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A CONDITION FOR ALGEBRAS ASSOCIATED
WITH A CYCLIC QUIVER TO BE SYMMETRIC

By

Takashi TESHIGAWARA

Abstract. Let K be a field, f(x) a monic polynomial in K[x] and
KT the path algebra of a cyclic quiver I' with s vertices and s
arrows. In this paper, we give a necessary and sufficient condition for
the algebra KT'/(f(X)) to be a symmetric algebra, where X is the
sum of all arrows in KT.

1. Introduction

Let K be a field and T the cyclic quiver with {ej, ..., e} as the set of vertices
and {ai,...,a,} as the set of arrows (s> 2) such that the start point and the
end point of a, are ¢, and e, respectively. Let K" be the path algebra of T.
We denote the sum of all arrows by X : X =a; +---+a;. It is known by
Erdmann and Holm [EH] that KT'/(X?) is a symmetric algebra if and only if
p =1 (mods). In this paper, we consider the K-algebra 4 := KT'/(f(X)) where
f(x) is a monic polynomial over K. Our purpose is to give a necessary and
sufficient condition for 4 to be a symmetric algebra.

We describe the brief way to get the main theorem. First we will show that
the equation (f (X)) = (X(X)) holds where i(x) is a monic polynomial in
K[x’] and ¢ is an integer such that 0 < ¢ <s— 1. Second we construct a left A-
isomorphism Homg(A4,K) — 4 and also a right one (Propositions 2.3, 2.5). So
we see that A is a Frobenius algebra. If ¢ =0 and the constant term of /A(x)
is nonzero, then we have a certain left A-isomorphism 4 — 4 and also a right
one (Lemma 3.3). By the above propositions and lemma, we have an iso-
morphism Homg(4,K) — A of A-bimodules. Also if ¢ =1, then A4 is a sym-
metric algebra; if 2 <c¢ <s—1, then 4 is a nonsymmetric algebra (Proposition
3.5). Summarizing these statements we get the following main result; 4 is a
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symmetric algebra if and only if either ¢ =0 and the constant term of h(x) is
nonzero or ¢ =1 holds (Theorem 3.6). Moreover, by means of the decomposition
of algebras, we can compute the Hochschild cohomology ring of A4 in principle
(Remark 3.8).

2. A is a Frobenius Algebra

Let s be a positive integer (s > 2). By I' we denote the cyclic quiver with
{e1,...,es} as the set of vertices and {ay,...,a,} as the set of arrows such that
the start point and the end point of g, are ¢, and e, |, respectively. Let K be a
field and KT the path algebra of I'. Here we regard the index ¢ of ¢, modulo s.
Hence a, = e,y 1a,e, holds for 1 <t < s in KI'. We denote the sum of all arrows
by X: X =a;+--4+a, Then X/ is a sum of all paths of length j for j > 0.

Let f(x) be a monic polynomial of degree m (m >1) over K: f(x) =
o + o X+ -+ oy 1 X+ X", We consider the K-algebra 4 = KT'/(f(X)).

For each i (0 <i<s—1), we set

- _ i S+i 2s+i
Si(x) = ox’ 4 oy x T A g A

which is the sum of the all terms of f(x) whose degree is congruent to i modulo
s. Then we have f(x)= fo(x)+ fi(x)+---+ fi-1(x). Let gi(x) be the poly-
nomials whose constant term is nonzero such that f;(x) = x""g;(x) (n; >0)
if fi(x) #0, and we set g;(x) =0 if fi(x) =0. Then g(x) := ged(go(x), g1(x),. ..,
gs—1(x)) is in K[x*] since g;(x) € K[x*]. If we set d = min{ms+i|0<i<s—1,
fi(x) # 0}, then there exist an integer ¢ (0 < ¢ <s— 1) and a monic polynomial
h(x) € K[x*] such that gcd(fy(x), fi(x),..., fi1(x)) = x%g(x) = x°h(x). Note that
¢ and h(x) are uniquely determined by f(x). Since e, f(X)e, = enyifi(X)e,
(1<t<s0<i<s—1), we have the following equation of ideals in KT

(S (X)) = (H(X) + (h(X) + -+ (fi1 (X)) = (X h(X)).

