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CONSTRUCTION OF HARMONIC MAPS BETWEEN

SEMI-RIEMANNIAN SPHERES

By

Kouhei Miura

Abstract. We describe a method of manufacturing harmonic maps

between semi-Riemannian spheres out of those in Riemannian ge-

ometry. After normalization, the resulting maps give examples of

helical geodesic immersions in semi-Riemannian geometry.

1. Introduction

Some harmonic maps between semi-Riemannian spheres were obtained by

Konderak [5]. Unlike the Riemannian case, it is not so easy to construct

harmonic maps between semi-Riemannian spheres, since the semiorthogonal

group of the semi-Euclidean n-space Rn
t loses compactness and the Laplacian on

Rn
t is not elliptic for 1a ta n� 1. Therefore only finite many harmonic maps

were constructed in [5]. Ding and Wang [2] proved that the d-homogeneous

harmonic polynomials on the Lorentzian n-space Rn
1 are given by a Wick rotation

of those on the Euclidean n-space Rn ¼ Rn
0 . Using this result, they constructed all

harmonic maps of the Lorentzian 2-sphere (resp. hyperbolic 2-space) all of whose

components form a basis of the space of d-homogeneous harmonic polynomials

on R3
1 .

In this paper, we shall construct all harmonic maps between semi-Riemannian

spheres all of whose components form a basis of the space of d-homogeneous

harmonic polynomials on a semi-Euclidean space. Using Weyl algebras, we first

generalize the Ding and Wang’s result on the harmonic polynomials, that is, the

d-homogeneous harmonic polynomials on Rn
t ð0a ta nÞ are given by Wick

rotations of those on Rn. Applying this result to the canonical basis of the space

of d-homogeneous harmonic polynomials on Rnþ1 (Vilenkin [12]), we obtain the

required harmonic maps in the explicit form. By multiplying a suitable constant
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factor, the resulting maps are isometric immersions and corresponding to the

standard minimal immersions of Riemannian spheres. In Riemannian geometry,

it is well-known that the standard minimal immersions are helical geodesic

immersions. We show that our isometric immersions are helical geodesic

immersions in semi-Riemannian geometry.

2. Harmonic Polynomials on Semi-Euclidean Spaces

Let F ½x� ¼ F ½x1; . . . ; xn� be the polynomial algebra in n-variables x1; . . . ; xn,

where F is the complex numbers C or the real numbers R. The natural de-

composition C ¼ Rl
ffiffiffiffiffiffiffi
�1

p
R induces

C ½x� ¼ R½x�l
ffiffiffiffiffiffiffi
�1

p
R½x�.ð1Þ

So, for any polynomial f of C ½x�, there exist two polynomials <f and =f of R½x�
such that f ¼ <f þ

ffiffiffiffiffiffiffi
�1

p
=f . Then we denote <f �

ffiffiffiffiffiffiffi
�1

p
=f by f . We shall denote

by Fd ½x� the space of d-homogeneous polynomials in F ½x� ðd A N0Þ.
Let EndFðF ½x�Þ be the set of all F-linear mappings of F ½x�. We define

addition in EndFðF ½x�Þ to be the addition of F-linear mappings, and multipli-

cation to be the composition. For any x; h A EndFðF ½x�Þ, we will write the

multiplication x � h simply xh when no confusion can arise. We can consider any

f A F ½x� as an element of EndFðF ½x�Þ by g 7! fg for any g A F ½x�. Thus

F ½x�HEndFðF½x�Þ. Moreover, we put DerFðF ½x�Þ ¼ fy A EndFðF ½x�Þ j yð fgÞ ¼
yð f Þgþ f yðgÞ for f ; g A F ½x�g, whose element is called a derivation of F ½x�.
There exists qi A DerFðF ½x�Þ for 1a ia n such that, qiðxjÞ ¼ dij. We can see

DerFðF ½x�Þ ¼ 0n

i¼1
F ½x�qi. Denote the subalgebra of EndFðF ½x�Þ which F½x� and

DerFðF ½x�Þ generate by WnðFÞ. We will use the symbol N0 to denote the set of

all non-negative integers. For a multi-index a ¼ ða1; . . . ; anÞ A N n
0 , we put xa ¼

xa1
1 � � � xan

n , qa ¼ qa1
1 � � � qan

n and jaj ¼ a1 þ � � � þ an. For arbitrary D A WnðFÞ, we

have the unique expression:

D ¼
X
jajak

faq
a;

where k A N0 and fa A F ½x� ðjaja kÞ.
Let GLðn;FÞ be the general linear group of degree n over F . To each element

g ¼ ðgijÞ of GLðn;FÞ corresponds a ring homomorphism LðgÞ in the space F ½x�,
which transforms the generators xi into the polynomial of degree one:

LðgÞðxiÞ ¼
Xn
j¼1

ĝgijxj; g�1 ¼ ðĝgijÞ;
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and LðgÞð1Þ ¼ 1. Evidently, Lðg1g2Þ ¼ Lðg1ÞLðg2Þ and so L is a representation

of GLðn;FÞ. We note that LðgÞ is degree-preserving (i.e., LðgÞðFd ½x�ÞHFd ½x� for
any d A N0), and that LðIÞ ¼ idF ½x�, where I ¼ ðdijÞ is the unit matrix of degree n.

Hereafter, for any integer t satisfying 0a ta n, we set

ent; i ¼
�1 for 1a ia t;

þ1 for t < ia n:

�
Then we put I nt ¼ ðent; idijÞ A GLðn;RÞ. Let OtðnÞ be a semiorthogonal group with

signature ðt; n� tÞ, that is,

OtðnÞ ¼ fg A GLðn;RÞ j I nt tgI nt ¼ g�1g;

where tg denotes the transpose of g. We define Dn
t ¼

Pn
i¼1 e

n
t; iq

2
i A WnðRÞ and

HðRn
t Þ ¼ ker Dn

t HR½x�. From a straightforward calculation, we can see that Dn
t

is an OtðnÞ-invariant operator, that is,

Dn
t � LðgÞ ¼ LðgÞ � Dn

t for any g A OtðnÞ:

Hence the kernel HðRn
t Þ of Dn

t is an OtðnÞ-invariant vector subspace of R½x�. A
polynomial f is harmonic with respect to Dn

t , if f A HðRn
t Þ. Especially we put

HdðRn
t Þ ¼ Rd ½x�VHðRn

t Þ;

that is, the space of d-homogeneous harmonic polynomials with respect to Dn
t . It

is also an OtðnÞ-invariant space of R½x� since LðgÞ ðg A OtðnÞÞ is degree-preserving.
In a similar way to discussions of Vilenkin [12, pp. 444–445] (see Liu [6, p.

7] also), we can see

dim HdðRn
t Þ ¼ ð2d þ n� 2Þ ðnþ d � 3Þ!

ðn� 2Þ!d! :

Thus the dimension of HdðRn
t Þ is independent of the index t. Put DnC

t ¼Pn
i¼1 e

n
t; iðqiÞ

2 A WnðCÞ, HðC n
t Þ ¼ ker DnC

t HC ½x� and HdðC n
t Þ ¼ Cd ½x�VHðC n

t Þ.
Then, from (1), f A HdðC n

t Þ if and only if both <f and =f are in HdðRn
t Þ, that

is,

HdðC n
t Þ ¼ HdðRn

t Þl
ffiffiffiffiffiffiffi
�1

p
HdðRn

t Þ:ð2Þ

We put rt ¼ Lð
ffiffiffiffiffi
I nt

p �1Þ, where
ffiffiffiffiffi
I nt

p
¼ ð

ffiffiffiffiffiffi
ent; i

p
dijÞ A GLðn;CÞ. There exists the

ring homomorphism ertrt : WnðRÞ ! WnðCÞ satisfying ertrt ¼ rt on R½x�. By the

definition of ertrt, we have for the generators qi of DerRðR½x�Þ,

ertrtðqiÞ ¼ 1ffiffiffiffiffiffi
ent; i

p qi ¼ �
ffiffiffiffiffiffiffi
�1

p
qi for 1a ia t;

qi for t < ia n:

�

399Harmonic maps between semi-Riemannian spheres



Therefore, for the ordinary Laplacian Dn
0 ¼ D, we have

ertrtðDn
0Þ ¼ DnC

t A WnðCÞ:ð3Þ

Moreover the following diagram is commutative for any D A WnðRÞ:

R½x� ���!rt C ½x�

D

???y ???yertðDÞ

R½x� ���!
rt

C ½x�:

ð4Þ

We define st ¼ rt � rt ¼ LðI nt Þ for 0a ta n. Since st is involutive (i.e.,

st � st ¼ idR½x�), we obtain for 0a ta n,

R½x� ¼ Pþ
t lP�

t ;

where PG
t is the eigenspace of st corresponding to the eigenvalue G1. It is

easily seen that stðxaÞ ¼ ð�1Þa1þ���þatxa. Hence st � q2i ¼ q2i � st for 1a ia n and

