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CONSTRUCTION OF HARMONIC MAPS BETWEEN
SEMI-RIEMANNIAN SPHERES

By

Kouhei M1ura

Abstract. We describe a method of manufacturing harmonic maps
between semi-Riemannian spheres out of those in Riemannian ge-
ometry. After normalization, the resulting maps give examples of
helical geodesic immersions in semi-Riemannian geometry.

1. Introduction

Some harmonic maps between semi-Riemannian spheres were obtained by
Konderak [5]. Unlike the Riemannian case, it is not so easy to construct
harmonic maps between semi-Riemannian spheres, since the semiorthogonal
group of the semi-Euclidean n-space R;' loses compactness and the Laplacian on
R} is not elliptic for 1 <t <n— 1. Therefore only finite many harmonic maps
were constructed in [5]. Ding and Wang [2] proved that the d-homogeneous
harmonic polynomials on the Lorentzian n-space R{ are given by a Wick rotation
of those on the Euclidean n-space R" = R(j. Using this result, they constructed all
harmonic maps of the Lorentzian 2-sphere (resp. hyperbolic 2-space) all of whose
components form a basis of the space of d-homogeneous harmonic polynomials
on R;.

In this paper, we shall construct all harmonic maps between semi-Riemannian
spheres all of whose components form a basis of the space of d-homogeneous
harmonic polynomials on a semi-Euclidean space. Using Weyl algebras, we first
generalize the Ding and Wang’s result on the harmonic polynomials, that is, the
d-homogeneous harmonic polynomials on R} (0 <7 <n) are given by Wick
rotations of those on R". Applying this result to the canonical basis of the space
of d-homogeneous harmonic polynomials on R""! (Vilenkin [12]), we obtain the
required harmonic maps in the explicit form. By multiplying a suitable constant
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factor, the resulting maps are isometric immersions and corresponding to the
standard minimal immersions of Riemannian spheres. In Riemannian geometry,
it is well-known that the standard minimal immersions are helical geodesic
immersions. We show that our isometric immersions are helical geodesic
immersions in semi-Riemannian geometry.

2. Harmonic Polynomials on Semi-Euclidean Spaces

Let F[x] = F[xy,...,x,) be the polynomial algebra in n-variables xi,...,x,,
where F is the complex numbers C or the real numbers R. The natural de-
composition C = R@® v/ —1R induces

(1) Clx] = R}x] ® V—-1R[x].

So, for any polynomial /" of C[x], there exist two polynomials 3/ and Sf of R]x]
such that f = Rf + v/—13f. Then we denote Rf — /—13f by /. We shall denote
by F,[x] the space of d-homogeneous polynomials in F[x] (d € Ny).

Let Endp(F[x]) be the set of all F-linear mappings of F[x]. We define
addition in Endp(F[x]) to be the addition of F-linear mappings, and multipli-
cation to be the composition. For any &7 € Endp(F[x]), we will write the
multiplication & o x simply £x when no confusion can arise. We can consider any
feF[x] as an element of Endp(F[x]) by g¢g— fg for any g e F[x]. Thus
F[x] = Endp(F[x]). Moreover, we put Derr(F[x]) = {0 € Endr(F[x])|0(fg) =
0(f)g+ fO(g) for f,ge Flx]}, whose element is called a derivation of F|x].
There exists 0; € Derp(F[x]) for 1 <i<n such that, 0;(x;) =J;. We can see
Derp(F[x]) = @),_, F[x]0;. Denote the subalgebra of Endp(F[x]) which F[x] and
Derp(F[x]) generate by W,(F). We will use the symbol N, to denote the set of
all non-negative integers. For a multi-index o = (ay,...,0,) € Nj, we put x* =
x{teeexpn, 0% =01"---0;" and |a| =a; + - -+ a,. For arbitrary D e W,(F), we
have the unique expression:

D= f0",
\

o <k

where ke Ny and f, € Flx] (Jo| < k).