Thus we have the following lemma.

LeMMA 2.1.  For the algebra A, there exist an integer ¢ (0 <c<s—1) and a
monic polynomial h(x) € K[x*] such that

A =KT/(Xh(X)).

ExaMpPLE 2.2. Let K be the field of rationals Q.
(i) Case s=2. If f(x)=x—2x>+ x>, then
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folx) = x2go(x) = x7 - (-2),
fi(x) = xg1(x) = x(1 + x?).
Since ged(fo(x), fi(x)) = x, we have
QI/(f(X)) = QI/(X).
(i) Case s=3. If f(x) =22+ x> +x* + 35 + x0 +x7 +x% +x7 +x!°, then
fo(x) = xgo(x) = X} (1 + x> +x9),
fi(x) = x*g1(x) = x*(1 4+ x> + x9),
fr(x) = x%ga(x) = x> (1 + x> + x°).
Therefore ged(fo(x), f1(x), f(x)) = x*(1 + x> + x%), so we have
Qr/(f(X)) = QI/(X*(1 + X° + X°)).
(iii) Case s=4. If f(x)=x>—x®+x7+2x7 + 2x! +2x13 4 x14 4 2x15 +
17 4+ 2x18 4 2x1 4+ x22 4 ¥ + X%, then we write f(x) as follows:
F(x) = x% 4+ 2x° 4+ 228 4 x4 (=20 + x4 4 218 4+ x72)
=/i(x) =f(x)

+ x4 2xM 4 2x B 4 2x ! B 4 XY
= f3(x)

Each of the above polynomials f;(x) factors as follows:
fi(x) = g1 (x) = (1 +x)(1 + x* +x8),
H(x) = x0ga(x) = xO(—=1 + x* + x¥) (1 + x* +x%),
A(x) =x"g3(x) = x7(1+ x* + x2) (1 +x* +x5).
Therefore ged(fi(x), £2(x), f3(x)) = x3(1 + x* + x¥), so we have
Qr/(f(X) = QI/(X*(1 + X* + X*))
=Qr/(X(X*+ X%+ x")).

Using the above notations, we set /i(x) = ko + ki x* 4 - + k,_ x5 4 x™ €
K[x*]. We will show that the K-algebra 4 = KI'/(X°h(X)) is a Frobenius al-
gebra. In the rest of this paper, we use a representative elements instead of
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their residue classes. We take the set {X/e;|1 <i<s,0<j<ns+c—1}asaK-
basis of A4 and also the dual basis {(X/¢;)" e Homg(4,K) |1 <i<s50< ;<
ns+ ¢ — 1} (cf. [FS]). Then we obtain the following proposition. On that occasion
we set k, =1 in the following.

ProPOSITION 2.3. We have a left A-isomorphism ¢ : Homg(A,K) — A de-
fined by

o((X'e)") = Z kye X570 for 1<i<s,0<j<ns+c—1,
/=m+1
where m is the integer (—1 <m <n—1) such that j=ms+c+r (0 <r<s—1).
So A is a Frobenius algebra.

We prepare the following lemma for the proof of the proposition.

LEmMMA 2.4. Let i, j, t, t', u be integers with 1 <iu<s, 0<j<ns+c—1,
l<t<n—1and 0<t <n—1. Then for (X'e;)" e Homg(A4,K), we have

{_ko(Xm'leiH)* if j=0,c=0,
0 ljf ] = 0, c# Oa
X(XVe))* = {(XISIEHI)* — k(X eig)” if j=ts,¢=0,
(X7 ep)” — ke (X7 ep)” if j= 15+, e £0,
(Xj—] eir1) * otherwise,
eu(X'e)" = {(X “ lf N 1.7
0 if u##i.