0a ta n. This implies for 0a s; ta n,

st � Dn
s ¼ Dn

s � st:ð5Þ

Putting HG
d; tðR

n
s Þ ¼ PG

t VHdðRn
s Þ for 0a s; ta n, by virtue of (5), we have the

following direct decomposition:

HdðRn
s Þ ¼ Hþ

d; tðRn
s ÞlH�

d; tðRn
s Þ:

By the definition, Pþ
t (resp. P�

t ) is the subspace which consists of polynomials

whose terms are of even (resp. odd) degree with respect to x1; . . . ; xt. Thus rt
maps any polynomials in Hþ

d; tðRn
s Þ (resp. H�

d; tðRn
s Þ) to those in Cd ½x� which have

purely real (resp. imaginary) coe‰cients. So, because of the injectivity of rt, we

have

rtðHdðRn
s ÞÞ ¼ rtðHþ

d; tðRn
s ÞÞl

ffiffiffiffiffiffiffi
�1

p
=ðrtðH�

d; tðRn
s ÞÞÞ:ð6Þ

Lemma 2.1. For any n; d; t A N0 satisfying nb 1 and 0a ta n, we obtain

rtðHþ
d; tðRn

0 ÞÞ ¼ Hþ
d; tðRn

t Þ; =ðrtðH�
d; tðRn

0 ÞÞÞ ¼ H�
d; tðRn

t Þ:

Hence we obtain rtðHdðRn
0 ÞÞ ¼ Hþ

d; tðRn
t Þl

ffiffiffiffiffiffiffi
�1

p
H�

d; tðRn
t Þ.

Proof. By the commutative diagram (4), the decomposition (6) and

Equation (3), we have for any fG A HG
d; tðR

n
0 Þ,
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0 ¼ rtðDn
0 f

þÞ ¼ ð ertrtðDn
0ÞÞðrtð f þÞÞ ¼ DnC

t rtð f þÞ ¼ Dn
t rtð f þÞ;

0 ¼ rtðDn
0 f

�Þ ¼ ð ertrtðDn
0ÞÞðrtð f �ÞÞ ¼ DnC

t

ffiffiffiffiffiffiffi
�1

p
=rtð f �Þ ¼

ffiffiffiffiffiffiffi
�1

p
Dn
t=rtð f �Þ:

Hence rtðHþ
d; tðRn

0 ÞÞHHþ
d; tðRn

t Þ and =ðrtðH�
d; tðRn

0 ÞÞÞHH�
d; tðRn

t Þ. Since rt is

injective, the real dimension of rtðHdðRn
0 ÞÞ is equal to the one of HdðRn

t Þ (or

HdðRn
0 Þ). Therefore we obtain this lemma. r

Remark 2.2. It is known that the following identity on WnðRÞ:

r20;nD
n
0 � EðE þ n� 2Þ ¼

X
i<j

ðxiqj � xjqiÞ2ð7Þ

holds, where E ¼
Pn

i¼1 xiqi is Euler’s degree operator. This identity is known as

Capelli’s identity for O0ðnÞ ([13]). Applying ertrt to (7), we can immediately get

Capelli’s identity for OtðnÞ ð1a ta nÞ as follows:

r2t;nD
n
t � EðE þ n� 2Þ ¼

X
i<j

ent; ie
n
t; jðxiqj � xjqiÞ2:

3. Harmonic Maps between Semi-Riemannian Spheres

In this section, we construct harmonic maps of semi-Riemannian unit spheres.

We denote the semi-Riemannian n-sphere with constant sectional curvature k

and index t by Sn
t ðkÞHRnþ1

t , that is, Sn
t ðkÞ ¼ fp A Rnþ1

t j �x2
1ðpÞ � � � � � x2

t ðpÞþ
x2
tþ1ðpÞ þ � � � þ x2

nþ1ðpÞ ¼ k�1g and the unit n-sphere Sn
t ð1Þ by Sn

t . So, from now

on, R½x� stands for R½x1; . . . ; xn; xnþ1� as the space of all polynomials on Rnþ1.

We denote the semi-Riemannian n-sphere with constant sectional curvature k and

index t by Sn
t ðkÞHRnþ1

t , and the unit n-sphere Sn
t ð1Þ by Sn

t .

