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NOTE ON WEIGHTED STRICHARTZ ESTIMATES

FOR KLEIN-GORDON EQUATIONS WITH POTENTIAL

By

Hideo Kubo and Sandra Lucente

Abstract. In this paper we prove a mixed weighted Strichartz in-

equality for the solution of

ðq2
t � Dx þ VðxÞ þ 1Þuðt; xÞ ¼ Fðt; xÞ;

where x A R3 and V is a Hölder continuous non-negative potential

satisfying the inequality

VðxÞaCð1 þ jxjÞ�3�d

with some constants C, d > 0.

1. Introduction

We consider the Cauchy problem for the Klein-Gordon equation with a non-

negative potential:

ðq2
t � Dx þ VðxÞ þ 1Þuðt; xÞ ¼ F ðt; xÞ; x A R3; t > 0;

uð0; xÞ ¼ f ðxÞ; utð0; xÞ ¼ gðxÞ:

�
ð1:1Þ

The aim of this work is to establish weighted Strichartz estimates under suitable

assumptions on the potential VðxÞ. In the unperturbed case VðxÞ1 0, such

estimates have been studied by Lindblad and Sogge [11]. Among other things,

they observe that the dispersive property of the solution is well-exploited by using

the foliation of the light cone with hyperboloid instead of the foliation of the

whole space by means of hyperplanes ft ¼ const:g. More precisely, for given

G : Rþ � R3 ! R and 1a q < þy, they consider the following mixed norm:
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kGkLqL2 :¼
ðþy

1

ð
R3

jGðrhzi; rzÞj2 dz

hzi

� �q=2

r3 dr

 !1=q

; ð1:2Þ

where hzi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ jzj2

q
. Then the solution of the problem (1.1) with V 1 0

satisfies

kukLqL2 þ sup
tb0

kuðt; �ÞkH 1=2 aCðk f kH 1=2 þ kgkH�1=2 þ kFkLq 0L2Þ; ð1:3Þ

provided q > 8=3 and supp F H fðt; xÞ j t2 � jxj2 b 1g, where 1=qþ 1=q 0 ¼ 1. Their

proof is based on the Fourier representation of the solution and the invariance of

the free Klein-Gordon equation under the hyperbolic rotation.

Now we turn our attention to the perturbed Klein-Gordon equation. We

immediately lose the favorable properties mentioned above. As for the repre-

sentation formula of the solution, we make use of the Generalized Fourier

Transform related to H ¼ �Dþ VðxÞ, which is a self-adjoint non-negative

operator on L2. In order to introduce the transform, we first consider the

Lippmann-Schwinger equation:

oðx; xÞ ¼ �
ð
R3

VðyÞðoðy; xÞ þ 1Þ eiðjxj jx�yjþx�ðx�yÞÞ

4pjx� yj dy; x; x A R3; ð1:4Þ

which is the integral equation of the stationary problem corresponding to (1.1). If

VðxÞ is a real-valued Hölder continuous function decaying faster than jxj�2, then

for any x0 0 there is a unique solution oðx; xÞ of (1.4) such that oðx; xÞ A CðR3
xÞ

and oðx; xÞ tends uniformly to 0 as jxj ! þy (see Theorem 3 of [10], also [2]).

Then we are ready to define the generalized Fourier transform related to H and

its inverse as follows:

Ff ðxÞ ¼ ð2pÞ�3=2

ð
R3

x

e�ix�xð1 þ oðx; xÞÞ f ðxÞ dx;

F�f ðxÞ ¼ ð2pÞ�3=2

ð
R3

x

eix�xð1 þ oðx; xÞÞ f ðxÞ dx:

We refer to e.g. Theorem 5 of [10] or [1] about the standard properties for the

generalized Fourier transform. Especially, for any Borel function a one has

aðHÞ f ðxÞ ¼ F�½aðj � j2ÞFf ð�Þ�ðxÞ: ð1:5Þ

In addition, for given s A R, we introduce the Sobolev norm of order s associated

with H:

k f kH sðR3Þ ¼ kð1 þHÞs=2
f kL2ðR3Þ:
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Since the function e�ix�xð1 þ oðx; xÞÞ is a generalized eigenfunction to H,

that is

ð�Dx þ VðxÞÞðe�ix�xð1 þ oðx; xÞÞÞ ¼ jxj2ðe�ix�xð1 þ oðx; xÞÞÞ;

we see that the solution to (1.1) takes the form

uðt; xÞ ¼ U 0
V ðtÞ½ f �ðxÞ þUV ðtÞ½g�ðxÞ þ

ð t
0

UV ðt� sÞ½F ðs; �Þ�ðxÞ ds;

where

UV ðtÞ½g�ðxÞ ¼
sinðt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þH

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þH
p gðxÞ:

In this way we can overcome the di‰culty caused by VðxÞ in the Fourier

representation of the solution. On the contrary, the lack of the invariance of

the Klein-Gordon equation with a potential VðxÞ with respect to the hyperbolic

rotation is crucial. We extend the definition of the mixed norm (1.2) as follows:

kGkLqL2
s
:¼

ðþy

1

ð
R3

jGðrhzi; rzÞj2hzi s dz

hzi

� �q=2

r3 dr

 !1=q

; ð1:6Þ

where 1a q < þy and s A R.

Now we are in a position to state the main result of this paper.

Theorem 1. Let VðxÞ be a Hölder continuous non-negative function such that

VðxÞaC0ð1 þ jxjÞ�3�d 0
for x A R3 ð1:7Þ

with some C0, d 0 > 0. Suppose that supp F H fðt; xÞ j t2 � jxj2 b 1g, s > 0, d > 1

and 4 < q < þy. Let uðt; xÞ be the solution of (1.1). Then there exists C ¼
Cðs; q; dÞ > 0 such that

kð1 þHÞ�d=2
ukLqL2

�s
þ sup

tb0
kuðt; �ÞkHð1�dÞ=2

aCðk f kHð1�dÞ=2 þ kgkHð�1�dÞ=2 þ kFkLq 0L2
s
Þ; ð1:8Þ

whenever the norms on the right side of this inequality are finite. Here

1=qþ 1=q 0 ¼ 1.

Let us compare this result with the unperturbed case considered in [11]. In

our estimate the loss in the weight s and in the derivatives d is due to the lack of

Lorentzian invariance for the operator q2
t � Dþ 1 þ VðxÞ.

145Weighted Strichartz estimates for Klein-Gordon equations



We conclude this introduction comparing our theorem with other works

concerning Lp-Lq estimates for the Klein-Gordon equation with potential. In

[14] the one dimensional case is analyzed. On the contrary, in [12] the space

dimension is nb 4. Finally, Yajima in [15] considers the 3-dimensional case with

F ¼ 0 and he gives an estimate for kuðt; �ÞkLpðR3Þ with the stronger assumption

jVðxÞjaCð1 þ jxjÞ�5�d.

The plan of the paper is the following. In Section 2 we give some preliminary

results on oscillatory integrals. Section 3 and Section 4 are devoted to the proof

of Theorem 1. In particular, in Section 3 we reduce the inequality (1.8) to an

estimate on the unit hyperboloid. This estimate is established in Section 4 by

the aid of a stationary phase argument. In the appendix we prove Ly and L2

estimates for the generalized eigenfunction oðx; xÞ by modifying the argument

used in [4] for the wave equation with potential. The role of such estimates in our

proof is crucial. We prefer to separate them since, to our knowledge, they have

some interest also independently of this application.

1.1. Notation.

– By f k g we mean f aCg where C is a positive constant independent of

any variable of the functions f , g. Similarly, f F g stands for f ¼ Cg.

– The inner product of x; x A R3 is denoted by x � x.

– As usual, for any x A R3, the symbol hxi stands for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ jxj2

q
.

– Pair of conjugate exponents are written as q, q 0 where q > 1 and

1=q 0 þ 1=q ¼ 1.

– Assume w : R3 ! R be a positive function. The norm of the weighted

space L2ðwÞ is given by k f k2
L2ðwÞ :¼

Ð
R3 j f ðxÞj2wðxÞ dx. In the case

wðxÞ ¼ hxig, we put k f kL2ðwÞ ¼: k f k2; g. Finally, for any 1a paþy, Lp

stands for LpðR3Þ endowed with the norm k f kLp :¼ k f kp.
– The unit hyperboloid H 3

þ ¼ fðt; xÞ A Rþ � R3 j t2 � jxj2 ¼ 1g will be en-

dowed with the Riemannian metric induced by the Minkowski metric on

R4 with signature ð�1; 1; 1; 1Þ. The Lorentz group is denoted by SHð4Þ.
Finally, the projection from H 3

þ to R3 is defined by PðX0;X1;X2;X3Þ ¼
ðX1;X2;X3Þ and its inverse by P�.