Proor. Case ¢=0; If j=0, then for 0<p<ns—1 and 1 <g<s,
() (X(e) ) (XPeq) = (&) (XPeuX) = (&) (X" egr).
Here in case of p+1=mns and ¢ —1 =i (mod s), since X™ = —ky — k1 X*—---

—ky X5 in 4, we have (e)*(X"™e) = (&) (ko — -+ — k1 X"~ 1%)e;) =
—ko. Therefore

(equation (1)) = {—ko ift p+ 1 =nsand ¢ — 1 =i (mod s),

0 otherwise.
On the other hand —ko(X™ e 1)"(XPe,) = —ko if p=ns—1 and g=i+1
(mod s), 0 otherwise. Thus we have X (e;)" = —ko(X™ e;11)". If j = ts, then for
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0<p<ns—1 and 1<qg<s, (X(X¥)")(XPe,) = (X"e)" (XPle,)= 1 if
p+1l=ts and ¢g—1=i (mods), —k, if p+1=ns and ¢—1=i (mods),
0 otherwise. Also ((X" les1)" —k(X™ es1)")(XPe,) =1 if p=1ts—1 and
g=i+1 (mods), —k;if p=ns—1and g=i+1 (mod s), 0 otherwise. Thus we
have X (X%e¢))* = (X" le;1)* — k(X" Teiq)".

Case ¢#0; If j=0, then for 0<p<ns+c—1 and 1<g<s,
(X(e)")(XPey) = (e:)"(XPe,X) = (e;)"(XP*'e,_1). Here in case of p+ 1 =ns+c
and ¢—1=i (mods), since X" = —koX¢— kX5 — ... —k, | X"=1st¢ in
A, we have (&))" (X e;) = (&) (—koX ¢ — by X5+ — oo — g, 1 X0 Dst0)e;) = 0.
Therefore X (e;)" = 0. The remaining cases are clear. Hence we have the equation
for X((X7e;)™).

Next we will show that the second equation of lemma holds. If u =i, then
for 0<p<ns+c—1 and 1<g<s (e;(X'e)")(XPey) = (X'e;)" (XPeye;) =
(X7e;)"(X7e;) if g=1i, 0 if ¢ #i. Also we have (X/e;)"(X7e;) = (X/e;)"(XPe))
if g=i, 0 if ¢+#i. Hence we have e,(X/¢;)" = (X/e;)". If u+#i, then for
O0<p<ns+c—1and 1 <q<s, (e,(X7e;)")(X7¢y) = (X7e;)"(XPe,) if g=1u, 0
if ¢ # u. If ¢ = u, then we have ¢ # i because u # i. Hence (e,(X/¢;)")(X7e;) =0
for 0<p<ns+c—1, 1 <g<s. Therefore the proof of lemma is completed.

|

By this lemma, we will prove the Proposition 2.3.

PrOOF OF ProPOSITION 2.3. It is clear to see that ¢ is an isomorphism of
K-spaces. So it suffices to show that ¢ is a homomorphism of left 4-modules.
Hence we prove that

p(X(X'e)") = Xo((X7e)"),  plen(Xer)") = eup((X7er)"),

for | <i,u<s and 0 <j<ns+c— 1. First we will show that p(X(X/¢;)") =
Xo((X’e;)"). We consider the case ¢=0. If j =0, then we have Xo¢((¢;)") =
XY ke XN = S ke X = —ein Yo ) ke XU+ ST ke X7 =
—koeir1, and p(X(e)") = p(—ko(X™ e1)") = —koeiy1. If j=1ts (1 <t <s—1),
then we have Xo((X%e;)") =X >/ , 1 ke, XV =30 kser1 X705, and
PX(XP6)") = p((X*ern)” — (X er1)") = S0, krent X — ket =
> kseii XY=15. We consider the case ¢#0. If j=0, then we have
Xo((e)") = X X0 kreiX 41 = S ke X% = 0, and p(X(e)") = p(0) =
0. The remaining cases are clear. Therefore we have p(X (X/¢;)") = Xop((X/e;)").

Second we will show that ¢(e,(X7/e;)™) = e,p((X7/e;)™). If u = i, then we have
eup(X7e)") = oy ke X 59 = p((XTe)") = plea(XTe)"). TF u # i, then
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we have e,p((X/e;)") = 0 since e, # e¢;. Also p(e,(X7e;)”) = p(0) = 0. Hence ¢ is
an isomorphism of left 4-modules. This completes the proof of the proposition.