Let GL(n, F) be the general linear group of degree n over F. To each element
g = (g) of GL(n,F) corresponds a ring homomorphism L(g) in the space F[x],
which transforms the generators x; into the polynomial of degree one:

Lg)(x) =gy 97" = (gy).
=1
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and L(g)(1) = 1. Evidently, L(g1g92) = L(g1)L(g92) and so L is a representation

of GL(n,F). We note that L(g) is degree-preserving (i.e., L(g)(F4[x]) = Fq[x] for

any d € No), and that L(I) = idpjy, where I = (J;) is the unit matrix of degree n.
Hereafter, for any integer ¢ satisfying 0 < ¢ <n, we set

o _{1 forl <i<t,
b +1 fort<i<n.

Then we put I/ = (g 6;) € GL(n, R). Let O,(n) be a semiorthogonal group with
signature (z,n —t), that is,

O:(n) = {9 € GL(n,R) | Itmgltn = 9_1}7

where ‘g denotes the transpose of g. We define A7 ="' &".0; € W,(R) and
A (R]) =ker A}  R[x|. From a straightforward calculation, we can see that A}

is an O,(n)-invariant operator, that is,
Al o L(g) = L(g) oA} for any g € O;(n).

Hence the kernel s (R;') of A} is an O,(n)-invariant vector subspace of R[x]. A
polynomial f is harmonic with respect to A}, if f € #(R;'). Especially we put

Ha(R) = Ra[x| N A (R]),

that is, the space of d-homogeneous harmonic polynomials with respect to A7. It
is also an O,(n)-invariant space of R[x] since L(g) (g € O,(n)) is degree-preserving.
In a similar way to discussions of Vilenkin [12, pp. 444-445] (see Liu [6, p.
7] also), we can see

(n+d—-73)!

dim #,(R}) = (2d +n — Z)W

Thus the dimension of #,(R") is independent of the index ¢ Put A"C =
> a;fi(ai)z e W,(C), #(C") =ker A’ = Clx] and #,(C"") = Cy[x]N A (C").
Then, from (1), f € #,;(C}) if and only if both Rf and Jf are in H#,(R}), that
is

b

(2) Ha(C)) = Hy(R)) ® V—1H4(R)).

We put p, = L(./It”fl), where /1" = (/e 6;) € GL(n, C). There exists the
ring homomorphism p, : W,(R) — W,(C) satisfying p,=p, on R[x]. By the
definition of p,, we have for the generators 0; of Derg(R][x]),

1 a_:{—\/—lﬁi forl <i<i,

5(0,)
Pi0) &/ 0; fort<i<n.

1,i
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Therefore, for the ordinary Laplacian Ajj = A, we have
3) PrA) = N € W,(C).

Moreover the following diagram is commutative for any D e W,(R):

4) DJ lmm

=
=
a
=

Pi

We define o, =p,0p,=L(I") for 0 <t<n. Since ¢, is involutive (i.e.,
0,00, = idg(y), we obtain for 0 <7< n,

RIX]=P @ P,

where Pt is the eigenspace of o, corresponding to the eigenvalue +1. It is
oy o

easily seen that g,(x*) = (—1) x*. Hence g,00? = 8> o, for 1 <i<n and
0 <t < n. This implies for 0 <s,7 < n,

(5) g 0A] = Al ooy

Putting :%fl(R;’) = PN Ay(R") for 0 <s,7<n, by virtue of (5), we have the
following direct decomposition:

Ha(RY) = Ay (RY) @ Ay (RY).
By the definition, P,/ (resp. P, ) is the subspace which consists of polynomials
whose terms are of even (resp. odd) degree with respect to xi,...,x,. Thus p,
maps any polynomials in % (R{') (resp. #, ,(R})) to those in C,[x] which have

purely real (resp. imaginary) coefficients. So, because of the injectivity of p,, we
have