2. Preliminary Results

A variant of Young’s inequality is the following.

Lemma 2.1. Let w : Rn ! Rþ, m; n A Rþ. Consider
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Tw½ f �ðxÞ ¼
ð
R n

kðx; yÞ f ðyÞwðyÞ dy;

where kðx; yÞ is a measurable function on Rn � Rn. Assume that, for any x; y A Rn

ð
R n

y

jkðx; yÞjwðyÞ dyaC1hxi
m;

ð
R n

x

jkðx; yÞjwðxÞ dxaC2hyi
n:

Then, for any f A L2ðh�inwÞ, one has

kh�i�m=2Tw f kL2ðwÞ aC
1=2
1 C

1=2
2 kh�in=2f kL2ðwÞ:

Proof. Applying Hölder inequality, in L1
yðwÞ, we findð

R n
x

hxi�mjTw½ f �ðxÞj2wðxÞ dx

a

ð
R n

x

hxi�m

ð
R n

y

jkðx; yÞjwðyÞ dy

ð
Rn

y

jkðx; yÞj j f ðyÞj2wðyÞ dywðxÞ dx

aC1

ð
R n

x

ð
R n

y

jkðx; yÞj j f ðyÞj2wðyÞwðxÞ dydx

aC1C2

ð
R n

y

hyinj f ðyÞj2wðyÞ dy:

This corresponds to our thesis. r

For completeness, we present the proof of a simple inequality needed in what

follows.

Lemma 2.2. Let x; x A Rn. For any j ¼ 1; . . . ; n one has

hxihxi� jxjxj b
hxi

2hxi
: ð2:1Þ

Proof. Taking h ¼ xj=hxi, we see that (2.1) is equivalent to 1 þ 2jxj2 �
2hxijxjhb 0 with x; h A R, jhja 1. We can assume 0a ha 1. We have

2jxjhxiha jxj2jhj2 þ hxi2
a 1 þ 2jxj2, that is our conclusion. r

Next, we recall the following lemma.

Lemma 2.3. Let gðxÞ ¼ xm with m A R. Let f A CyðRÞ satisfy
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jDl
x f ðxÞjk hxi�l f ðxÞ; x A R; lb 0:

Then we have

jDk
xgð f ðxÞÞjk hxi�kgð f ðxÞÞ; x A R; kb 0:

Next, we establish an estimate (2.3) below for an oscillatory integral

AðL; x; hÞ ¼
ð
R2

eGiLhhiðhzi�1Þ hhi

ðhxihhihzi� jxjhÞdhzi
dz; ð2:2Þ

where d > 0 and L A R.

Proposition 2.1. Let kb 0. Then AðL; x; hÞ defined by (2.2) satisfies

jqk
hAðL; x; hÞjk jLj�1hhi�k ð2:3Þ

for x A R3, h A R and L0 0.

Proof. We can assume L > 0. By using the polar coordinates z ¼ ro, we

can write the integral as

AðL; x; hÞ ¼ 2p

ðþy

0

eGiLhhiðhri�1Þ hhi

ðhxihhihri� jxjhÞd
r dr

hri
:

Changing the variables as s ¼ hxihhiðhri� 1Þ, we have

AðL; x; hÞ ¼ 2phxi�1IðL; x; hÞ; ð2:4Þ

where

IðL; x; hÞ ¼
ðþy

0

eGiLhxi�1sðsþ bðx; hÞÞ�d
ds

with bðx; hÞ ¼ hxihhi� jxjh. A simple integration by parts gives

IðL; x; hÞ ¼GihxiL�1 ðbðx; hÞÞ�d � d

ðþy

0

eGiLhxi�1sðsþ bðx; hÞÞ�1�d
ds

� �
: ð2:5Þ

Suppose we have found

jq l
hbðx; hÞjk hhi�lbðx; hÞ; lb 0: ð2:6Þ

Then for kb 0, sb 0, Lemma 2.3 implies

jqk
h ðbðx; hÞÞ

�djk hhi�kðbðx; hÞÞ�d; jqk
h ðsþ bðx; hÞÞ�1�djk hhi�kðsþ bðx; hÞÞ�1�d:
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Since ðhxihhi� jxjhÞ2 � ðhxih� jxjhhiÞ2 ¼ 1, we see that

bðx; hÞb 1; bðx; hÞb jhxih� jxjhhij: ð2:7Þ

Therefore (2.5) yields jqk
h IðL; x; hÞjk hxiL�1hhi�k. Hence (2.3) is proved.

It remains to check (2.6). We put cðx; hÞ ¼ hxih� jxjhhi. Then we see that

qhbðx; hÞ ¼ hhi�1cðx; hÞ; qhcðx; hÞ ¼ hhi�1bðx; hÞ:

By (2.7) we have jcðx; hÞjk bðx; hÞ. Therefore we get inductively

jq l
hbðx; hÞjk hhi�lbðx; hÞ; jq l

hcðx; hÞjk hhi�lbðx; hÞ; lb 0:

Thus we have proved (2.6). This completes the proof. r

We conclude this section by collecting some useful lemmas which enable us

to bound integrals of typeð
R3

hzi�rjx� zj�s1 jy� zj�s2 dz:

We start proving, for completeness, an estimate that can be found in [2].

Lemma 2.4. Let s; r A R such that 0 < s < n, rb 0, sþ r > n. There exists a

constant C ¼ Cr; s > 0 such thatð
Rn

hzi�rjx� zj�s dzaC; x A Rn:

Proof. In the case x ¼ 0, passing in polar coordinates we haveð
R n

hzi�rjzj�s dzk

ð1

0

rn�s�1 drþ
ðþy

1

rn�s�r�1 dr:

Due to the assumptions on s, r, last integrals converge.

Suppose jxja 1. This implies hx� zik hzi. Thus we obtainð
R n

hzi�rjx� zj�s dzk

ð
R n

hx� zi�rjx� zj�s dz ¼
ð
R n

hzi�rjzj�s dzaC:

Next, we take jxjb 1. We divide the integral region Rn into D1 :¼ fz : jzja
jxj=2g and D2 :¼ fz : jzj > jxj=2g. Since in the first region jx� zjb jzj, we haveð

D1

hzi�rjx� zj�s dza

ð
D1

hzi�rjzj�s dzaC:
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Finally, it holds thatð
D2

hzi�rjx� zj�s dz

aþ
ð

jzjbjxj=2
1=2ajx�zjajzj

hx� zi�r�s dzþ
ð
jzjbjxj=2
jx�zjbjzj

hzi�rjzj�s dzaC:

Hence, we get the conclusion. r

A variant of this lemma is the following.

Lemma 2.5. Let s; r A R such that 0 < s < n, r > n. There exists a constant

C ¼ Cr; s > 0 such thatð
Rn

hzi�rjx� zj�s dzaChxi�s; x A Rn:

Proof. The previous lemma gives the statement in the case jxja 1. As-

suming jxjb 1, we split the integral region Rn into D1 :¼ fz : jzja jxj=2g and

D2 :¼ fz : jzj > jxj=2g. For any z A D1, we have jx� zjb jxj=2, henceð
D1

hzi�rjx� zj�s dzk jxj�s

ð
Rn

hzi�r dzk hxi�s:

On the contrary, in D2 we get jxjk hzi; the previous lemma impliesð
D2

hzi�rjx� zj�s dzk hxi�s

ð
R n

hzi�rþsjx� zj�s dzaChxi�s:

Combining these estimates we conclude the proof. r

Next result is a multi-variable version of Lemma 2.4.

Lemma 2.6. Let s; r1; r2 > 0, 0 < s < n such that sþ r1 þ r2 > 2n. There

exists a constant C ¼ Cr1; r2; s > 0 such thatð
Rn

ð
Rn

hxi�r1hyi�r2 jx� yj�s dxdyaC:

Proof. Let e > 0 such that sþ r1 þ r2 ¼ 2nþ 2e. We can assume r1 < n and

r2 < n. The opposite case will be a consequence of this. In particular we have
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r1 a nþ e and r2 a nþ e. Then we put ai ¼ nþ e� ri b 0 for i ¼ 1; 2. By using

Lemma 2.5, we haveð
R n

ð
R n

hxi�r1hyi�r2 jx� yj�s dxdy

a

ðð
jxjbjyj

jx� yj�shxi�r1þa2hyi�r2�a2 dxdy

þ
ðð

jyjbjxj
jx� yj�shxi�r1�a1hyi�r2þa1 dxdy

k

ð
Rn

hxi�r1þa2�s dxþ
ð
Rn

hyi�r2þa1�s dxaC:

By the choice of ai, the last integrals are bounded and the proof is completed.

r

In [2], one can also find the following statement.

