f, p(f) to denote the order of growth of f,
Z(f) and A(1/f) to denote respectively the exponents of convergence of the
sequence of distinct zeros and distinct poles of f.

Consider the second order linear differential equation

I+ A1(2)e"Of " + Ag(2)eQP)f =0, (1.1)

where P(z), Q(z) are nonconstant polynomials, Ai(z), Ao(z) (#0) are entire
functions such that p(A4;) < deg P(z), p(Ao) < deg O(z). In [11], Ki-Ho Kwon
has investigated the hyper order of solutions of (1.1) when deg P(z) = deg QO(z).
Gundersen showed in [7, p. 419] that if deg P(z) # deg Q(z), then every non-
constant solution of (1.1) is of infinite order. If deg P(z) = deg Q(z), then (1.1)
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may have nonconstant solutions of finite order. For instance f(z) =e”+1
satisfies [ + e*f’ — e“f = 0.

In [3], Z. X. Chen and K. H. Shon have investigated the case when
deg P(z) = deg O(z) and have proved the following results:

THEOREM A ([3]). Let A;(z) (#0) (j=0,1) be meromorphic functions with
p(4;) <1 (j=0,1), a, b be complex numbers such that ab # 0 and arg a # arg b
or a=cb (0 <c<1). Then every meromorphic solution f(z) # 0 of the equation

f 4+ A1(2)e“f + Ao(z)e?f =0 (1.2)
has infinite order.

In the same paper, Z. X. Chen and K. H. Shon have investigated the fixed
points of solutions, their 1st and 2nd derivatives and the differential polynomial
and have obtained:

TaeoreM B ([3]). Let A;(z) (j=0,1), a, b, ¢ satisfy the additional
hypotheses of Theorem A. Let dy, di, d, be complex constants that are not all
equal to zero. If f(z) £ 0 is any meromorphic solution of equation (1.2), then:

W) f, f', f" all have infinitely many fixed points and satisfy

W=2) = I =) = A" —2) = o,
(i) the differential polynomial
g(z) = dof" +dif" +dof
has infinitely many fixed points and satisfies (g — z) = 0.

Recently Theorem A has been generalized to higher order differential
equations by the author as follows (see [1]):

TueoreM C ([1]). Let Pi(z) =>."yai;z' (j=0,...,k—1) be nonconstant
polynomials where agj,...,a,; (j=0,1,....,k—1) are complex numbers such
that a, jano #0 (j=1,...,k—1), let Aj(z) (#0) (j=0,...,k—1) be mero-
morphic functions. Suppose that arga, ; # arga,o or an ;= cao (0 <c<1)
(j=1,....,k=1), p(4)) <n (j=0,...,k—1). Then every meromorphic solution
f(z) #£0 of the equation

S+ A (2)e" 0D g 44 (2)e MO Ao(2)e P =0, (1.3)

where k > 2, is of infinite order.
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The main purpose of this paper is to study the relation between meromorphic
functions of finite order and differential polynomials of second order linear
differential equation (1.1). For some related results of linear differential equations
with entire coefficients, we refer the reader to [2]. In fact we will prove the
following results:

THEOREM 1.1. Let P(z) =" aiz' and Q(z) =" biz' be nonconstant
polynomials where a;, b; (i =0,1,... n) are complex numbers, a, # 0, b, # 0 such
that arga, #argh, or a,=cb, (0<c<1) and A\(z), Ao(z) (#£0) be mero-
morphic functions with p(4;) <n (j=0,1). Let dy(z), di(z), dr(z) be poly-
nomials that are not all equal to zero, ¢(z) 0 is a meromorphic function with
finite order. If f(z) # 0 is a meromorphic solution of (1.1) with A(1/f) < oo, then
the differential polynomial g(z) = dof" + d\f' + dof satisfies (g — ¢) = 0.

Remark 1.1. In the following Theorem 1.2, we remove the condition

21/f) < 0.

THEOREM 1.2.  Suppose that P(z), Q(z), A1(z), Ao(z) satisfy the hypotheses of
Theorem 1.1. If ¢(z) # 0 is a meromorphic function with finite order, then every

meromorphic solution f of (1.1) satisfies A(f — @) = A(f' —¢) = 2(f" — ¢) = .

2 Preliminary Lemmas

We need the following lemmas in the proofs of our theorems.