(6) p(Ha(R])) = p (A (R])) ® V=13(p,(#, (R]))).
Lemma 2.1. For any n,d,t e Ny satisfying n>1 and 0 <t < n, we obtain

pt(%;:t(R(’)l)) = Jf;t(Rl”)’ %(p,(ffd_t(Rg))) = ’}lfd_t(an)
Hence we obtain p,(#4(Ry)) = A, (R!) @ V—14, (R}).
Proor. By the commutative diagram (4), the decomposition (6) and
Equation (3), we have for any f*e yfd%,(Rg),
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0= Pt(Al(q)er) = (ﬁ;(Ag))(p,(f+)) = A?Cpt(f+) = A';p,(f+),
0= p (AL ) = (P(AD) (P 7)) = AYY=18p,(f7) = V=TAISp, (7).

Hence p,(#; (R})) = #jt(R,”) and S(p,(#, ,(RF))) = A, (R]). Since p, is
injective, the real dimension of p,(#;(R()) is equal to the one of J#,(R;) (or
Ha(R)). Therefore we obtain this lemma. Il

REMARK 2.2. It is known that the following identity on W,(R):
(7) rgA,nA’(i) - E(E +n— 2) = Z(xiaj - X/‘ai)z
i<j

holds, where E = "', x;0; is Euler’s degree operator. This identity is known as
Capelli’s identity for Oy(n) ([13]). Applying p, to (7), we can immediately get
Capelli’s identity for O,(n) (1 <t <n) as follows:

n n .n 2
rtnAt E(E+n-2 E & ep /(%0 — x;0;)".

i<j

3. Harmonic Maps between Semi-Riemannian Spheres

In this section, we construct harmonic maps of semi-Riemannian unit spheres.
We denote the semi-Riemannian n-sphere with constant sectional curvature k

and index ¢ by S7(k) = R"™!, that is, S"(k) = {pe R"' | —x}(p) — - — x2(p) +
x2,(p) + -+ x2,(p) =k '} and the unit n-sphere S/(1) by S’. So, from now
on, R[x] stands for R[xy,...,x,,X,1] as the space of all polynomials on R,

We denote the semi-Riemannian n-sphere with constant sectional curvature & and
index ¢ by S"(k) = R™', and the unit n-sphere S’(1) by S7.

Now we recall the standard A-eigenmaps and the standard minimal immer-
sions of the ordinary n-sphere S” =S (see [3], [4] and [11] for examples). Let
AS" be the Laplacian on S”. It is well-known that all eigenvalues are given by
Ja=d(d+n—1) (deNy) and the eigenspace V; of AS" corresponding to the
eigenvalue /A, is

Va=A{fls: | f € Ha(RG)}.

(See [4, Theorem (1.9), p. 132] for more details.) Then ¥V, is an orthogonal
Oo(n + 1)-module. The Oy(n+ 1)-module structure on ¥V, is given by L and
we choose as an Ogy(n + 1)-invariant scalar product <,> on V, the L2-scalar
product:



402 Kouhei M1Ura

By =| Afsdvse eV,

where dvg» is proportional to the volume element of S” and normalized in such a
way that IS” dvsn = dim V. For simplicity, we put

n (d+n—-2)!
_ d) = (2d -1
ddin=1 Md)=Qden=DmeT
Then we have dim ¥, = m(d) + 1 = dim #,(R:™). Let {£}7""" be an ortho-

normal basis of V,, which, at the same time, identifies V; with R”@*! We
obtain

k(d) = Y

m(d)+1

(8) > (f)*=1 ons".
i=1

Then we have the standard iq-eigenmaps (resp. the standard minimal immersions
of order d):

¢n,d = ¢n,d,0 = (f17 cee 1fm(d)+1) 18— Sm(d)7

(resp. Vg = Va0 = bua © Zna » S"(k(d)) — S™D),

where , , is the homothetic transformation such that y, ,(p) = k(d)l/ 2

- p for
peR™!. These are uniquely determined up to congruence on the range. Let
7704 = 7704 0g(n + 1) — Og(m(d) + 1) denote the homomorphism asso-
ciated to the Oy(n+ 1)-module structure of ¥,; under the identification V; =
R™@*! Tt is obvious that ¢,.q and Y, , are equivariant with respect to 7"+
We note that #,(Ry"") has an Op(n + 1)-invariant scalar product induced from
the one of ¥V, since every d-homogeneous polynomials are uniquely determined
by its values on S”.