Lemma 2.7. Let s1; s2 A R such that 0 < s1; s2 < n, s1 þ s2 > n. There exists a

constant C > 0 such that for all x; y A Rn with x0 y one hasð
R n

jx� zj�s1 jy� zj�s2 dzaCjx� yjn�s1�s2 :

In the next lemma we see that the case s1 þ s2 < n can be treated if a term

hzi�r is involved.

Lemma 2.8. Let s1; s2; r > 0 such that s1 þ s2 < n, s1 þ s2 þ r > n. There

exists a constant C ¼ Cs1; s2; r > 0 such thatð
Rn

hzi�rjx� zj�s1 jy� zj�s2 dzaC; x; y A Rn:

Proof. The thesis follows by using Lemma 2.4, splitting Rn into

fz : jz� xjb jy� zjg and fz : jz� xja jy� zjg. r

Lemma 2.9. Let s1; s2; r A R such that s1; s2 > 0, s1 þ s2 < n, r > n. There

exists a constant C ¼ Cs1; s2; r > 0 such thatð
Rn

hzi�rjx� zj�s1 jy� zj�s2 dzaChxi�s1hyi�s2 ; x; y A Rn:
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Proof. Let us fix x; y A Rn. For simmetry we can assume jxja jyj.
Applying previous lemma, we find the thesis when jyja 1.

Let jyjb 1; in particular hyik jyj. First we use Lemma 2.5 and obtainð
jzjajyj=2

hzi�rjx� zj�s1 jy� zj�s2 dzk jyj�s2

ð
R n

hzi�rjx� zj�s1 dzk hxi�s1hyi�s2 :

In the region jzjb jyj=2, it holds jzjb jxj=2, thenð
jzjbjyj=2

hzi�rjx� zj�s1 jy� zj�s2 dz

k hxi�s1hyi�s2

ð
hzi�rþs2þs1 jx� zj�s1 jy� zj�s2 dz:

Lemma 2.8 implies that last integral is bounded. This concludes the proof.

r

3. Proof of Theorem 1 (I): Duality Argument

In this section we reduce the proof of Theorem 1 to an inequality on the unit

hyperboloid. This requires a duality argument. More precisely, our proof is based

on the following abstract lemma (see for example [8]).

Lemma 3.1. Let H be an Hilbert space. Let X be a Banach space with

dual X �. Let A : X ! H be a linear map and let A� : H ! X � be its adjoint,

defined by

hA�v; f iXX � ¼ hv;Af iH; Ef A X ; Ev A H:

Then the following three conditions are equivalent.

i) There exists Cb 0 such that for all f A X one has kAf kH aCk f kX .
ii) There exists Cb 0 such that for all v A H one has kA�vkX � aCkvkH.

iii) There exists Cb 0 such that for all f A X one has kA�Af kX � aC2k f kX .

The constant C is the same in all three sentences.

By virtue of the Duhamel principle, we can write the solution of (1.1) as

u ¼ u0 þ u, where u0 solves

ðq2
t � Dx þ VðxÞ þ 1Þu0ðt; xÞ ¼ 0; x A R3; t > 0;

u0ð0; xÞ ¼ f ðxÞ; ðu0Þtð0; xÞ ¼ gðxÞ;

(
hence u is a solution of the non-homogeneous problem with zero initial data.
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We start estimating kð1 þHÞ�d=2
u0kLqL2

�s
þ suptb0ku0ðt; �ÞkHð1�dÞ=2 . For any

b A R, we have the conservation of the energy:

d

dt

ð
jhxibFqtu0ðt; xÞj2 dxþ

ð
jhxibþ1Fu0ðt; xÞj2 dx

� �
¼ 0:

Hence, for any d > 0, we get

ku0ðt; �ÞkHð1�dÞ=2 k k f kHð1�dÞ=2 þ kgkHð�1�dÞ=2 : ð3:1Þ

On the other hand, we have

u0ðt; xÞ ¼
sinðt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þH

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þH
p gðxÞ þ cosðt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þH

p
Þ f ðxÞ:

In order to prove

kð1 þHÞ�d=2
u0kLqL2

�s
k k f kHð1�dÞ=2 þ kgkHð�1�dÞ=2 ; ð3:2Þ

it su‰ces to find a constant C ¼ Cðq; s; dÞ > 0 such that

keGirhzi
ffiffiffiffiffiffiffiffi
1þH

p
FðrzÞkLqL2

�s
aCðq; s; dÞkFkHð1þdÞ=2 ð3:3Þ

for suitable q, s, d. Let 0a k < 3. If q > 8=ð3 � kÞ, then (3.3) will follow fromð
R3

jeGirhzi
ffiffiffiffiffiffiffiffi
1þH

p
FðrzÞj2 dz

hzi1þs
aCðs; dÞr�3þkkFk2

Hð1þdÞ=2 ; ð3:4Þ

with Cðs; dÞb 0, after integration in r on the interval ð1;þyÞ.
Let us explain the reason why (3.4) can be deduced from the inequality

(3.6) below. For r; s; d > 0, by means of the generalized Fourier transform, which

is a unitary operator from L2 to itself, we can define an operator Ur;G from

L2ðh�i1þsÞ to L2 through the following formula:

FUr;G½h�ðxÞ ¼ r3=2hxi�ð1þdÞ=2

ð
R3

z

e�irz�xð1 þ oðrz; xÞÞeHirhzihxihðzÞ dz:

On the other hand, noting ðL2ðh�i1þsÞÞ� ¼ L2ðh�i�1�sÞ, we can introduce the

adjoint operator ðUr;GÞ� of Ur;G by

ðUr;GÞ�½g�ðzÞ ¼ r3=2

ð
R3

x

eirz�xð1 þ oðrz; xÞÞeGirhzihxihxi�ð1þdÞ=2F½g�ðxÞ dx:

In addition, we have
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ðUr;GÞ�Ur;G½h�ðzÞ

¼ r3

ð
R3

x

ð
R3

y

eir½ðz�yÞ�xGðhzi�hyiÞhxi�ð1 þ oðrz; xÞÞð1 þ oðry; xÞÞhxi�1�dhðyÞ dydx:

Note that the inequality (3.4) is a consequence of

kðUr;GÞ�½g�k2
2;�1�s aCðs; dÞrkkgk2

2; ð3:5Þ

by taking g ¼ ð1 þHÞð1þdÞ=4F. In view of Lemma 3.1, we see that this estimate is

equivalent to

kðUr;GÞ�Ur;G½h�k2
2;�1�s aCðs; dÞrkkhk2

2;1þs: ð3:6Þ

We leave the proof of (3.6) to Section 4.

It remains to estimate u which is the solution of ðq2
t � Dx þ VðxÞ þ 1Þuðt; xÞ ¼

F ðt; xÞ with zero initial data. In what follows we denote by wtðsÞ the charac-

teristic function of the interval ½0; t�, and wðt; xÞ the characteristic function of

ft2 � jxj2 b 1g. Recalling that supp F H ft2 � jxj2 b 1g, we can write u explicitly:

uðt; xÞ ¼ 1

2i

X
G

G

ð t
0

eGiðt�tÞ
ffiffiffiffiffiffiffiffi
1þH

p
ð1 þHÞ�1=2½Fðt; �Þ�ðxÞ dt

¼ 1

2i

X
G

G

ð
R

eGiðt�tÞ
ffiffiffiffiffiffiffiffi
1þH

p
ð1 þHÞ�1=2½wðt; �ÞwtðtÞFðt; �Þ�ðxÞ dt: ð3:7Þ

As we have seen before, if (3.6) holds, then we get (3.3), and hence

kweGirhzi
ffiffiffiffiffiffiffiffi
1þH

p
ð1 þHÞ�ð1þdÞ=4½F�ðrzÞkLqL2

�s
aCðq; s; dÞkFk2 ð3:8Þ

for any F A L2. Let us introduce an operator from Lq 0
L2
s to L2:

AG½ f �ðxÞ ¼
ð
Rt

eHit
ffiffiffiffiffiffiffiffi
1þH

p
ð1 þHÞ�ð1þdÞ=4½ðw f Þðt; �Þ�ðxÞ dt

for any d > 0 and f ¼ f ðt; xÞ A Lq 0
L2
s . Noting ðLqL2

�sÞ
� ¼ Lq 0

L2
s , we can define

the adjoint operator A�
G of AG, which maps L2 into LqL2

�s as follows:

A�
G½v�ðt; xÞ ¼ wðt; xÞeGit

ffiffiffiffiffiffiffiffi
1þH

p
ð1 þHÞ�ð1þdÞ=4½v�ðxÞ ð3:9Þ

for v A L2 and f A Lq 0
L2
s . Furthermore, A�

GAG maps Lq 0
L2
s into LqL2

�s, and we

have

A�
GAG½ f �ðt; xÞ ¼ wðt; xÞ

ð
Rt

eGiðt�tÞ
ffiffiffiffiffiffiffiffi
1þH

p
ð1 þHÞ�ð1þdÞ=2½ðw f Þðt; �Þ�ðxÞ dt:

154 Hideo Kubo and Sandra Lucente



Now combining (3.8)–(3.9), we get kA�
G½v�kLqL2

�s
k kvkL2 . Hence this estimate and

Lemma 3.1 imply that

kAG½ f �kL2 k k f kLq 0L2
s
; ð3:10Þ

kA�
GAG½ f �kLqL2

�s
k k f kLq 0L2

s
: ð3:11Þ

Turning our attention back to (3.7), we can write u by using AG and A�
G in two

ways:

ð1 þHÞð1�dÞ=4
uðt; xÞ ¼ 1

2i

X
G

GeGit
ffiffiffiffiffiffiffiffi
1þH

p
AG½wtF �ðxÞ; ð3:12Þ

wðt; xÞð1 þHÞ�d=2
uðt; xÞ ¼ 1

2i

X
G

GA�
GAG½wtF �ðt; xÞ: ð3:13Þ

Therefore, thanks to (3.10) and (3.12), we obtain, for t > 0,

kuðt; �ÞkHð1�dÞ=2 ¼ kð1 þHÞð1�dÞ=4
uðt; �Þk2

k
X
G

keGit
ffiffiffiffiffiffiffiffi
1þH

p
AG½wtF �k2 k kAG½wtF �k2

k kwtFkLq 0L2
s
k kFkLq 0L2

s
: ð3:14Þ

On the other hand, thanks to (3.11) and (3.13), we obtain, for t > 0,

kð1 þHÞ�d=2
ukLqL2

�s
¼ kwð1 þHÞ�d=2

ukLqL2
�s

k
X
G

kA�
GAG½wtF �kLqL2

�s
k kwtFkLq 0L2

s
k kFkLq 0L2

s
: ð3:15Þ

Summarizing (3.14)–(3.15) and (3.1)–(3.2), we complete the proof of Theorem 1,

once we have established the estimate (3.6). The proof of (3.6) will be the object

of the next section.

4. Proof of Theorem 1 (II): A Weighted Estimate on the Unit

Hyperboloid

In this section we shall prove (3.6). For l > 1, e > 0 and d > 1 we set

W l
G½h�ðxÞ ¼ l3

ð
R3

x

ð
R3

y

eil½ðx�yÞ�xGðhxi�hyiÞhxi�

� ð1 þ oðlx; xÞÞð1 þ oðly; xÞÞhðyÞ dy

hyi1þe

dx

hxi1þd
:

155Weighted Strichartz estimates for Klein-Gordon equations



Then (3.6) follows from

kW l
G½h�k

2
2;�1�2e aClkkhk2

2;�1 ð4:1Þ

with C independent of l, by taking 2ea s. We shall prove that (4.1) is valid

for any l > 1, e > 0 and d > 1. To this aim we define W l
i;G such that W l

GðxÞ ¼P4
i¼1 W

l
i;G. More precisely W l

2;G contains the term oðlx; xÞ, W l
3;G contains

oðly; xÞ, and W l
4;G contains the product oðlx; xÞoðly; xÞ.

4.1. The estimate for first term of W l. We start discussing the estimate for

W l
1;G½h�ðxÞ ¼ l3

ð
R3

x

ð
R3

y

eil½ðx�yÞ�xGðhxi�hyiÞhxi�hðyÞ dy

hyi1þe

dx

hxi1þd
;

having kernel

K l
1;Gðx; yÞ ¼ l3

ð
R3

x

eil½ðx�yÞ�xGðhxi�hyiÞhxi� dx

hxi1þd
:

Following [11], we consider the distance on the hyperboloid

dðx; yÞ :¼ logðhxihyi� x � yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhxihyi� x � yÞ2 � 1

q
Þ:

We take C0 > 0 and split R3
y in the regions dðx; yÞaC0 and the remainder. We

put

W l
0 ½h�ðxÞ ¼

ð
dðx;yÞaC0

K l
1;Gðx; yÞhðyÞ

dy

hyi1þe
: ð4:2Þ

With some modification with respect to the local argument in [11], one finds that

for suitable large C0 > 0 it holds that

kW l
0 hk2;�1 aCkhk2;�1 ð4:3Þ

with C independent of l. More precisely, we put X0 ¼ ð1; 0; 0; 0Þ and choose

fXjgHH 3
þ such that Bj :¼ fX A H 3

þ j dðX ;XjÞaC0g satisfy H 3
þ ¼ 6Bj and

have uniformly finite overlap. Besides we put B�
j ¼ fX A H 3

þ j dðX ;XjÞa 2C0g.

Given a function f ðXÞ on H 3
þ, we set

~WW l
0 ½ f �ðX Þ ¼ W l

0 ½ f �P��ðPXÞ:

Since supp ~WW l
0 f HB�

j when supp f HBj, the inequality (4.3) reduces to

k ~WW l
0 f kL2ðB �

j
Þ aCk f kL2ðBjÞ; supp f HBj ð4:4Þ
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with C independent of j and l. The next step is to make a rotation on the unit

hyperboloid. Suppose we have found that for any T A SHð4Þ, it holds

k ~WW l
0 ½ f � T�1� � TkL2ðB�

0
Þ aCk f kL2ðB0Þ; supp f HB0 ð4:5Þ

with a constant C independent of l and T . Then we see that (4.5) yields (4.4).

Let us denote by wx the characteristic function of fy A R3 j dðx; yÞaC0g. Thanks

to the invariance of the phase function under the hyperbolic rotation, explicitly

we have

~WW l
0 ½ f � T�1�ðTX Þ ¼ l3

ð
R3

y

ð
R3

x

eHil½ðx�yÞ�x�ðhxi�hyiÞhxi� dx

h ~TTxidhxi

wxðyÞ f ðP�yÞ dy

h ~TTyiehyi
:

Here and in the sequel of this section, we set x ¼ PX and ~TT ¼ PTP�. In

the unperturbed case V 1 0, one can take d ¼ e ¼ 0, hence T disappears. On

the contrary, we lose the Lorentz invariance, so we will be careful about the

dependence on T .

The euclidean version of (4.5) is obtained by taking b A Cy
0 ðR3Þ such that

bðxÞ1 1 if ðhxi; xÞ A B�
0 and introducing the operator

W l
T ½h�ðxÞ ¼ l3bðxÞ

ð
R3

y

ð
R3

x

eHil½ðx�yÞ�x�ðhxi�hyiÞhxi� dx

h ~TTxidhxi
bðyÞhðyÞ dy:

In particular we have

W l
T ½h ~TT �i�eh�i�1wx f �P��ðxÞ ¼ bðxÞ ~WW l

0 ½bf � T�1�ðTX Þ:

Hence, the inequality (4.5) will be obtained by

kW l
Thk2 aCkhk2 ð4:6Þ

with C independent of l and T . Proceeding as in [11], taking C0 in (4.2) ap-

propriately large, we deduce that the operator

U l
ThðxÞ :¼ l3=2bðxÞ

ð
R3

x

eHilðx�x�hxihxiÞĥhðxÞ dx

h ~TTxid=2hxi1=2

is L2 bounded uniformly in l and T . Let ðU l
TÞ

� be the adjoint of U l
T . One has

W l
T ¼ U l

TðU l
TÞ

�. Invoking again Lemma 3.1, we see that (4.6) is satisfied. In turn,

this gives (4.5), (4.4) and finally (4.3).

Main point is the estimate for

W l
y½h�ðxÞ ¼

ð
dðx;yÞbC0

K l
1;Gðx; yÞhðyÞ

dy

hyi1þe
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in L2ðhxi�1�2eÞ. This will be done by means of Ly estimate of

IGðl; xÞ ¼
ð
dðx;yÞbC0

jK l
1;Gðx; yÞj

dy

hyi1þe
:

Suppose we have found C1 > 0, independent of l, such that

IGðl; xÞaC1hxi
e; ð4:7Þ

then the modified Young inequality, given in Lemma 2.1, implies

kW l
yhk2;�1�2e ¼ kh�i�e=2W l

yhk2;�1�e aCkh�i e=2hk2;�1�e:

Combining this with (4.3), we obtain

kW l
1;Ghk2;�1�2e aCkhk2;�1 ð4:8Þ

with C independent of l.