O

Similarly, considering the operation of 4 onto Homg (A, K) from the right,
we get the following proposition.

PROPOSITION 2.5. We have a right A-isomorphism  : Homg(A4,K) — A
defined by

n
Y((X7e)*) = Z kreive 1 X©5T71 for 1<i<s,0<j<ns+c—1,
/=m+1

where m is the integer (—1 <m <n—1) such that j=ms+c+r (0<r<s-—1).

3. Main Theorem

In this section we give a necessary and sufficient condition for the algebra
A=KT/(X°h(X)) to be a symmetric algebra, where ¢ is the integer such that
0<c<s—1and h(x) =ko+ kix*+--- +x™. We prepare some lemmas for the
proof of the main theorem.

The following fact is described in [EH].

Lemma 3.1. KT/(X?) (p=1) is a symmetric algebra if and only if
p=1 (modys).

Proor. We denote KT'/(X?) by B. We set p=ns+c¢ (0<c<s—1) and
h(x) = x™. Then the above A coincides with B. If p =1 (mod s), that is, ¢ = 1,
then ¢ of Proposition 2.3 coincides with y of Proposition 2.5. Hence B is a
symmetric algebra. Conversely we assume that B is a symmetric algebra. We
will use an indirect proof by assuming that p # 1 (mods). Let & be an iso-
morphism of B-bimodules Homg(B,K) — B. Fix an i with 1 <i<s. Let
E((en)™) :Zf;()l S_1kisX7e, for kj,eK. Since & is an isomorphism of B-
bimodules, the equation &((e;)")e, = &((e;)"e,) holds for any 1 <u <s. The
left hand side equals ZJI.ZOI S ki Xee, = ij;ol kj.uX’e, and the right hand
side equals ;:01 S kisX7e, if i=u, 0 if i # u. This implies that k;, =0
for 1 </ <s such that /#i and any 0 <j<p—1. So we have &((e;)") =
Z/l‘:ol k;iX’e;. Furthermore, the equation e,E((e;)") = E(eu(e;)™) holds for
1 <u<s. The left hand side equals Z;I‘Zol ki iX /e, je; = Zf:ol kjiX7e; if
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u=i+j (mods), 0 if uz#i+j (mods). The right hand side equals
Z/I‘:Ol ki X’e; if i=wu, 0 if i # u. This implies that k;; =0 for 0 <j<p—1
such that j#0 (mods). So we have &((e)") = 1 kjs X /e, Moreover,
since X&((e;)") =¢(X(e;)™) and X(e;))* =0 (by Lemma 2.4), it follows that
S okisiX?le; =0 in B. Since the set {X/e;|1 <i<s0<,<p—1}isa K-
basis of B, we have &((e;)") =0 if p #1 (mod s), a contradiction. Thus we have
p=1 (mods) if B is symmetric. This completes the proof of the lemma. []

It is known by Furuya and Sanada [FS] that Z(KT') equals to K[X*], where
Z(KT) is the center of KI'. And an algebra isomorphism KI'/(p;(X)---
(X)) ~KT/(p1(X)®---®KIT/(pu(X)) where each p;(x)eK[x*] and
ged(pi(x), pj(x)) =1 for all 1 <i,j<m such that i # j is given by [FS]. By
the similar way, we have the following lemma.

Lemma 3.2, If p(x) € K[x°] and p(x) is not divided by x, then we have the
following decomposition of algebras for the algebra KT /(X'p(X)) (r = 1):

KT/(X'p(X)) ~ KT/(X") @ KT'/(p(X)).

Proor. Since x" and p(x) are relatively prime, we have X'uj(X)+
p(X)up(X)=1 in KI for some u(x),ur(x)eK[x]. Let ze (X")N(p(X)).
If p(X)eK[X*]=Z(KT), then there exist v;,v;e€ KI' such that z=
X0 = p(X)v2. So we have z=z(X"u;(X) + p(X)uz2(X)) = 02X "p(X)uy (X) +
X'p(X)nyup(X) € (X'p(X)). Thus we have (X")N(p(X)) <= (X'p(X)). The
converse inclusion is clear. By Chinese remainder theorem, we have the de-
composition of algebras

KT/(X'p(X)) = KT/((X") N (p(X))) ~ KT/(X") © KT'/(p(X)). O

Lemma 3.3. Let ¢=0. If ko #0, then we have a left A-isomorphism
¢ A— A defined by ¢'(e;X7) = e, X/*! and a right A-isomorphism ' : A — A
defined by '(e;X') = e; X/ for 1 <i<s, 0<j<ns—1.