Hereafter we put

Hy={(kt,....kn-2.kn1) €Z" M |d > ky >+ = ky_s > |kyi|}-
For convenience’ sake, we may put ko =d and k, =0. It is easy to check
# Ay =dim AR, We put 12, =S/ erf'x? e Ryfx], which is an
Oo(n + 1)-invariant polynomial in R[x]. For the later use, we summarize [12, pp.
466-467] as follows.

LemMa 3.1. For any K = (ki,...,kn-2,kn_1) € A4, we put

— 44 H ki=lk1| o (n==1)/ 2|k | Xnt1-j
K Tormt1—j Clo—] )

r0, n+1—j

[I]

X (x3 + sgn(k,—1)V —lxl)‘k”*“,
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where sgn(k,_1) is the signature of k,_1, CP(t) are Gegenbauer polynomials

m

Ch(t) = 2"C(p+m )(WZ] (—l)k(P'i‘m—k_l)! ,m—zk>
T(p) L 2%KI(m — 2k)!(p+ m — 1)! :

and A% is the normalizing factor. Then Z& are in #,(Cy™), and any harmonic

polynomial of e/fd(R"“) can be uniquely represented as a linear combination of E,‘é
Moreover we have for any K, M € Ay,

[,

where the measure dvsn is normalized by [, dvs: = dim Hy(RE), and Sgar = 1 if
K =M, dxy =0 if K # M.

dm=d
K=M dvsn =0gu,

[1]

In this paper, for 1 <ij <---<i,<n+ 1, we denote by degxfl.,m,x,-, f the
degree of a polynomial f € R[x] with respect to variables Xx;,...,x;. By the

‘.

definition of Z¢, we can show that

i—1

k. — lk:

(9)  deg, , Ef=2>" {%} + kil = |kip1| for 0<i<n—1.
Jj=0

We note that k, ; = 0 if and only if Z¢ is real. So {E,‘é}KG% is not a basis of
A,(RYY). However, from the decomposition (2), it is a simple matter to obtain
an orthonormal basis of %d(Rg“). In fact, for K = (ky,... . kn_2,kn1) € Ky, we
put
:z for k,_; =0,
Ug = V2REL  for k, 1 > 0,
V2SEL  for kg < 0.

Then {U¢}x.,, is an orthonormal basis of A (RY). The following two
polynomials in R;[xi, x;]:

N
Ul = Rx +V-Tx)' =) (1)’ <2i>xf’X£2’,

= 1)/2 '
U =S+ \/_x1 ( >x2’+1x£(2'+1>
pare 2i+1

satisfy

H(R2) = Span{U!, U'}, (U +(U") =+,

- s
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and U! (resp. U') is of even (resp. odd) degree with respect to x;. For
2<t<n+]1, by virtue of (9) and the definitions of UZ and E£, we can get

(10) deg,, ..x, Uf =kup1r (mod?2),

and see that if deg, Ug is even (resp. odd), then each terms of Uf are also
of even (resp. odd) degree with respect to xi,...,x,. So we put J/dfo = Ay,
%dio = @7

Hyy=Aki, . kna, k1) € Ayl kot =0},
A=Ak, kn2,kn1) € Hulkn1 <0},
from (10), for 2 <tr<n-+1,
Hy =K eAHylknp1:eveny, Ay, ={KeAy|ky1:odd}.
Then we have for 0 <t <n+1,
(1) HE (R = Span{UJ | K e 4]},