We turn to the proof of (4.7). For fixed x A R3, there exists Tx A SHð4Þ such

that TxX0 ¼ ðhxi; xÞ with X0 ¼ ð1; 0; 0; 0Þ. One can construct such Tx as follows:

let Ax be a unitary matrix such that Axðjxj; 0; 0Þ ¼ x; we put

T1 ¼ 1 0

0 Ax

� �
; T2 ¼

hxi �jxj
jxj �hxi

0

0 I2

0B@
1CA; Tx ¼ T1 � T2;

with I2 the identical 2 � 2 matrix. In particular, for any z A R3, we have

hfTxTxðzÞi ¼ hxihzi� jxjz1. Then

IGðl; xÞ ¼ l3

ð
hyiþjyjbeC0

ð
R3

x

eGilðð1�hyiÞhxiþy�xÞ dx

ðhxihxi� jxjx1Þdhxi

�����
�����

� dy

ðhxihyi� jxjy1Þehyi
:

By using Lemma 2.2 with x ¼ y, we get

IGðl; xÞk l3hxi e

ð
jyjbC 0

ð
R3

x

eGilðð1�hyiÞhxiþy�xÞ dx

hxiðhxihxi� jxjx1Þd

�����
����� dy

hyi1þe

for suitable large C 0 > 1. It remains to findð
R3

x

eGilðð1�hyiÞhxiþy�xÞ dx

hxiðhxihxi� jxjx1Þd

�����
�����aCl�3jyj�2þk ð4:9Þ
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for any 0 < k < e. The expressions (4.7) and (4.9) are invariant under orthogonal

transformations with respect to y. Taking Oy ¼ ðjyj; 0; 0Þ we see that it su‰ces to

show ð
R3

x

eGilðð1�hyiÞhxiþjyjx1Þ dx

hxiðhxihxi� jxjx1Þd

�����
�����aCl�3jyj�2þk:

After change of variables x ¼ ðh; hhiz1; hhiz2Þ, we write previous integral in the

form

Jðl; x; yÞ ¼
ðþy

�y

ð
R2

eGilðð1�hyiÞhhihziþjyjhÞ hhi

hziðhxihhihzi� jxjhÞd
dzdh:

Having in mind (2.2), we have

Jðl; x; yÞ ¼ �
ðþy

�y
eHiljð y;hÞAð�lðhyi� 1Þ; x;�hÞ dh:

The phase is given by

jðy; hÞ ¼ ðhyi� 1Þhhiþ jyjh

and it satisfies q2
hjðy; hÞ ¼ ðhyi� 1Þhhi�3 and

qhjðy; hÞb
1

2
þ hyi

2hhi2
ð4:10Þ

for jyjbC 0 with large C 0 > 1. Indeed, by rewriting qhj as

qhjðy; hÞ ¼ 1 þ jyj � hyiþ ðhyi� 1Þ h

hhi
þ 1

� �
and noting ðh=hhiÞ þ 1b hhi�2=2, we find (4.10).

Now, integrating by parts, N times, we find

jJðl; x; yÞjk l�N

ðþy

�y
jðL�ÞNAð�lðhyi� 1Þ; x;�hÞj dh

k l�N

ðþy

�y

XN
k¼0

jqk
h ððqhjðy; hÞÞ

�NÞj jqN�k
h Að�lðhyi� 1Þ; x;�hÞj dh;

where

L� ¼ i
q

qh

1

qhjðy; hÞ
:
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From Proposition 3.1, it follows that

jqN�k
h Að�lðhyi� 1Þ; x;�hÞjk l�1ðhyi� 1Þ�1hhi�Nþk; 0a kaN:

Moreover, for any lb 2 we have jq l
hjðy; hÞjk hhi�lqhjðy; hÞ. Hence, Lemma 2.3

yields

jqk
h ððqhjðy; hÞÞ

�NÞjk hhi�kðqhjðy; hÞÞ�N ; kb 0:

Therefore, we arrive at

jJðl; x; yÞjk l�N�1ðhyi� 1Þ�1

ðþy

�y
hhi�Nðqhjðy; hÞÞ�N dh

k l�N�1ðhyi� 1Þ�1

ðþy

�y
hhi�Nðqhjðy; hÞÞ�ð1�kÞ dh;

since N > 1 � k for any k > 0 and qhjðy; hÞb 1=2 by (4.10). Thus we conclude

jJðl; x; yÞjk l�N�1jyj�2þk

ðþy

�y
hhi�Nþ2�2k dhk l�N�1jyj�2þk;

provided that Nb 3. This means that (4.9) holds. We underline that in this

estimate db 0. This means that for the free term we do not lose derivatives and

we can take the exponent q > 8=3.

4.2. The estimates for the second and third terms of W l. Before dealing

with

W l
2;G½h�ðxÞ ¼ l3

ð
R3

x

ð
R3

y

eil½ðx�yÞ�xGðhxi�hyiÞhxi�oðlx; xÞhðyÞ dy

hyi1þe

dx

hxi1þd
;

we claim that if

kW l
2;Ghk2;�1�e aClkkhk2;�1�e; ð4:11Þ

then

kW l
3;Ghk2;�1�e aClkkhk2;�1�e; ð4:12Þ

where

W l
3;G½h�ðxÞ ¼ l3

ð
R3

x

ð
R3

y

eil½ðx�yÞ�xGðhxi�hyiÞhxi�oðly; xÞhðyÞ dy

hyi1þe

dx

hxi1þd
:

We start observing that

ðW l
2;Gg j hÞL2ðh�i�1�eÞ ¼ ðg jW l

3;HhÞL2ðh�i�1�eÞ:
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This means that we can apply Lemma 3.1 with H ¼ L2ðh�i�1�eÞ ¼ X � and

A ¼W l
3;H. With respect to L2ðh�i�1�eÞ product, the duality gives X ¼ L2ðh�i�1�eÞ

and A� ¼ W l
2;G. From (4.11) we have kA�hkX � k lkkhkH. Hence we conclude

that kAhkH k lkkhkX , i.e., (4.12) holds.

The proof of (4.11) is the core of this paper, since the estimates for gen-

eralized eigenfunctions come into play. We can write

W l
2;G½h�ðxÞ ¼

ð
R3

y

K l
2;Gðx; yÞhðyÞ

dy

hyi1þe
;

where

K l
2;Gðx; yÞ ¼ l3

ð
R3

x

eil½ðx�yÞ�xGðhxi�hyiÞhxi�oðlx; xÞ dx

hxi1þd
: ð4:13Þ

We reduce our matter to establish that

jK l
2;Gðx; yÞja lkjxj�1jyj�1 for x0 0; y0 0: ð4:14Þ

In fact, assuming this inequality and combining Hölder inequality with Lemma

2.4, we gain

jW l
2;GhðxÞjk lkjxj�1khk2;�1�e:

Using once more Lemma 2.4, we obtain (4.11).

In order to prove (4.14) we make use of Theorem A.1. Let us recall that the

free resolvent operator is given by

R0ðjxj2 þ i0Þ½ f �ðxÞ ¼ lim
e!0þ

R0ðjxj2 þ ieÞ½ f �ðxÞ ¼
ð
R3

e ijxj jx�zj

4pjx� zj f ðzÞ dz: ð4:15Þ

Then (1.4) can be rewritten as

vðx; xÞ ¼ �R0ðjxj2 þ i0Þ½Vvð�; xÞ�ðxÞ þ R0ðjxj2 þ i0Þ½Vx�ðxÞ; ð4:16Þ

where vðx; xÞ ¼ e�ix�xoðx; xÞ and VxðxÞ ¼ �e�ix�xVðxÞ. Now, passing to the polar

coordinates: x ¼ rs, rb 0, s A S2, we see from (4.13) that

jK l
2;Gðx; yÞjaAðx; yÞ;

where

Aðx; yÞ ¼ l3

ðþy

0

ð
S 2

eilry�svðlx; rsÞ ds

���� ���� r2 dr

hri1þd
: ð4:17Þ

Substituting (4.16) into (4.17) we get
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Aðx; yÞa I1ðx; yÞ þ I2ðx; yÞ; ð4:18Þ

where

I1ðx; yÞ ¼ l3

ðþy

0

ð
S 2

eilry�sR0ðr2 þ i0Þ½Vrs�ðlxÞ ds

���� ���� r2 dr

hri1þd
;

I2ðx; yÞ ¼ l3

ðþy

0

ð
S 2

eilry�sR0ðr2 þ i0Þ½Vvð�; rsÞ�ðlxÞ ds

���� ���� r2 dr

hri1þd
:

First we evaluate I1ðx; yÞ. Recalling that
Ð
S 2 eix�s dsF jxj�1 sinjxj, the inner

integral is explicitly written as

�
ð
S 2

e ilry�s
ð
R3

z

eirjlx�zj

4pjlx� zjVðzÞe�irs�z dzdsF
ð
R3

z

VðzÞeirjlx�zj sinðrjly� zjÞ
jlx� zj jly� zjr dz:

Therefore, by our assumption (1.7) we have

I1ðx; yÞk l3

ðþy

0

ð
R3

z

dz

jlx� zj jly� zjhzi3þd 0
r dr

hri1þd
:

In this estimate the loss of derivatives and the exponent k appear: for the

convergence in r we require d > 1 and we pay a factor l. In fact, by using

Lemma 2.9, we get

jxj jyjI1ðx; yÞk l3jxj jyjhlxi�1hlyi�1
k l: ð4:19Þ

In order to estimate I2ðx; yÞ, we employ the following propositions.