LemmaA 2.1 ([6]). Let f be a transcendental meromorphic function of finite
order p, let T = {(ki, 1), (ka, j2),- -, (km, jm)} denote a finite set of distinct pairs
of integers that satisfy k; > j; >0 fori=1,...,m and let ¢ > 0 be a given constant.
Then the following estimations hold.

() There exists a set E; < [0,2rn) that has linear measure zero, such that if
W €[0,2n) — Ey, then there is a constant Ry = Ri(Y) > 1 such that for all z
satisfying arg z = and |z| = Ry and for all (k,j)eT, we have

k
ARG RCIEE) @1
f(/) (Z)

(i) There exists a set E, = (1,00) that has finite logarithmic measure
Im(Ey) = IHG XEZ,U) dt, where yp, is the characteristic function of E, such that for
all z satisfying |z| ¢ E;U[0,1] and for all (k,j)eT, we have

k
f( ) (Z) < ‘Z|(kfj)</)71+6). (22)
)
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Lemma 2.2 ([3]). Let f(z) be a transcendental meromorphic function of order
p(f) =p < +co. Then for any given &> 0, there exists a set E3 = [0,2n) that
has linear measure zero, such that if y, €1[0,2n)\Es, then there is a constant
Ry(yry) > 1 such that for all z satisfying argz =, and |z| =r > Ry, we have

exp{—7*} < |/(2)] < exp{r"*}. (2.3)

LemMa 2.3. Let P(z) =ayz"+---+ao, (an =0+if #0) be a polynomial
with degree n>1 and A(z) (#0) be a meromorphic function with p(A) < n.
Set f(z) = A(z)e"?), z=re, §(P,0) = o« cos n) — ff sin nf. Then for any given
&> 0, there exists a set Ey < [0,27) that has linear measure zero, such that if
0 € [0,2n)\(E4 U Es), where Es = {0 € [0,2n) : 6(P,0) = 0} is a finite set, then for
sufficiently large |z| = r, we have

(i) if o(P,0) > 0, then

exp{(l —&)o(P,0)r"} < |f(2)| < exp{(1 +&)o(P,O)r"}, (2.4)

(i) if o(P,0) <0, then
exp{(1 + &)3(P,O)"} < |/(2)] < exp{(1 — £)o(P, O)r"}. (2.5)
PrOOF. Set f(z) = h(z)e® 7" where h(z) = A(z)e" 1), P, 1(z) = P(z) —
(04 if)z". Then p(h) = A < n. By Lemma 2.2, for any given ¢ (0 <& <n— 1),
there is E4 < [0,27) that has linear measure zero, such that if Oe

[0,27)\(E4 U Es), where Es = {0 € [0,2n) : 6(P,0) = 0}, then there is a constant
Ry = Ry(0) > 1, such that, for all z satisfying argz =60 and r > Ry, we have

exp{—r""} < |h(z)| < exp{r ). (2.6)
By |e(HB)re™)"| = 020" and (2.6), we have
exp{o(P, O)r" — r**} < |f(2)] < exp{d(P, O)r" + r**°}. 2.7)

By 0¢ Es we see that:

(i) if 6(P,0) > 0, then by 0 < A+e& < n and (2.7), we know that (2.4) holds
for a sufficiently large r;

(ii) if 6(P,0) < 0, then by 0 < A+e& < n and (2.7), we know that (2.5) holds
for a sufficiently large r.

LemmA 2.4 ([S]). Let Ao, Ar,...,Ax—1, F #£0 be finite order meromorphic
Sfunctions. If [ is a meromorphic solution with p(f) = oo of the equation
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FO+ A fEY 4+ A + Aof = F, (2.8)
then A(f) = A(f) = p(f) = .

LEMMA 2.5 [8, p. 344]. Let f(z) =Y.~ ya.z" be an entire function, u(r) be
the maximum term, ie., p(r) =max{|a,[r";n=0,1,...} and let vy (r) be the
central index of f, ie., vi(r) = max{m, u(r) = |a,|r"}. Then

d :
() = r 5 log ) < [log u(r))* < llog M(r, )] (29)
outside a set Eq = (1,+00) of r of finite logarithmic measure.

REMARK 2.1 (see [10, pp. 33-35], [12, p. 51]). We have the following basic
properties of u(r) and vy (r):

(i) w(r) is strictly increasing for all r sufficiently large, is continuous and tends
to 400 as r — oo;

(ii) vs(r) is increasing, piecewise constant, right-continuous and also tends to
+00 as r — oo.