Then, since {Ug}x. ,, is an orthonormal basis of A(Ry), and I =1 on
S, from Equation (8), we have in Ry4[x],

(12) S (U =13
Kexy

We put Ud =p(Ug) for Kex;, and U, =Sp,(U) for K e A, hence

U o= U{ for K e #y. Using (11) and Lemma 2.1 and applying p, to (12), we
have

LemmA 3.2. The polynomials {U,‘({,}Ke% form a basis of Hy(R'""). Es-
pecially we have

Span{ U]?,r |K e ‘%/tJr} = %I[(R;1+1)7
Span{U{ ,|K e #7} = V-1, (R]™).

Moreover we obtain

(13) = N WE+ Y (W) =

Ked; KexS

“d,t Ld.t

We call {U{ Y., the canonical basis of Hy(R™1). Hereafter we put
I(d,t) = #A -
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ProPOSITION 3.3. #,;(R"™) has the O,(n+ 1)-invariant scalar product of
index 1(d,t), for which the canonical basis {U,?",}KG% is orthonormal. With
respect to the scalar product, #,;(R"") is the orthogonal O,(n+ 1)-module by

TV \ohich is the representation given by L in Hy(RI).

Proor. Let (,) be the scalar product in #y(R}') for which {U{ }_ . is
an orthonormal basis such that (UZ, U¢» =+1 (resp. —1) when K e X,
(resp. K e A, ). We identify A (R with Rf(yl))“ by {Uf}gcy,- For any
ge O,(n+1), we can write L(g)(Ul) = domer, emx Ugly since #,(R™!) is an
O,(n + 1)-invariant subspace of R[x]. Using Equation (13), we can see that
the scalar product is O;(n + 1)-invariant and (cuyk) € Oyq,1)(m(d) + 1) under the
identification #,(R"™") ;R;’&fg“, since r7,,, is an O(n+ 1)-invariant poly-
nomial. Therefore the proof is complete. O

For any n,d,t e Ny satisfying n,d > 1 and 0 <7 < n, we define ¢, , , : S/' —

m(d)+1
Ry by

_ d d d d
¢"‘d~,f - (UKl,f’ 0 YKy 0 UKZ({Z./HIJ’ T UKm(z/)HJ)

where Ki,..., Ky € Xy, and Kyg i1y K41 € Jifzt, and K; # K; when
i #j. From Proposition 3.3, we can see that these are uniquely determined up to
congruence on the range. To prove Theorem 3.5, we quote a special case of a
result in [5, Corollary 1.3.7]:

Lemma 34. If w: R;”l — R;."H consists of d-homogeneous harmonic poly-

nomials and w(S}') = SI"

. n m 3 7
J's then w|gn : S — S is a harmonic map.

Moreover we note that if f e #,(R"™"), then f| s» is an eigenfunction of the
Laplacian on S/ with eigenvalue A; = d(d +n—1) ([5, Corollary 1.3.5] and [6,
Theorem 2)).

THEOREM 3.5.  For any n,d,t € Ny satisfying n,d > 1 and 0 <t <n, ¢, ;, are

harmonic maps S}' — S;ngt)), which is equivariant with respect to the homomorphism
Tl ’
p .

Proor. By (
R

m(d)

13) in Lemma 3.2, the image of ¢, ,, is contained in the unit
4 ,
sphere S1< d.f)

;Zf,ft))ﬂ ~ #,(R""). From Proposition 3.3, it is obvious that
$na. 18 O(R""")-equivariant. So, according to Lemma 3.4, we have the required

harmonic map. |



406 Kouhei M1ura

We note that the map A7 : R'"' — R'Hl | given by

A;’“(xl,...,xnﬂ) = (Xpa1y e vy Xnals X1y oo vy X7)

is an anti-isometry that carries S'(k) anti-isometrically onto H,' ,(k) ([10, Lemma
24, p. 110]), and if f: X — S}'(k) and g: S}'(k) — Y are maps between semi-
Riemannian manifolds, then f is harmonic if and only if 4""! o f is harmonic;
the same equivalence we have for g and g o A7*! ([5, Remark 1.3.2, p. 471]). Thus
we obtain