Proposition 4.1. For any x A R3, we have

jxj
ð
S 2

e�ix�sgðsÞ ds

���� ����k sup
s AS 2

jgðsÞj þ
X
j<k

k¼1;2;3

sup
s AS 2

jWj;kgðsÞj:

Here Wj;k :¼ sjqk � skqj are the tangential vector fields to the sphere. Besides

g : S2 ! R is a C1 function such that the right side is finite.

Proof. We may assume x ¼ ð0; 0; jxjÞ without loss of generality. In the

polar coordinates

s1 ¼ sin y cos f; 0a ya p

s2 ¼ sin y sin f; 0a fa 2p

s3 ¼ cos y;
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the integral in the left hand side is equal toð2p

0

ð p
0

e�ijxj cos ygðsðy; fÞÞ sin y dydf ¼
ð2p

0

ð p
0

d

dy

e�ijxj cos y

ijxj

� �
gðsÞ dydf:

The desired estimate follows from the relation qyg ¼ �cos fW1;3g� sin fW2;3g

after one integration by parts. r

Proposition 4.2. Let x; x A R3. Let jVðxÞjaC0ð1 þ jxjÞ�3�d 0
with some C0,

d 0 > 0. Then the following estimate holds:

jR0ðjxj2 þ i0Þ½Vf �ðxÞjk hxi�1k f k2;�a ð4:20Þ

for a < 3 þ 2d 0 and any function f such that the right side is finite.

Proof. By (1.7) we have

jR0ðr2 þ i0Þ½Vf �ðxÞjk
ð
R3

y

j f ðyÞj
jx� yjhyi3þd 0

dy

k k f k2;�a

ð
R3

y

1

jx� yj2hyi6�aþ2d 0
dy

 !1=2

Due to Lemma 2.5, this implies (4.20). r

Recalling (4.15) and the fact that W fields act on s, the application of

Proposition 4.1 gives

jxj jyjI2ðx; yÞk
X
jaja1

l2jxj
ðþy

0

sup
s AS 2

jR0ðr2 þ i0Þ½VWaðvð�; rsÞÞ�ðlxÞj r dr

hri1þd
: ð4:21Þ

In order to establish jxj jyjI2ðx; yÞk l, it su‰ces to find

jR0ðr2 þ i0Þ½VWaðvð�; rsÞÞ�ðlxÞjk hlxi�1hri�1þjaj ð4:22Þ

for x A R3, rb 0, jaj ¼ 0; 1.

The case a ¼ 0 is a consequence of jvðlx; rsÞj ¼ joðlx; rsÞj and (4.20). More

precisely, for ra 1 we take a ¼ 3 þ d 0 and use (A.2). For rb 1, we fix a ¼ 1 þ d 0

and employ (A.3).

Similarly, in order to establish (4.22) in the case jaj ¼ 1, we apply (A.5) when

ra 1 and (A.6) if rb 1.

Since jxj jyjI2ðx; yÞk l and (4.18) and (4.19) hold, this concludes the proof

of (4.14) with k ¼ 1.
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4.3. The estimate for last term of W l. Here we prove

kW l
4;Ghk2;�1�e aClkhk2;�1�e; ð4:23Þ

where

W l
4;G½h�ðxÞ ¼ l3

ð
R3

x

ð
R3

y

eil½ðx�yÞ�xGðhxi�hyiÞhxi�oðlx; xÞoðly; xÞhðyÞ dy

hyi1þe

dx

hxi1þd

¼:

ð
R3

y

K l
4;Gðx; yÞhðyÞ

dy

hyi1þe
:

From (4.16) we get

jK l
4;Gðx; yÞja I3ðx; yÞ þ I4ðx; yÞ;

where

I3ðx; yÞ ¼ l3

ðþy

0

ð
S 2

vðlx; rsÞR0ðr2 þ i0Þ½Vrs�ðlyÞ ds

���� ���� r2 dr

hri1þd
;

I4ðx; yÞ ¼ l3

ðþy

0

ð
S 2

vðlx; rsÞR0ðr2 þ i0Þ½Vvð�; rsÞ�ðlyÞ ds

���� ���� r2 dr

hri1þd
:

Explicitly, from (4.15) and (4.17), we have

jxj jyjI3ðx; yÞa jxj jyj
ð
R3

z

VðzÞ
4pjly� zjA x;

z

l

� �
dz

k l2jyj
ð
R3

z

dz

jly� zj jzjhzi3þd 0
kCl;

as it follows from jxj jyjAðx; yÞk l and Lemma 2.9. In order to evaluate

I4ðx; yÞ, we use (A.4) and get jvðlx; rsÞjk hlxi�1. Therefore using again (4.22)

with a ¼ 0, we find

jxj jyjI4ðx; yÞk l

ðþy

0

r2 dr

hri2þd
k l:

Hence (4.23) holds. This completes the proof.

End of Proof of (4.1). Gathering (4.8), (4.11), (4.12) with k ¼ 1, and

(4.23), we see that (4.1) holds good for all l > 1, e > 0 and d > 1.
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Appendix

We prove the following Ly and L2 estimates for oðx; xÞ used in the previous

subsections.

Theorem A.1. Let VðxÞ be a Hölder continuos non-negative function such

that

VðxÞaC0ð1 þ jxjÞ�2�d 0
for x A R3 ðA:1Þ

with some C0, d 0 > 0. Let oðx; xÞ be the solution of (1.4). Then, there exists a

constant C > 0, independent of x, such that for any 0 < e < d 0, it holds

koðx; xÞkLy
x
aC for x A R3; ðA:2Þ

khxið�1�eÞ=2oðx; xÞkL2
x
aCjxj�1

for jxjb 1: ðA:3Þ

Suppose in addition that

VðxÞaC0ð1 þ jxjÞ�3�d 0
for x A R3:

Denote x ¼ rs with rb 0 and s A S2. Then, there exists a constant C > 0, in-

dependent of x, such that for any 0 < e < d 0, x; x A R3, it holds

joðx; xÞjaChxi�1 ðA:4Þ

kWj;kðe�irx�soðx; rsÞÞkLy
x
aCr for 1a j; ka 3; ðA:5Þ

kh�ið�1�eÞ=2Wj;kðe�irx�soðx; rsÞÞkL2
x
aC for rb 1; 1a j; ka 3; ðA:6Þ

where Wj;k ¼ sjqk � skqj .

A slightly di¤erent version of the Ly bounds (A.2), (A.4), (A.5) can be found

in [5]. In that paper, the author obtains joðx; xÞjaChxi�1 requiring a stronger

decay for the potential VðxÞ. We prefer to minimize the assumption on the

potential since these estimates are enough to our aim. Besides, we underline that

the assumption that V is a non-negative function enables us to avoid any

hypothesis about the presence of resonances for the operator H ¼ �Dþ VðxÞ.
To show the theorem, we study an integral equation related to (1.4):

cðxÞ ¼ �R0ðjxj2 þ i0Þ½Vc�ðxÞ þ R0ðjxj2 þ i0Þ½ f �ðxÞ; ðA:7Þ

where the free resolvent operator has been defined in (4.15). In Theorem A.2

below we shall find the unique solvability of (4.15) when f A L2ðh�i1þeÞ. In that
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case we put cðxÞ ¼ cjxj½ f �ðxÞ. Moreover we find Ly and weighted L2 estimates

for this function. At the end of the appendix, we use these estimates to prove

Theorem A.1.