LemmA 2.6 (see [10, pp. 36-37], [12, p. 51]). If f(z) is an entire of order o,
then
= log v(r)

LemMa 2.7 (Wiman-Valiron, [8], [14]). Let f(z) be a transcendental entire
Sfunction, and let z be a point with |z| =r at which |f(z)| = M(r, f). Then the
estimation

(k) (7 MY
ff(z()) ("/i )> (14+0(1)) (k=1 is an integer), (2.11)

holds for all |z| outside a set E; of r of finite logarithmic measure.

LemMa 2.8 ([4]). Suppose that f(z) is a meromorphic function with
p(f) =p < 0. Then for any given ¢ >0, there is a set Ey = (1,4+00) of finite
logarithmic measure, such that

£ (2)] < exp{r’*} (2.12)
holds for |z| =r¢[0,1]UEg, r — +o0.
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LemMa 2.9. Let f(z) be a meromorphic function with p(f) = co and the
exponent A(1/f) of convergence of the poles of f(z) is finite, A(1/f) < co. Let
di(z) (j=0,1,2) be polynomials that are not all equal to zero. Then

9(2) = (2)f" + di(2)f" + do(2)f (2.13)

satisfies p(g) = co.

Proor. We suppose that p(g) = p < co and then we obtain a contradiction.
First we suppose that d>(z) #£0. Set f(z) = w(z)/h(z), where h(z) is canonical
product (or polynomial) formed with the non-zero poles of f(z), A(h) = p(h) =
A(1/f)=p; < o0, w(z) is an entire function with p(w) = p(f) = co. We have

w'h—h'w w”  wh" w'h’ h')w
Hence
f”(Z) B w’ R w'h' (h/)Z
70w ke T (2.15)
f1E) ' w
f(Z) =% R (2.16)

By Lemma 2.1 (ii), there exists a set E; < (1,00) that has finite logarithmic
measure, such that for all z satisfying |z| ¢ E; U [0, 1], we have

‘ h)(z)

< |z[/n=140 (i =1.2). 2.17
6 < |z (j=12) (2.17)

Substituting (2.17) into (2.15) and (2.16), we obtain for all z satisfying
|z| ¢ E1U[0,1]

F1E W o
T = O+ 06, (2.18)
f;./((zz)) = %+ 0(z%), (2.19)

where a (0 <o < o0) is a constant and may be different at different places.
Substituting (2.18) and (2.19) into (2.13), we have

s (2) (% +0(z7) WW + 0(2“)) +di(2) <WW + 0(21)> Fdo(z) =2 i)(};gz) . (220)
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It follows that

dy(2) % +(0(z)ds(2) + di (2)) % + 0(z")do(2) + O(z)dy (2) + do(z) =2 ?{? .
(2.21)
Hence,
d(2) % + o= % Lo = % (2.22)

where m (0 <m < o0) is some constant. By Lemma 2.7, there exists a set
E, = (1,400) with logarithmic measure /m(E;) < +o0 and we can choose z
satisfying |z| =r ¢ [0,1JUE, and |w(z)| = M(r,w), such that

w(f)(z) L(r) J . o
7W(Z) < ) (I+0(1) (j=1,2). (2.23)

z
Since p(g) =p < oo and p(h) = A(1/f) = p; < oo, by Lemma 2.8 there exists a
set FE3 that has finite logarithmic measure, such that for all z satisfying
|z =r¢]0,1]UE;3, we have

l9(2)] < exp{r’*'},  |h(z)| < exp{r"*1}. (2.24)

By Lemma 2.5, there is a set E4 — (1,400) that has finite logarithmic measure,
such that for all z satisfying |z| =r ¢ [0,1]U E4, we have

v (r)| < (log M(r,w))>. (2.25)
Since p(w) = lir+n %: +o0, there exists {r/} (1, — +o0) such that
r—+00
1 (!
log () _ | (2.26)

ri—+o  logr)
Set the logarithmic measure of E; U E, U E3U Ey,
Zm(E1 UE,UE; UE4) =y <+,

then there exists a point r, € [r}, (y + 1)r)] — Ey U E; U E3 U E4. From

log VW(V,,) S log vw(r,’l) _ log Vw(r;g) (2_27)
log = Tog((y+ D)~ [1 4521 tog
it follows that
1 ,
log () _ (2.28)