COROLLARY 3.6. For any n,d,t € Ny satisfying n,d > 1 and 0 < t < n, there
exist the following harmonic maps:

n d
¢n,d,r 2S¢ — S;(n(;t))y

+—  _ gm(d)+1 . Qn m(d)

n,d,t = Az(dA, n ° DS — Hm(d)—l(d, 0
— m(d
n,},n—t = ¢n,d,t © Atn+1 : Hr’:—t - Sl a(',f))’

Baldn s = A/Tf))“ o a0 Al HY — Hﬁj))fz(d, %

Furthermore we put ¥, 4, = ¢, 4, ° X 4 : Stk(d)) — S,'Z;‘?) Of course, ¥, 4 ¢
=1, 4 1s the standard minimal immersion of order d of the ordinary n-sphere
Sg = 8" It is well known that v, ,,: Si(k(d)) — Sy @ is a helical geodesic
immersion of order d (see [8]).

Here we recall the definition of helices and helical geodesic immersions in
semi-Riemannian geometry. (For details, see [9].) Let N be a semi-Riemannian
manifold. Let ¢ be a unit speed curve in N. The curve c¢ is said to be a helix of
order d in N, if it has the orthonormal frame field ¢; = ¢/, ¢s,...,¢cs and the
following Frenet formulas along ¢ are satisfied for all 1 <i < d(<dim N):

{<Ci7 ciy = &,

Veei = —gim1€idi—1cio1 + Aicir,

where V denotes the Levi-Civita connection of N, de N, ly=1;=¢ =0,
co=cgr1 =0, 4 (1<i<d-1) is a positive constant and ¢ e {-1,+1}
(1<i<d). In this paper, we may call such a curve a helix of type
A= (d;21,...,2q-1;€1,...,¢4). Let f: M — M be an isometric immersion be-
tween semi-Riemannian manifolds. Suppose that there exist space-like geodesics
on M, let y be any unit speed space-like geodesic of M. If the curve f oy in M is
a helix of type A which are independent of the choice of y, then f is called a
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helical space-like geodesic immersion of type A (or of order d simply). We also
define that f is a helical time-like geodesic immersion in the same way. To prove
the following proposition, we quote [1, Lemma 1.1].

Lemma 3.7.  Let V' be an n-dimensional real vector space equipped with a non-
degenerate scalar product g of index t. For any r-linear map T on V to a real
vector space W and ¢=—1 or +1 (-t <e<1t), the following conditions are
equivalent:

(@) T(u,...,u) =0 for any vector u of V such that g(u,u) = e,
(b) T(v,...,v) =0 for any vector v of V.

Since ¥, 4 1s a helical geodesic immersion of order d between Riemannian
spheres, we can put its type Ag = (d;1,...,Ag—1;+1,...,+1).

PROPOSITION 3.8.  For any n,d,t e Nq such that n,d > 1 and 0 <t<n, ¥, ,,
is an isometric immersion with vanishing mean curvature. Moreover, for 1 <t <
n—1, Y, 4, is a helical space-like geodesic immersion of type Ao.