Theorem A.2. Let VðxÞ be a Hölder continuous non-negative function sat-

isfying (A.1). Then for all x 2 R3 and f A L2ðh�i1þeÞ with 0 < ea d 0, there is

a unique solution of (A.7) denoted by cðxÞ ¼ cjxj½ f �ðxÞ, cjxj½ f �ðxÞ A L2ðh�i�3�eÞ.
Moreover there exists a constant C > 0, independent of x and f , such that

kcjxj½ f �ky aCk f k2;1þe for x A R3; ðA:8Þ

kcjxj½ f �k2;�1�e aCjxj�1k f k2;1þe for jxjb 1: ðA:9Þ

A more general version of (A.8) is given in Proposition 6.3 of [4] under

stronger decay assumption for the potential V together with its derivatives.

In particular, in that paper, the authors obtain Ly estimates for

qa
x ðe�ijxj jxj�ix�xoðx; xÞÞ.

In order to prove Theorem A.2, we prepare some preliminary results.

Lemma A.1. Assume AðxÞ and BðxÞ are continuous functions satisfying

0 < AðxÞaChxi�ð3þd 0Þ=2; jBðxÞjaChxi�ð1þd 0Þ=2 x A R3 ðA:10Þ

for some C, d 0 > 0. Suppose that for V :¼ AB the following condition holds:

if UðxÞ A L2ðh�i�1�d0Þ and ð�Dþ VÞU ¼ 0; then U 1 0 ðA:11Þ

for any 0 < d0 < 2d 0. Then for x A R3 and v0 A L2, there is a unique solution v A L2

of the following equation:

vðxÞ ¼ �
ð
R3

vðyÞAðxÞ eijxj jx�yj

4pjx� yjBðyÞ dyþ v0ðxÞ: ðA:12Þ

Moreover there exists a constant C > 0, independent of x and v0, such that

kvk2 aCkv0k2: ðA:13Þ

Proof. We pose the problem in an abstract setting. Let z A C . We define

WðzÞ½g�ðxÞ ¼
ð
R3

y

Kðx; y; zÞgðyÞ dy;

Kðx; y; zÞ ¼ �AðxÞ eizjx�yj

4pjx� yjBðyÞ:
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The relation (A.12) is rewritten as

vðxÞ ¼ WðjxjÞ½v�ðxÞ þ v0ðxÞ:

By using the assumption (A.10) and Lemma 2.5, we see that the Hilbert-Schmidt

norm of WðzÞ

kWðzÞkHS ¼
ðð

jKðx; y; zÞj2 dxdy

� �1=2

is finite and uniformly bounded in z, hence WðzÞ is a compact operator.

It su‰ces to prove that I �WðkÞ is invertible and kðI �WðkÞÞ�1k is uni-

formly bounded for kb 0. Here kAk denotes the LðL2;L2Þ norm for the

operator.

Step 1. Let us prove the existence of ðI �WðkÞÞ�1. It is clear that the

map z 7! WðzÞ is analytic for =z > 0 and continuous for =zb 0; moreover

kWðzÞk ! 0 as =z ! þy. Hence ðI �WðzÞÞ�1 is represented by the Neumann

series for =z > 0 large. We see that it is well defined and analytic for such z.

Thus, it follows from analytic Fredholm theory (see e.g. [13]) that the family

of operators ðI �WðkÞÞ�1 exists and depends continuously on k A R outside a

closed set E ¼ fk A R : f0g0KerðI �WðkÞÞHL2g whose measure is zero. For

our aim it su‰ces to show that EH ð�y; 0Þ.
Suppose that there exist a positive number k and a solution v A L2 of the

homogeneous equation vðxÞ ¼ WðkÞ½v�ðxÞ. Setting uðxÞ ¼ vðxÞðAðxÞÞ�1, we have

uðxÞ ¼ �
ð
R3

y

vðyÞ eikjx�yj

4pjx� yjBðyÞ dy ¼ �
ð
R3

y

uðyÞ eikjx�yj

4pjx� yj ðABÞðyÞ dy: ðA:14Þ

Combining Schwartz inequality and Lemma 2.4, we find u A Ly. An applica-

tion of Lemma 4.4 in [10] shows that u1 0, hence v1 0. Making use of the

Fredholm alternative, we conclude that any strictly positive number does not

belong to E.

It remains to prove that 0 B E. Here the resonance assumption (A.11) comes

into play. As before, from v A L2 we get u A L2ðh�i�3�d 0 Þ. Moreover from (A.14),

with k ¼ 0 we deduce ð�Dþ ABÞu ¼ 0. Suppose we have found a particular

positive d0 < 2d 0 such that

u A L2ðh�i�1�d0Þ; ðA:15Þ

then (A.11) gives u1 0. As before, we find 0 B E.

Now, we show (A.15) with d0 ¼ d 0. For any h A Z, we have
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kuk2
2;�3þðhþ1Þd 0 ¼

ð
R3

x

hxi�3þðhþ1Þd 0
ð
R3

y

ðABÞðyÞjuðyÞj
4pjx� yj dy

 !2

dx

k kuk2
2;�3þhd 0

ð
R3

x

ð
R3

y

hxi�3þðhþ1Þd 0hyi�1�ð2þhÞd 0 jx� yj�2 dydx:

Lemma 2.6 assures kuk2;�3þðhþ1Þd 0 k kuk2;�3þhd 0 whenever �1 � 2d 0 < hd 0 <

3 � d 0. We know u A L2ðh�i�3�d 0 Þ; this means we consider hb�1. The only

requirement becomes ðhþ 1Þd 0 < 3. In particular for 2 � 2d 0 a hd 0, we arrive at

(A.15). It is possible to choose such h, once we suppose d 0 < 2. This condition is

not restrictive, since we are interested in small d 0.

Step 2. By the closedness of E and the continuity of k 7! kðI �WðkÞÞ�1k, we

have that the equi-boundedness of kðI �WðkÞÞ�1k, for k � 0, is a consequence

of kWðkÞk ! 0 for k ! þy. It su‰ces to prove the punctual limit

lim
k!þy

kWðkÞ½g�k2 ¼ 0 g A L2: ðA:16Þ

Since, for any r A R, C1
0 is dense in L2ðh�irÞ we can use a density argument. We

put

WðkÞ½h�ðxÞ ¼
ð
AðxÞeikjx�yjhðyÞ

4pjx� yj dy ¼ AðxÞ
ðþy

0

ð
joj¼1

eikrhðx� roÞr dodr: ðA:17Þ

In particular WðkÞ½Bg�ðxÞ ¼ �WðkÞ½g�ðxÞ. By means of Lemma 2.4, we have

kWðkÞhk2
2 k

ð ð
AðxÞhðyÞ
jx� yj dy

� �2

dxk khk2
2;1þd 0

ð
hxi�3�d 0

ð
hyi�1�d 0

jx� yj2
dydx

k khk2
2;1þd 0

for any h A L2ðh�i1þd 0 Þ. Suppose we have found

lim
k!þy

WðkÞ½h�ðxÞ ¼ 0 ðA:18Þ

for a.e. x A R3 and any h A C1
0 . Lebesgue’s dominant convergence theorem imply

lim
k!þy

kWðkÞ½h�k2 ¼ 0

for any h A C1
0 . In order to gain (A.16), we take h A C1

0 which approximate

Bg A L2ðh�i1þd 0 Þ and observe that
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kWðkÞ½g�k2 ¼ kWðkÞ½Bg�k2 a kWðkÞ½Bg� h�k2 þ kWðkÞ½h�k2

a kBg� hk2;1þd 0 þ kWðkÞ½h�k2:

It remains to establish (A.18). Since hðyÞ A C1
0 , we can integrate by parts with

respect to r in (A.17). We get

jkj jWðkÞ½h�ðxÞjk
ð

eikjhj

jhj2
hðx� hÞ dh

�����
�����þ

ð
eikjhj

jhj2
h � ‘hðx� hÞ dh

�����
�����

k kh�i1þ�hky
ð
hyi�1��

jx� yj2
dyþ kh�i2þ�j‘hj ky

ð
hyi�2��

jx� yj dyaC;

where C is independent of k and x. Thus we obtain (A.18) and conclude the

proof. r

The following result can be established with a proof similar to the previous

lemma.

Lemma A.2. Assume AðxÞ and BðxÞ are continuous functions on R3 satisfying

0 < AðxÞaChxi�ð1þd 0Þ=2; jBðxÞjaChxi�ð3þd 0Þ=2 ðA:19Þ

for some C, d 0 > 0. Letting V :¼ AB, we suppose that (A.11) for any 0 < d0 < 2d 0

holds. Then for x A R3 and v0 A L2, there is a unique solution v A L2 of (A.12)

verifying (A.13).