Proor. Since ky # 0, each K-linear maps is an isomorphism of K-spaces. It
is easy to show that these maps are homomorphisms of A4-modules. O

PropoSITION 3.4. Let ¢ =0. Then A is a symmetric algebra if and only if
ko # 0.
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Proor. If k¢ # 0, then by Propositions 2.3, 2.5 and Lemma 3.3, we have
the left A-isomorphism ¢’ o ¢ : Homg(A4,K) — A((X/e;)" — >/, kreiX57)
and also we have the right A4-isomorphism ' o : Homg(A4,K) — A((X/e;)" —
>/ mit kreiX57). Thus ¢’ o ¢ coincides with ' o, so this is the isomorphism
of A-bimodules. This means that A4 is a symmetric algebra. Conversely we assume
that ko = 0. Then there exists an integer ¢ (1 < ¢ < n) such that h(x) = x"hy(x)
where the constant term of /y(x) (€ K[x®]) is nonzero. By Lemma 3.2, we have
the following decomposition of A:

A~ KT/(X") @ KT/ (ho(X)).

For the decomposition, KT'/(X*) is a nonsymmetric algebra by Lemma 3.1.
Hence A4 is a nonsymmetric algebra too ([EN, Proposition 1]). This completes the
proof of the lemma. O

ProposiTiION 3.5. If ¢ =1, then A is a symmetric algebra, and if 2 < ¢ <
s— 1, then A is a nonsymmetric algebra.

Proor. For the algebra A, there exists the integer ¢ (0 < ¢ <n) such that
(Xh(X)) = (X"t¢hy(X)) where the constant term of /ip(x) € K[x*] is nonzero.
Then, by Lemma 3.2, we have the following decomposition:

A =KT/(X"™hy(X)) ~ KT/(X") @ KT/ (ho(X)).

By Proposition 3.4, KI'/(hy(X)) is a symmetric algebra. By Lemma 3.1, if ¢ =1,
then KT'/(X**!) is a symmetric algebra, and if 2 < ¢ < s — 1, then KT'/(X ") is
a nonsymmetric algebra. [

We summarize the above results as follows.

THEOREM 3.6. A is a symmetric algebra if and only if either ¢ = 0 and ko # 0
hold or ¢ =1 holds.

ExampLE 3.7. In Example 2.2, the algebras of the cases (i), (iii) are
symmetric algebras, but one of the case (ii) is a nonsymmetric algebra.

REMARK 3.8. We saw that there is a decomposition 4 = KT'/(X "™ hy(X)) ~
KT/(X"t¢)@® KT'/(hy(X)) where the constant term of /y(x) € K[x*] is nonzero
and 0 < ¢ < s— 1. For the decomposition of A4, the Hochschild cohomology ring
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of the first term is given by [EH], and also one of the second term is given by
[FS]. Therefore the Hochschild cohomology ring of A4 is obtained by these facts.

For example, we denote the QI'/(X2(1+ X3+ X°)) (~QI/(X?) @ QrI/
(1+ X3+ X®)) in Example 2.2 (i) by C. We will compute the even Hochschild
cohomology ring HH*(C) = @, HH?%(C). By [EH, Section 4.8], the even
Hochschild cohomology ring HH®(QI'/(X?)) is isomorphic to Q[y2, ys|/
(»3, y2v6) where deg y» =2 and deg ys = 6. Also, by [FS, Propositions 3.2, 3.7],
the even Hochschild cohomology ring HH®(QT'/(1 + X* + X)) is isomorphic
to Q[zo)/(1 + zo +z3) where deg zo = 0. Thus we have

HH®(C) ~ Q[y2, y6]/ (3, ¥256) ® Qlz0] /(1 + 2o + 7).
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