Proor. It suffices to prove that the assertion follows for the maps
Tnd© Pnai:S! —>S;E1a(,"?)(k(d)71), where g, , is the homothetic transformation
such that 7, ,(p) = k(d)'?- p for pe R"D*' We use the same latter W a. for
)?n,d © ¢n,d,t'

When x; =--- =x; =0, we have

U,?_’O = UI?,[ for any Kej/;,,
U,‘éo = U,?’,:O for any K e A,

At first, we deal with the case of 1 <¢#<n—1. Let y be a unit speed space-like
geodesic (0,...,0,cos s,sins) of S (resp. S/'), which is on SjNS; since
l<t<n-1 When Ke %, the components of y, ;,0y and ¥, ;07 are
vanishing. Hence ,, , , oy is in a positive definite subspace properly. Noting that
the Levi-Civita connection of #,(R{"") coincides with the one of #,(R!""), we
can see that y, , , oy satisfies the same Frenet equation of v, ;oo y. Therefore
Y407 18 a helix of type Ag. Since ¥, 4, is O,(n + 1)-equivariant, v, , , maps
any space-like geodesic ¢ of S;' to a helix i, , , o ¢ of type Ao in S,’E’;d)) Especially
¥, 4., © ¢ is unit speed. So we have g(x,x) =¥, , ,“g(x, x) for x is any unit space-
like vector of S/, where g (resp. ¥, 4 ,"g) is the metric of S} (resp. the pull-back
of the metric § of #,(R"™")). Using Lemma 3.7, we see that g = Ypa. g on
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S/'. By a semi-Riemannian version of Takahashi’s theorem ([7, Theorem 1] for
example), the mean curvature of v, ,, is vanishing. Therefore we have this
proposition in this case.

Next, we deal with the case of ¢ = n. By the definition, we have

U,?ﬁn(xl,O,...,O,an) = U,?,l(xl,O,...,O,an) for K e .

Moreover, for any Ke (A, ,NA;)U(AX;,NA )= &, each terms of
Ug, and UZ | are of odd degree with respect to variables x,,...,x,. So
deg,, . U;én =deg,, . U;f_’1 > 1. Thus, for any K € %, we have

UL, (x1,0,...,0,x,1) = Ug | (x1,0,...,0,%,51) = 0.

We note that, for K € (#,\%), the components Ug , of ¥, ,, and UZ | of ¥, 4,
are the same causal character each other. Let y be a unit speed time-like geodesic
(sinh s,0,...,0,cosh s) of S (resp. S)), which is on S}'NS”. Since we had seen
that v, ,; is isometric, ¥, 4 07 is a unit speed time-like curve in S;ngl)) On
account of the above arguments, we can see that , ;, 0y satisfies the same
equation of W, ;, oy, hence it is a unit speed time-like curve in S;ng’z) Therefore

the same arguments as in the case of 0 < ¢ <n — 1 imply that is isometric.

n,d,n

We accomplished the proof. O
By the same reason to get Corollary 3.6, we have

COROLLARY 3.9. For any n,d,te Ny such that n,d>1 and 0<t<n,

H d)+1 d . . L.
Yodnt= AZZ; t)) oW, 4.0 A HY (k(d) — H’:<(6l))7/(d‘ y Is an isometric im-
mersion with vanishing mean curvature, where A" and A]'Z;dt))ﬂ

isometries in respective vector spaces. Moreover, for 1 <t <n-—1, xp,f_’d_nf[ is a

are the anti-
helical time-like geodesic immersion of type (d;A1,..., q-1;—1,...,—1).

ReEmMARK 3.10. In [9], the author showed the following result. Let
f:M— M be an isometric immersion between semi-Riemannian manifolds
and M indefinite. If f is a helical space-like geodesic immersion of type
A= (d;2,...,  a-1;€1,---,84), then [ is a helical time-like geodesic immersion
of type A = (d;ll,...,}vd,l;(—1)161,...,(—1)d8d). Using this result, we can see
that v, ,, (1<t<n—1) is a helical time-like geodesic immersion of type
Ao=(d:ln,.... a1, (=D",....(=1)%). From the same arguments as in the case

of t = n in the proof of Proposition 3.8, we can prove that oy satisfies the

n,d,n 8
same Frenet equation of v, ,, 07, hence it is a helix of type Ao in S;Eﬁi)).
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Consequently, v, ,, is a helical time-like geodesic immersion of type Ao since

lpn,d.n is On(n + 1)-equivariant.
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