m—+o  logr,
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Then for a given arbitrary large f>2 (p, +p+m+3),
V(1) = 1P (2.29)

holds for sufficiently large r,. Now we take point z, satisfying |z,| =r, and
w(z,) = M(ry,,w), by (2.22) and (2.23), we get

|d2(z,)] (%:")YH +o(l)| < 2Ly (%:")) [1+o(1)]+ ‘% , (2.30)
where L > 0 is some constant. By Lemma 2.5 and (2.29), we get
M (r,,w) > exp(rP/?). (2.31)
Hence by (2.24), (2.31) as r, — 40
4@;428:”(5:))' -0 (2.32)
holds. By (2.29), (2.30), (2.32), we get
(dazn) 1 < [da(z0) (1) < 2LKRI, (2.33)

where K > 0 is some constant. This is a contradiction by f# > 2 (p; +p+m+3).
Hence p(g) = oo.

Now suppose d» =0, d; #0. Using a similar reasoning as above we get a
contradiction. Hence p(g) = oo.

Finally, if &, =0, d, =0, dy # 0, then we have g(z) = dy(z) f(z) and by dj is
a polynomial, then we get p(g) = oo.

LemMA 2.10. Let P(z) =Y.",aiz' and Q(z) =1 ,biz' be nonconstant
polynomials where a;, b; (i =0,1,...,n) are complex numbers, a, # 0, b, # 0 such
that arg a, # arg b, or a, = cb, (0 < c < 1). We denote index sets by

A :{OaP}a
A22{07P7Q72P5P+ Q}

(i) If H; (j e A1) and Hy # 0 are all meromorphic functions of orders that are
less than n, setting W1(z) =Y, 5, Hj(z)e’, then ¥\ (z) + Hpe? # 0.

(ii) If H; (j € A2) and Hyg # 0 are all meromorphic functions of orders that
are less than n, setting W1(z) = 32, s, Hj(2)e/, then ¥(z) + Hage?? # 0.

(i) Let Wao(z), W2 (z), Y2(z), Y23(z), Yau(z) have the form of WYa(z) which
is defined as in (i), Hyg # 0 are all meromorphic functions of orders that are less
than n, ¢(z) #0 and ¢(z) £ 0 are meromorphic functions with finite order. Then
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7'(2) o) /() () PGy .
o) M)y ¥ul@ oy gy Y gy )
+ Wao(z) + Hage?@ #0. (2.34)

Proor. The proof of (i) and (ii) are similar, we prove only (ii). We divide
this into two cases to prove:

Case 1: Suppose first that arg a, # arg b,. Then arg a,, arg b,, arg(a, + b,)
are three distinct arguments. Set p(Hy) = ff < n. By Lemma 2.2, for any given
¢ (0 <e<min(},n— B)), there is a set E; that has linear measure zero such that
if arg z =0 € [0,2n)\E}, then there is R = R(0) > 1 such that for all z satisfying

argz=0 and |z| =r > R, we have
|Hy(z)| < exp{rf*}. (2.35)

By Lemma 2.3, there exists a ray arg z = 0 € [0,27)\E; U E, U Ey, E», Ey < [0,2n)
being defined as in Lemma 2.3, E, having linear measure zero, Ey being a finite
set, such that

5(2P,0) =26(P,0) <0, S(P+ 0,0) <0, 65(20,0)=25(0,0) >0

and for the above ¢, we have for sufficiently large |z| =r

|Hape™?| = exp{(1 — £)26(Q, 0)r"}, (2.36)
|Hoe?| < exp{(1 +¢)5(Q,0)r"}, (2.37)
|Hpype"™9) < exp{(1 —)d(P + Q,0)r"} < 1, (2.38)
|Hape??| < exp{(1 —£)26(P,0)r"} < 1, (2.39)
|Hpe”| < exp{(1 —&)d(P,0)r"} < 1. (2.40)
If Wy (z) + Hype?@ =0, then by (2.35)—(2.40), we have
exp{(1 —£)26(Q,0)r"} < |Hae™®| < exp{r’**} + exp{(1 +£)5(Q, 0)"} +3
< 3 exp{r’*} exp{(1 + £)3(Q, O)r"}. (2.41)