Now we recall the standard l-eigenmaps and the standard minimal immer-

sions of the ordinary n-sphere Sn ¼ Sn
0 (see [3], [4] and [11] for examples). Let

DS n

be the Laplacian on Sn. It is well-known that all eigenvalues are given by

ld ¼ dðd þ n� 1Þ ðd A N0Þ and the eigenspace Vd of DS n

corresponding to the

eigenvalue ld is

Vd ¼ f f jS n j f A HdðRnþ1
0 Þg:

(See [4, Theorem (1.9), p. 132] for more details.) Then Vd is an orthogonal

O0ðnþ 1Þ-module. The O0ðnþ 1Þ-module structure on Vd is given by L and

we choose as an O0ðnþ 1Þ-invariant scalar product h ; i on Vd the L2-scalar

product:
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h f1; f2i ¼
ð
S n

f1 f2 dnS n ; f1; f2 A Vd ;

where dnS n is proportional to the volume element of Sn and normalized in such a

way that
Ð
S n dnS n ¼ dim Vd . For simplicity, we put

kðdÞ ¼ n

dðd þ n� 1Þ ; mðdÞ ¼ ð2d þ n� 1Þ ðd þ n� 2Þ!
d!ðn� 1Þ! � 1:

Then we have dim Vd ¼ mðdÞ þ 1 ¼ dim HdðRnþ1
0 Þ. Let f figmðdÞþ1

i¼1 be an ortho-

normal basis of Vd , which, at the same time, identifies Vd with RmðdÞþ1. We

obtain XmðdÞþ1

i¼1

ð fiÞ2 ¼ 1 on Sn:ð8Þ

Then we have the standard ld-eigenmaps (resp. the standard minimal immersions

of order d ):

fn;d ¼ fn;d;0 ¼ ð f1; . . . ; fmðdÞþ1Þ : Sn ! SmðdÞ;

ðresp: cn;d ¼ cn;d;0 ¼ fn;d � wn;d : SnðkðdÞÞ ! SmðdÞÞ;

where wn;d is the homothetic transformation such that wn;dðpÞ ¼ kðdÞ1=2 � p for

p A Rnþ1. These are uniquely determined up to congruence on the range. Let

T nþ1;d ¼ T
nþ1;d
0 : O0ðnþ 1Þ ! O0ðmðdÞ þ 1Þ denote the homomorphism asso-

ciated to the O0ðnþ 1Þ-module structure of Vd under the identification Vd G
RmðdÞþ1. It is obvious that fn;d and cn;d are equivariant with respect to T nþ1;d .

We note that HdðRnþ1
0 Þ has an O0ðnþ 1Þ-invariant scalar product induced from

the one of Vd since every d-homogeneous polynomials are uniquely determined

by its values on Sn.

Hereafter we put

Kd ¼ fðk1; . . . ; kn�2; kn�1Þ A Z n�1 j db k1 b � � �b kn�2 b jkn�1jg:

For convenience’ sake, we may put k0 ¼ d and kn ¼ 0. It is easy to check

aKd ¼ dim HdðRnþ1
t Þ. We put r2t;nþ1 ¼

Pnþ1
i¼1 enþ1

t; i x2
i A R2½x�, which is an

O0ðnþ 1Þ-invariant polynomial in R½x�. For the later use, we summarize [12, pp.

466–467] as follows.

Lemma 3.1. For any K ¼ ðk1; . . . ; kn�2; kn�1Þ A Kd , we put

Xd
KðxÞ ¼ Ad

K

Yn�2

j¼0

r
kj�jkjþ1j
0;nþ1�j C

ðn�j�1Þ=2þjkjþ1j
kj�jkjþ1j

xnþ1�j

r0;nþ1�j

� �� �

� ðx2 þ sgnðkn�1Þ
ffiffiffiffiffiffiffi
�1

p
x1Þjkn�1j;
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where sgnðkn�1Þ is the signature of kn�1, Cp
mðtÞ are Gegenbauer polynomials

Cp
mðtÞ ¼

2mGðpþmÞ
GðpÞ

X½m=2�

k¼0

ð�1Þkðpþm� k � 1Þ!
22kk!ðm� 2kÞ!ðpþm� 1Þ! t

m�2k

 !
;

and Ad
K is the normalizing factor. Then Xd

K are in HdðC nþ1
0 Þ, and any harmonic

polynomial of HdðRnþ1
0 Þ can be uniquely represented as a linear combination of Xd

K .