For completeness we give the proof of the next lemma that enable us to

avoid the resonance assumption (A.11). This type of results has been proved by

Georgiev and Visciglia in [7].

Lemma A.3. Let V A CðR3;RÞ be a non-negative potential such that

VðxÞaChxi�2�d 0 for some C, d 0 > 0. Then the condition (A.11) holds for any

0 < d0 < 2d 0.

Proof. Let U A L2ðh�i�1�d0Þ be a solution of �DU ¼ �VU , hence

UðxÞ ¼
ð
R3

UðyÞVðyÞ
4pjx� yj dy ðA:20Þ

In particular
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jUðxÞj2 k kUk2
L2ðh�i�1�d0 Þ

ð
R3

hyi�3�2d 0þd0 jx� yj�2 dy:

Since d0 < 2d 0, we find

jUðxÞjk hxi�1: ðA:21Þ

This inequality gives DU ¼ VU A L1. Similarly, we have

jqxjUðxÞjk
ð
R3

jUðyÞjVðyÞjx� yj�2 dyk kh�iUky
ð
R3

hyi�3�d 0 jx� yj�2 dy:

This implies

j‘UðxÞjk hxi�2: ðA:22Þ

Let be R > 1 and j is a smooth function such that jðxÞ ¼ 1 if jxja 1 and

jðxÞ ¼ 0 if jxjb 2. We multiply the equation ð�Dþ VÞU ¼ 0 by the function

jðR�1xÞUðxÞ. After integration by parts, we getð
R3
ðj‘U j2 þ VðxÞjUðxÞj2ÞjðR�1xÞ dxþ 1

R

ð
R3

‘UðxÞ � ð‘jÞðR�1xÞUðxÞ dx ¼ 0:

This yields ð
jxja2R

ðj‘U j2 þ VðxÞjUðxÞj2ÞjðR�1xÞ dx

a
k‘jky

R

ð
R<jxj<2R

j‘UðxÞj jUðxÞj dx: ðA:23Þ

Combining (A.21) and (A.22), we see that there exists C > 0, independent of R,

such that ð
R<jxj<2R

j‘UðxÞj jUðxÞj dxaC:

Taking the limit in (A.23), we findð
R3
ðj‘U j2 þ VðxÞjUðxÞj2Þ dx ¼ 0: ðA:24Þ

This implies that U is piece-wise constant and VðxÞjUðxÞj2 ¼ 0. Coming back

to the fundamental solution (A.20) we arrive at U ¼ 0 and complete the proof.

r
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End of Proof of Theorem A.2. First we take AðxÞ ¼ hxi�ð3þd 0Þ=2, BðxÞ ¼
A�1ðxÞVðxÞ and v0ðxÞ ¼ AðxÞR0ðjxj2 þ i0Þ½ f �ðxÞ. Due to (A.1) and to Lemma

A.3, the assumptions (A.10) and (A.11) are satisfied. Moreover by using Lemma

2.4, we see that

kR0ðjxj2 þ i0Þ½ f �ky k k f k2;1þe

for any e > 0. Hence v0 A L2 and kv0k2 k k f k2;1þe. Thus Lemma A.1 yields the

existence of a unique solution v A L2 of (A.12) such that

kvk2 k kv0k2 k k f k2;1þe:

If we set cðxÞ ¼ A�1ðxÞvðxÞ, then we see from (A.12) that cðxÞ solves (A.7), and

satisfies

cðxÞ ¼ �
ð
R3

y

vðyÞ eijxj jx�yj

4pjx� yjBðyÞ dyþ R0ðjxj2 þ i0Þ½ f �ðxÞ: ðA:25Þ

Since jBðyÞja hyi�ð1þd 0Þ=2, we gain

jcðxÞjk kvk2

ð
R3

y

hyi�1�d 0 jx� yj�2 dy

 !1=2

þ jR0ðjxj2 þ i0Þ½ f �ðxÞjk k f k2;1þe:

This means that (A.8) holds.

Let us fix AðxÞ ¼ hxi�ð1þd 0Þ=2, BðxÞ ¼ A�1ðxÞVðxÞ, and v0ðxÞ ¼
AðxÞR0ðjxj2 þ i0Þ½ f �ðxÞ. Due to (A.1) and to Lemma A.3, the assumptions (A.19)

and (A.11) are satisfied. In order to prove v0 A L2, we observe that

kv0k2 k kR0ðjxj2 þ i0Þ½ f �ðxÞk2;�1�d 0

k kR0ðjxj2 þ i0Þ½ f �ðxÞk2;�1�e k jxj�1k f k2;1þe

for any e > 0 with 0 < ea d 0 and jxjb 1. In the last line we used a well known

estimate for the free resolvent. In a very general version this can be found in [1]

Appendix A, Remark 2.

Coming back to our proof, Lemma A.2 yields the existence of a unique

solution ~vv A L2 of (A.12) such that

k~vvk2 k kv0k2 k jxj�1k f k2;1þe:

Hence cðxÞ ¼ A�1ðxÞ~vvðxÞ is the unique solution of (A.7). Since (A.25) with v

replaced by ~vv holds, and now jBðyÞja hyi�ð3þd 0Þ=2, using Lemma 2.5, we obtain

jcðxÞjk hxi�1k~vvk2 þ jR0ðjxj2 þ i0Þ½ f �ðxÞj:
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Therefore we have

kck2;�1�e k k~vvk2 þ kR0ðjxj2 þ i0Þ½ f �ðxÞk2;�1�e k jxj�1k f k2;1þe:

Thus (A.9) is shown and the proof is completed.

Proof of Theorem A.1. According to (1.4), we note that oðx; xÞ ¼
eix�xcjxj½Vx�ðxÞ with VxðxÞ ¼ �VðxÞe�ix�x. In particular (A.1) implies VxðxÞ A
L2ðh�i1þeÞ.

The relation (A.2) is a direct consequence of (A.8). Similarly (A.3) follows

from (A.9).

For proving (A.4) we combine (A.8) and (A.20) with a ¼ 3 þ d 0. In fact, from

(A.7) we have

joðx; xÞja kcjxj½Vx�ky a kR0ðjxj2 þ i0Þ½Vcjxj½Vx��ky þ kR0ðjxj2 þ i0Þ½Vx�ky

k hxi�1ðkVcjxj½Vx�k2;3þd 0 þ kVxk2;3þd 0 Þ

k hxi�1ðkcjxj½Vx�ky þ 1ÞkVk2;�3�d 0 k hxi�1:

In order to prove (A.5) and (A.6) we note that Wj;kðe�irs�xoðx; rsÞÞ solves

(A.7) with f 1 fj;kðr; s; yÞ ¼ �irðsjyk � skyjÞVrsðyÞ. In particular fj;kðr; s; �Þ A
L2ðh�i1þeÞ if VðyÞk hyi�3�e. Hence, (A.8) and (A.9) give the conclusion. r

Acknowledgement

The authors would like to thank Prof. Vladimir Georgiev for his interest and

for the helpful remarks during the preparation of this paper. The authors are also

grateful to the referee for his careful reading of the paper and for the important

comments.

References

[ 1 ] Agmon S., Spectral Properties of Schrödinger Operators and Scattering Theory, Ann. Scuola

Norm. Sup. Pisa Ser IV 2 (1975), 151–218.

[ 2 ] Alsholm P., Schmidt G., Spectra and Scattering Theory for Schrödinger Operators, Arch. Rat.

Mech. Anal. 40 (1971), 281–311.

[ 3 ] Beals M., Optimal Ly Decay for Solutions to the Wave Equation with a Potential, Commun.

Partial Di¤. Equations 19 (1994), 1319–1369.

[ 4 ] Beals M., Strauss W., Lp Estimates for the Wave Equation with a Potential, Commun. Partial

Di¤. Equations 18 (1993), 1365–13697.

[ 5 ] Cuccagna S., On the Wave Equation with a Potential, Commun. Partial Di¤. Equations 25

(2000), 1549–1565.

[ 6 ] Georgiev V., Heiming C., Kubo H., Supercritical Semilinear Wave Equation with a Non-

negative Potential, Commun. Partial Di¤. Equations 26 (2001), 2267–2303.

172 Hideo Kubo and Sandra Lucente



[ 7 ] Georgiev V., Visciglia N., Decay Estimates for the Wave Equation with Potential, Partial Di¤.

Equations 28 (2003), 1325–1369.

[ 8 ] Ginibre J., Velo G., Generalized Strichartz Inequalities for the Wave Equation, J. Funct. An.

133 (1995), 50–68.
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