By 2(1—¢)—(1+¢)=1-3e>1 and f+¢<n, we obtain from (2.41) a con-
tradiction. Hence W»(z) + Hage?? # 0.
Case 2: Suppose now a, = cb, (0 < c¢ < 1). Then for any ray argz =0, we
have
O(P,0) =co(0,0), o0(2P,0)=2ci(Q,0),

S(P+0,0) = (1+0)3(0,0), 5(20,0) = 25(0,0).
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Then by Lemma 2.2 and Lemma 2.3, for any given ¢ (0 <& < min(13¢,n — p))
there exist E; — [0,27) (j =0,1,2) that have linear measure zero, where Ej,
E, and E, are defined as in the case 1 respectively. We take the ray
argz=0€[0,2n)\E, UE,UE, such that J(Q,0) >0 and for sufficiently large
|z =r, we have (2.35)—(2.37) and

|Hpe”| < exp{(1+¢&)cd(Q,0)r"}, (2.42)
|Hpyge" 0| < exp{(1 +&)(1 + ¢)5(Q,0)r"}, (2.43)
|Hype®| < exp{(1 4 &)2¢d(Q, 0)r"}. (2.44)

If W1(z) + Hype*? =0, then by (2.35)-(2.37) and (2.42)-(2.44) we have
exp{(1 — 20(0,0)r"}
< |Hype?| < exp{r**} + 2 exp{(1 + &)(1 + ¢)o(Q, 0)r"}
+ 2 exp{(1 4+ &)2co(Q, 0)r"}. (2.45)
By f+e<n and 46 <1 —¢, we have as r — + 0
exp(r/7)

expl{(1 — )20(0. 0y} (2.46)
exp{(1 +¢)(1 + c)o(Q, O)r"}

exp{(1 —£)26(Q, 0)r"} 0, (2:47)

exp{(1 + &)2c¢o(Q, 0)r"} 0 (2.48)

exp{(1 —¢)20(0Q, 0)r"}

By (2.45)—(2.48), we get 1 < 0. This is a contradiction, hence W (z) + Hage?? # 0.

(iii) Set p = max{p(p),p(¢)} < co. Then by Lemma 2.1, for any given
&> 0, there exists a set E — [0,2%) that has linear measure zero, such that if
0 € [0,2%) — E, then there is a constant R = R(#) > | such that for all z satisfying
argz=0 and |z| > R, we have

(k) (k)
’(p—(z) < |zt Ol 2|1 (ke = 1,2). (2.49)
¢(2) ¢(2)
It follows that on the ray argz=0¢€[0,2n) — E,
o™ (2)
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keep the properties of Hj(z)e/ (je A;) which are defined as in (2.35), (2.37)-
(2.40) or (2.35), (2.37), (2.42)—(2.44). By using similar reasoning to that in the
proof of (ii), the proof of (iii) can be completed.

3 Proof of Theorem 1.1

Suppose that f(z) #0 is a meromorphic solution of equation (1.1) with
A(1/f) < oo. Then by Theorem C we have p(f) = oo. First we suppose that
dy(z) £0. Set w=dof" +d\f' +dof — ¢, then by Lemma 2.9 we have p(w) =
p(g9) = p(f) = co. In order to prove i(g — ¢) = o0, we need to prove A(w) = oo.
Substituting f” = —A,eff’' — Ape?f into w, we get

Wi(dl —dzAleP)f'+(do—doneQ)f—(o. (31)

Differentiating both sides of equation (3.1) and replacing f” with f” =
—AePf" — 40e?f, we obtain

w' = [drAie* — ((daA))' + P'doAr + diAy)e” — drAoe? + do + d])f'
+ [dh Ao A1eT T2 — ((dh o) + Q'drAg + dyAp)e + dj)f — ¢’ (3.2)
Set
o =dy —drAre’, oy =dy — drApe?, (3.3)
By = + o — wAe”
=y A}e* — ((drA1) + P'drAy + diAy)e” — dyApe? +dy +d, (3.4)
Bo = of — o1 Age? = drAgA1e"C — ((drAo)' + Q'dr Ay + di Ag)e? +dj). (3.5)
Then we have
orf +aof =w+ g, (3.6)
Bif'+Bof =w' + 9" (3.7)
Set
h =By — oo
= (d\ — drA1e")[drApA1e"C — ((daAo) + Q'drAg + di Ag)e? + dj)]
— (do — drAe?)[drA7e*” — ((dr A1) + P'drA; + dy Ay)e”