Moreover we have for any K ;M A Kd ,ð
S n

Xd
KX

d
M dnS n ¼ dKM ;

where the measure dnS n is normalized by
Ð
S n dnS n ¼ dim HdðRnþ1

0 Þ, and dKM ¼ 1 if

K ¼ M, dKM ¼ 0 if K0M.

In this paper, for 1a i1 < � � � < it a nþ 1, we denote by degxi1 ;...;xit
f the

degree of a polynomial f A R½x� with respect to variables xi1 ; . . . ; xit . By the

definition of Xd
K , we can show that

degxnþ1�i
Xd
K ¼ 2

Xi�1

j¼0

kj � jkjþ1j
2

� �
þ jkij � jkiþ1j for 0a ia n� 1:ð9Þ

We note that kn�1 ¼ 0 if and only if Xd
K is real. So fXd

KgK AKd
is not a basis of

HdðRnþ1
0 Þ. However, from the decomposition (2), it is a simple matter to obtain

an orthonormal basis of HdðRnþ1
0 Þ. In fact, for K ¼ ðk1; . . . ; kn�2; kn�1Þ A Kd , we

put

U d
K ¼

Xd
K for kn�1 ¼ 0;ffiffiffi
2

p
<Xd

K for kn�1 > 0;ffiffiffi
2

p
=Xd

K for kn�1 < 0.

8><>:
Then fU d

KgK AKd
is an orthonormal basis of HdðRnþ1

0 Þ. The following two

polynomials in Rl ½x1; x2�:

U l
þ :¼ <ðx2 þ

ffiffiffiffiffiffiffi
�1

p
x1Þ l ¼

X½l=2�
i¼0

ð�1Þ i l

2i

� �
x2i
1 x

l�2i
2 ;

U l
� :¼ =ðx2 þ

ffiffiffiffiffiffiffi
�1

p
x1Þ l ¼

X½ðl�1Þ=2�

i¼0

ð�1Þ i l

2i þ 1

� �
x2iþ1
1 x

l�ð2iþ1Þ
2

satisfy

HlðR2
0Þ ¼ SpanfU l

þ;U
l
�g; ðU l

þÞ
2 þ ðU l

�Þ
2 ¼ r2l0;2;
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and U l
þ (resp. U l

�) is of even (resp. odd) degree with respect to x1. For

2a ta nþ 1, by virtue of (9) and the definitions of U d
K and Xd

K , we can get

degx1;...;xt U
d
K 1 knþ1�t ðmod 2Þ;ð10Þ

and see that if degx1;...;xt U
d
K is even (resp. odd), then each terms of U d

K are also

of even (resp. odd) degree with respect to x1; . . . ; xt. So we put Kþ
d;0 :¼ Kd ,

K�
d;0 :¼ q,

Kþ
d;1 :¼ fðk1; . . . ; kn�2; kn�1Þ A Kd j kn�1 b 0g;

K�
d;1 :¼ fðk1; . . . ; kn�2; kn�1Þ A Kd j kn�1 < 0g;

from (10), for 2a ta nþ 1,

Kþ
d; t :¼ fK A Kd j knþ1�t : eveng; K�

d; t :¼ fK A Kd j knþ1�t : oddg:

Then we have for 0a ta nþ 1,

HG
d; tðR

nþ1
0 Þ ¼ SpanfU d

K jK A KG
d; tg:ð11Þ

Then, since fU d
KgK AKd

is an orthonormal basis of HdðRnþ1
0 Þ, and r20;nþ1 ¼ 1 on

Sn
0 , from Equation (8), we have in R2d ½x�,X

K AKd

ðU d
K Þ

2 ¼ r2d0;nþ1:ð12Þ

We put U d
K; t ¼ rtðU d

K Þ for K A Kþ
d; t and U d

K ; t ¼ =rtðU d
K Þ for K A K�

d; t, hence

U d
K ;0 ¼ U d

K for K A Kd . Using (11) and Lemma 2.1 and applying rt to (12), we

have

Lemma 3.2. The polynomials fU d
K; tgK AKd

form a basis of HdðRnþ1
t Þ. Es-

pecially we have

SpanfU d
K ; t jK A Kþ

t g ¼ Hþ
d; tðRnþ1

t Þ;

SpanfU d
K ; t jK A K�

t g ¼
ffiffiffiffiffiffiffi
�1

p
H�

d; tðRnþ1
t Þ:

Moreover we obtain

�
X

K AK�
d; t

ðU d
K; tÞ

2 þ
X

K AKþ
d; t

ðU d
K; tÞ

2 ¼ r2dt;nþ1:ð13Þ

We call fU d
K ; tgK AKd

the canonical basis of HdðRnþ1
t Þ. Hereafter we put

lðd; tÞ ¼aK�
d; t.
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Proposition 3.3. HdðRnþ1
t Þ has the Otðnþ 1Þ-invariant scalar product of

index lðd; tÞ, for which the canonical basis fU d
K ; tgK AKd

is orthonormal. With

respect to the scalar product, HdðRnþ1
t Þ is the orthogonal Otðnþ 1Þ-module by

T nþ1;d
t which is the representation given by L in HdðRnþ1

t Þ.