— dyAge? +do + dj). (3.8)
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Now check all the terms of 4. Since the term d? A7 Ape*"*€ is eliminated, by (3.8)
we can write h = W5(z) — d5 A3e*?, where W,(z) is defined as in Lemma 2.10 (ii).
By d» #0, Ay # 0 and Lemma 2.10 (ii) we see that /& £ 0. By (3.6), (3.7) and
(3.8), we obtain

hf =ai(w' +¢') = B1(w+9), (3.9)
W' = =W + ")+ fo(w+ ). (3.10)

Differentiating both sides of equation (3.10) we obtain
(hf")" = —oo(w" + ") + (Bo — 26) (W' + ') + By(w + 0). (3.11)

On the other hand by (1.1), (3.9) and (3.10)
(W) = Wf + hf" = (b — hdie®) f! — hdoeOf
= (5 = ie” ) o’ + 9+ olor+ 0)
— Age (o (W + ¢') — B (w + 9)). (3.12)

By (3.11), (3.12) we get

!/

ao(w” +9") — 2o (}}Il - AleP) (e
+ [ﬁ0<%—A1eP>+ﬂ1A0€Q—ﬂ()] (w+¢)=0. (3.13)

Hence by (3.3), (3.4), (3.5), (3.13) we have

oaow” + @ w' + dyw

h/ h/
= - {fxo(ﬂ” — o (Z - A1€P>(ﬂ' + (/30 (Z - A1€P> +51A06’Q —ﬁ(/))(ﬂ]
/
= |:OC()(0” — oco(%— A1€P>(0/
h' P / P 0 _ p
—( Bo Z_A]e + (o + o9 — a1 Are” ) Aoge — By | o

h' h’
=— {ococﬂ” — a (ﬁ - A1€P> 9 — <ﬁ0Z — ogAdre” + (af + o) Aoe? ﬁé) 90}

=F, (3.14)
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where @ (z) and ®y(z) are meromorphic functions with p(®,) < n, p(®y) < n. By
(3.14) we can write

F _M . h(z) ¢'(z) 9'(2) -
o0 o) O o PO )
+ () () + Yau(z) — dadge?,

h(z)
where
Wau(z) = oo = dy — drApe?,
Wis(z) = —drelog = dyAdgA1ePTC — doAye?,
W (z) = By = drdoA1e” e — ((drAo)' + Q'db Ay + dy Ag)e? + d,
Wy (z) = AgeQa; — Ajelal — B + dyAge?
= —dgAre” + [Aod] + (drAo)" + (Q'drA0) + (diAo)' + Q' (d2Ao)’
+(0") oA + dy A0 Q' + doAg)e?
+ [(dado) A1 + Q'dr A1 Ay — Ao(dr A1) — P'dy A1 Ag — (dr A1 Ap)’
— (P + Q" AgA1]e"2 — d.
By p(h) <n, d» #0, Ay #0, p(p) < co and Lemma 2.10 (iii) we see that F # 0

and by Lemma 2.4, we obtain A(w) = p(w) = 0.
Now suppose d» =0, d; #0. Using a similar reasoning as above we get

2(w) = p(w) = 0.
Finally, if > =0, d, =0, dy # 0 then we have w =dyf — ¢, p(w) = 0. By

substituting

_Kﬂ ,_K/ ﬂl //_K” £//
regra =) (@) =)+ (E) e

into equation (1.1) we obtain

" i " !
w el 0 _ _((L2) 4 ae” (L) + 402 2). (316
(d0> + Aje <d0> + Ape & (<d0> + Ae (do) + Ape &) (3.16)

By ¢(z) being a meromorphic function of finite order and dy(z) is a polynomial,

then % has finite order and by Theorem C we have
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" /!
9 r(P 0¥
(do> +Are <d0> + Aoe? - £ 0. (3.17)

Hence by Lemma 2.4, we have A (ﬁ) = p(&—‘(}) = o0 (dp is a polynomial). Then
Aw) = 0, ie., Adof —¢) = .

4 Proof of Theorem 1.2

Suppose that f(z) # 0 is a meromorphic solution of equation (1.1). Then
by Theorem C we have p(f)=p(f’)=p(f")=o0. Since p(p) < oo, then
p(f—o)=p(f' — o) =p(f" — p) = 0. By using similar reasoning to that in the
proof of Theorem 1.1, the proof of Theorem 1.2 can be completed.
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