Proof. Let h ; i be the scalar product in HdðRn
t Þ for which fU d

K ; tgK AKd
is

an orthonormal basis such that hU d
K ;U

d
Ki ¼ þ1 (resp. �1) when K A Kþ

d; t

(resp. K A K�
d; t). We identify HdðRnþ1

t Þ with R
mðdÞþ1
lðd; tÞ by fU d

KgK AKd
. For any

g A Otðnþ 1Þ, we can write LðgÞðU d
K Þ ¼

P
M AKd

cMKU
d
M since HdðRnþ1

t Þ is an

Otðnþ 1Þ-invariant subspace of R½x�. Using Equation (13), we can see that

the scalar product is Otðnþ 1Þ-invariant and ðcMKÞ A Olðd; tÞðmðdÞ þ 1Þ under the

identification HdðRnþ1
t ÞGR

mðdÞþ1
lðd; tÞ , since r2t;nþ1 is an Otðnþ 1Þ-invariant poly-

nomial. Therefore the proof is complete. r

For any n; d; t A N0 satisfying n; db 1 and 0a ta n, we define fn;d; t : Sn
t !

R
mðdÞþ1
lðd; tÞ by

fn;d; t ¼ ðU d
K1; t

; . . . ;U d
Klðd; tÞ; t

;U d
Klðd; tÞþ1; t

; . . . ;U d
KmðdÞþ1; t

Þ

where K1; . . . ;Klðd; tÞ A K�
d; t and Klðd; tÞþ1; . . . ;KmðdÞþ1 A Kþ

d; t, and Ki 0Kj when

i0 j. From Proposition 3.3, we can see that these are uniquely determined up to

congruence on the range. To prove Theorem 3.5, we quote a special case of a

result in [5, Corollary I.3.7]:

Lemma 3.4. If w : Rnþ1
t ! Rmþ1

s consists of d-homogeneous harmonic poly-

nomials and wðSn
t ÞHSm

s , then wjS n
t
: Sn

t ! Sm
s is a harmonic map.

Moreover we note that if f A HdðRnþ1
t Þ, then f jS n

t
is an eigenfunction of the

Laplacian on Sn
t with eigenvalue ld ¼ dðd þ n� 1Þ ([5, Corollary I.3.5] and [6,

Theorem 2]).

Theorem 3.5. For any n; d; t A N0 satisfying n; db 1 and 0a ta n, fn;d; t are

harmonic maps Sn
t ! S

mðdÞ
lðd; tÞ, which is equivariant with respect to the homomorphism

T
nþ1;d
t .

Proof. By (13) in Lemma 3.2, the image of fn;d; t is contained in the unit

sphere S
mðdÞ
lðd; tÞ HR

mðdÞþ1
lðd; tÞ GHdðRnþ1

t Þ. From Proposition 3.3, it is obvious that

fn;d; t is OðRnþ1
t Þ-equivariant. So, according to Lemma 3.4, we have the required

harmonic map. r
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We note that the map Anþ1
t : Rnþ1

t ! Rnþ1
nþ1�t given by

Anþ1
t ðx1; . . . ; xnþ1Þ ¼ ðxtþ1; . . . ; xnþ1; x1; . . . ; xtÞ

is an anti-isometry that carries Sn
t ðkÞ anti-isometrically onto Hn

n�tðkÞ ([10, Lemma

24, p. 110]), and if f : X ! Sn
t ðkÞ and g : Sn

t ðkÞ ! Y are maps between semi-

Riemannian manifolds, then f is harmonic if and only if Anþ1
t � f is harmonic;

the same equivalence we have for g and g � Anþ1
t ([5, Remark I.3.2, p. 471]). Thus

we obtain

Corollary 3.6. For any n; d; t A N0 satisfying n; db 1 and 0a ta n, there

exist the following harmonic maps:

fn;d; t : S
n
t ! S

mðdÞ
lðd; tÞ;

fþ�
n;d; t ¼ A

mðdÞþ1
lðd; tÞ � fn;d; t : Sn

t ! H
mðdÞ
mðdÞ�lðd; tÞ;

f�þ
n;d;n�t ¼ fn;d; t � Anþ1

t : Hn
n�t ! S

mðdÞ
lðd; tÞ;

fH
n;d;n�t ¼ A

mðdÞþ1
lðd; tÞ � fn;d; t � Anþ1

t : Hn
n�t ! H

mðdÞ
mðdÞ�lðd; tÞ:

Furthermore we put cn;d; t ¼ fn;d; t � wn;d : Sn
t ðkðdÞÞ ! S

mðdÞ
lðd; tÞ. Of course, cn;d;0

¼ cn;d is the standard minimal immersion of order d of the ordinary n-sphere

Sn
0 ¼ Sn. It is well known that cn;d;0 : S

n
0 ðkðdÞÞ ! S

mðdÞ
0 is a helical geodesic

immersion of order d (see [8]).

Here we recall the definition of helices and helical geodesic immersions in

semi-Riemannian geometry. (For details, see [9].) Let N be a semi-Riemannian

manifold. Let c be a unit speed curve in N. The curve c is said to be a helix of

order d in N, if it has the orthonormal frame field c1 ¼ c 0; c2; . . . ; cd and the

following Frenet formulas along c are satisfied for all 1a ia dðadim NÞ:

hci; cii ¼ ei;

‘c 0ci ¼ �ei�1eili�1ci�1 þ liciþ1;

�
where ‘ denotes the Levi-Civita connection of N; d A N , l0 ¼ ld ¼ e0 ¼ 0,

c0 ¼ cdþ1 ¼ 0, li ð1a ia d � 1Þ is a positive constant and ei A f�1;þ1g
ð1a ia dÞ. In this paper, we may call such a curve a helix of type

L ¼ ðd; l1; . . . ; ld�1; e1; . . . ; edÞ. Let f : M ! ~MM be an isometric immersion be-

tween semi-Riemannian manifolds. Suppose that there exist space-like geodesics

on M, let g be any unit speed space-like geodesic of M. If the curve f � g in ~MM is

a helix of type L which are independent of the choice of g, then f is called a
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helical space-like geodesic immersion of type L (or of order d simply). We also

define that f is a helical time-like geodesic immersion in the same way. To prove

the following proposition, we quote [1, Lemma 1.1].

Lemma 3.7. Let V be an n-dimensional real vector space equipped with a non-

degenerate scalar product g of index t. For any r-linear map T on V to a real

vector space W and e ¼ �1 or þ1 ð�ta ea tÞ, the following conditions are

equivalent:

(a) Tðu; . . . ; uÞ ¼ 0 for any vector u of V such that gðu; uÞ ¼ e,

(b) Tðv; . . . ; vÞ ¼ 0 for any vector v of V .

Since cn;d;0 is a helical geodesic immersion of order d between Riemannian

spheres, we can put its type L0 ¼ ðd; l1; . . . ; ld�1;þ1; . . . ;þ1Þ.

Proposition 3.8. For any n; d; t A N0 such that n; db 1 and 0a ta n, cn;d; t

is an isometric immersion with vanishing mean curvature. Moreover, for 1a ta

n� 1, cn;d; t is a helical space-like geodesic immersion of type L0.

Proof. It su‰ces to prove that the assertion follows for the maps

~wwn;d � fn;d; t : Sn
t ! S

mðdÞ
lðd; tÞðkðdÞ

�1Þ, where ~wwn;d is the homothetic transformation

such that ~wwn;dðpÞ ¼ kðdÞ1=2 � p for p A RmðdÞþ1. We use the same latter cn;d; t for

~wwn;d � fn;d; t.
When x1 ¼ � � � ¼ xt ¼ 0, we have

U d
K ;0 ¼ U d

K ; t for any K A Kþ
d; t;

U d
K ;0 ¼ U d

K ; t ¼ 0 for any K A K�
d; t:

At first, we deal with the case of 1a ta n� 1. Let g be a unit speed space-like

geodesic ð0; . . . ; 0; cos s; sin sÞ of Sn
0 (resp. Sn

t ), which is on Sn
0 VSn

t since

1a ta n� 1. When K A K�
d; t, the components of cn;d; t � g and cn;d;0 � g are

vanishing. Hence cn;d; t � g is in a positive definite subspace properly. Noting that

the Levi-Civita connection of HdðRnþ1
0 Þ coincides with the one of HdðRnþ1

t Þ, we
can see that cn;d; t � g satisfies the same Frenet equation of cn;d;0 � g. Therefore
cn;d; t � g is a helix of type L0. Since cn;d; t is Otðnþ 1Þ-equivariant, cn;d; t maps

any space-like geodesic c of Sn
t to a helix cn;d; t � c of type L0 in S

mðdÞ
lðd; tÞ. Especially

cn;d; t � c is unit speed. So we have gðx; xÞ ¼ cn;d; t
�~ggðx; xÞ for x is any unit space-

like vector of Sn
t , where g (resp. cn;d; t

�~gg) is the metric of Sn
t (resp. the pull-back

of the metric ~gg of HdðRnþ1
t Þ). Using Lemma 3.7, we see that g ¼ cn;d; t

�~gg on
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Sn
t . By a semi-Riemannian version of Takahashi’s theorem ([7, Theorem 1] for

example), the mean curvature of cn;d; t is vanishing. Therefore we have this

proposition in this case.

Next, we deal with the case of t ¼ n. By the definition, we have

U d
K;nðx1; 0; . . . ; 0; xnþ1Þ ¼ U d

K ;1ðx1; 0; . . . ; 0; xnþ1Þ for K A Kd :

Moreover, for any K A ðKþ
d;n VK�

d;1ÞU ðK�
d;n VKþ

d;1Þ ¼: L, each terms of

U d
K ;n and U d

K ;1 are of odd degree with respect to variables x2; . . . ; xn. So

degx2;...;xn U
d
K ;n ¼ degx2;...;xn U

d
K ;1 b 1. Thus, for any K A L, we have

U d
K;nðx1; 0; . . . ; 0; xnþ1Þ ¼ U d

K ;1ðx1; 0; . . . ; 0; xnþ1Þ ¼ 0:

We note that, for K A ðKdnLÞ, the components U d
K ;n of cn;d;n and U d

K;1 of cn;d;1

are the same causal character each other. Let g be a unit speed time-like geodesic

ðsinh s; 0; . . . ; 0; cosh sÞ of Sn
1 (resp. Sn

n ), which is on Sn
1 VSn

n . Since we had seen

that cn;d;1 is isometric, cn;d;1 � g is a unit speed time-like curve in S
mðdÞ
lðd;1Þ. On

account of the above arguments, we can see that cn;d;n � g satisfies the same

equation of cn;d;1 � g, hence it is a unit speed time-like curve in S
mðdÞ
lðd;nÞ. Therefore

the same arguments as in the case of 0a ta n� 1 imply that cn;d;n is isometric.

We accomplished the proof. r

By the same reason to get Corollary 3.6, we have

Corollary 3.9. For any n; d; t A N0 such that n; db 1 and 0a ta n,

cH
n;d;n�t ¼ A

mðdÞþ1
lðd; tÞ � cn;d; t � Anþ1

t : Hn
n�tðkðdÞÞ ! H

mðdÞ
mðdÞ�lðd; tÞ is an isometric im-

mersion with vanishing mean curvature, where Anþ1
t and A

mðdÞþ1
lðd; tÞ are the anti-

isometries in respective vector spaces. Moreover, for 1a ta n� 1, cH
n;d;n�t is a

helical time-like geodesic immersion of type ðd; l1; . . . ; ld�1;�1; . . . ;�1Þ.

Remark 3.10. In [9], the author showed the following result. Let

f : M ! ~MM be an isometric immersion between semi-Riemannian manifolds

and M indefinite. If f is a helical space-like geodesic immersion of type

L ¼ ðd; l1; . . . ; ld�1; e1; . . . ; edÞ, then f is a helical time-like geodesic immersion

of type L ¼ ðd; l1; . . . ; ld�1; ð�1Þ1e1; . . . ; ð�1ÞdedÞ. Using this result, we can see

that cn;d; t ð1a ta n� 1Þ is a helical time-like geodesic immersion of type

L0 ¼ ðd; l1; . . . ; ld�1; ð�1Þ1; . . . ; ð�1ÞdÞ. From the same arguments as in the case

of t ¼ n in the proof of Proposition 3.8, we can prove that cn;d;n � g satisfies the

same Frenet equation of cn;d;1 � g, hence it is a helix of type L0 in S
mðdÞ
lðd;nÞ.
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Consequently, cn;d;n is a helical time-like geodesic immersion of type L0 since

cn;d;n is Onðnþ 1Þ-equivariant.
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