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ON THE NUMBER OF POLYNOMIAL MAPS INTO Zn

By

Florian Luca and Igor E. Shparlinski

Abstract. In this paper, we study maximal, minimal, normal and

average order of the function

f ðnÞ ¼
Yn
k¼0

n=gcdðn; k!Þ

which is the cardinality of the set of polynomial maps from Z into

Zn.

1 Introduction

For a positive integer n we let

f ðnÞ ¼
Yn
k¼0

n

gcdðn; k!Þ :

It is known since the work of A. J. Kempner [9] that f ðnÞ gives the cardinality of

the set of polynomial maps from Z into Zn. In a completely explicit form it is

also given by M. Bhargava [1].

Here, we study some questions about the maximal, minimal, normal and

average order of this function.

In fact, the question on the large order is trivial as clearly the inequality

f ðnÞa nn

holds for all positive integers n with equality if and only if n is prime. Thus, we

concentrate on the remaining questions.

We remark that in what follows no attempt has been made to get sharp

bounds on the error terms. Throughout the paper, the implied constants in

symbols ‘O’, ‘f’ and ‘g’, may occasionally, where obvious, depend on the integer
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parameter n, and are absolute otherwise (we recall that U ¼ OðVÞ, U fV and

V gU are both equivalent to the inequality jU ja cV with some constant

c > 0).

We use the letters p and q, with subscripts or without, to denote prime

numbers, and k, m and n to denote nonnegative integers.

If n is positive, we use PðnÞ, oðnÞ and tðnÞ for the largest prime factor of n,

the number of distinct prime divisors of n and the total number of divisors of n,

respectively (we also put Pð1Þ ¼ 1).

2 Minimal Order

Theorem 1. The inequality

f ðnÞb exp ð1 þ oð1ÞÞ ðlog nÞ2

2 log log n

 !

holds as n ! l.

Proof. We let kn be such that kn!a n and ðkn þ 1Þ! > n. Since the inequality

gcdðn; k!Þaminfn; k!g holds for all k ¼ 0; . . . , it follows that gcdðn; k!Þa k! for

ka kn and gcdðn; k!Þa n for all kb kn þ 1. Note that all equalities are achieved

when n itself is a factorial. Thus,

f ðnÞb
Ykn
k¼0

n

k!
¼ exp ðkn þ 1Þ log n�

Xkn
k¼0

logðk!Þ
 !

: ð1Þ

From the Stirling formula, we derive log k! ¼ k log k þOðkÞ. Thus,

Xkn
k¼0

logðk!Þ ¼
Xkn
k¼0

k log k þOðk2
n Þ ¼

1

2
k2
n log kn þOðk2

n Þ:

Furthermore, since kn!a n < ðkn þ 1Þ!, we get that

kn log kn þOðknÞ ¼ log n;

which shows that

kn ¼ ð1 þ oð1ÞÞ log n

log log n
:

Hence,
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ðkn þ 1Þ log n�
Xkn
k¼0

logðk!Þ ¼ kn log n� 1

2
k2
n log kn þO

log n

log log n

� �2
 !

¼ ðlog nÞ2

2 log log n
ð1 þ oð1ÞÞ;

which together with the estimate (1) completes the proof of the lower bound.

We also remark that if n ¼ m! then kn ¼ m and the inequality (1) becomes an

equality. r

3 Normal Order

It is clear that f ðnÞb f ðdÞ holds for all divisors d of n. In particular,

f ðnÞb f ðPðnÞÞ ¼ PðnÞPðnÞ: ð2Þ

We now show that for almost all n this bound is tight.

Theorem 2. For all but Oðxðlog log xÞ2=log xÞ positive integers na x, we

have

log f ðnÞ ¼ 1 þO
ðlog log xÞ2

log x

 ! !
PðnÞ log PðnÞ:

Proof. We assume that x is a large positive real number and define

w ¼ ðlog xÞ4; y ¼ expððlog log xÞ3Þ; z ¼ exp
log x log log log x

3 log log x

� �
: ð3Þ

We now put

E1ðxÞ ¼ fna x : PðnÞa zg:

By known results on the distribution of smooth numbers (see, for example,

Section III.5.4 in [11]), we have that

aE1ðxÞ ¼ x expð�u log uÞ;

where

u ¼ log x

log z
¼ 3 log log x

log log log x
:

Hence,
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aE1ðxÞ ¼ x expð�ð3 þ oð1ÞÞ log log xÞf x

ðlog xÞ2
.

We let E2ðxÞ be the set of all positive integers na x such that ajn for some

squarefull a > w. Recall that a number a is called squarefull if p2ja whenever p

is a prime factor of a. It is known that if we write

VðxÞ ¼ faa x : a squarefullg;

then

aVðxÞ ¼ c0x
1=2 þOðx1=3Þ; where c0 ¼ zð3=2Þ

zð3Þ A2:1732 ð4Þ

(see Theorem 14.1 in [6]). Fix a squarefull a > w. The number of positive integers

na x which are multiples of a is a x=a. Thus, using the estimate (4) and partial

summation, we immediately get that

E2ðxÞa
X
a>w

a AVðxÞ

x

a
f

x

w1=2
f

x

ðlog xÞ2
:

We now let

E3ðxÞ ¼ fna x : oðnÞ > 10 log log xg:

If n A E3ðxÞ, then

tðnÞb 2oðnÞ > ðlog xÞ10 log 2 > ðlog xÞ3:

Therefore,

aE3ðxÞa
1

ðlog xÞ3

X
nax

tðnÞf x

ðlog xÞ2

(see Theorem 2 of Chapter I.3.1 in [11]).

We now define QðnÞ ¼ Pðn=PðnÞÞ and let

E4ðxÞ ¼ fna x : minfQðnÞ; zg < PðnÞ < QðnÞ log xg:

For each fixed QðnÞ ¼ q and PðnÞ ¼ p the number of such na x is at most

bx=pqca x=pq. We also remark for n A E4ðxÞ we have QðnÞ > z=log x >
ffiffiffi
z

p
pro-

vided that x is large enough. Thus, by the Mertens formula (see, for example, [10]

for a very sharp error term), we derive
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aE4ðxÞa x
X
z1=2<q

X
q<p<q log x

1

pq
¼ x

X
z1=2<q

1

q

X
q<p<q log x

1

p

¼ x
X
z1=2<q

1

q
log logðq log xÞ � log log qþO

1

log q

� �� �

¼ x
X
z1=2<q

1

q
log 1 þ log log x

log q

� �
þO

1

log q

� �� �

f x log log x
X
z1=2<q

1

q log q
f

x log log x

logðz1=2Þ f
xðlog log xÞ2

log x
:

Thus, for the set EðxÞ ¼ 65

i¼1
EiðxÞ, we have

aEðxÞf xðlog log xÞ2

log x
: ð5Þ

Now let NðxÞ be the set of all positive integers na x which are not in EðxÞ.
Fix n A NðxÞ and denote dk ¼ gcdðn; k!Þ, k ¼ 0; 1; . . . . It is clear that dkjdkþ1 for

all kb 0.

We have

Y
kay

dk a y!y < yy2

:

Thus,

log f ðnÞ ¼ n log n�
X

y<kan

log dk þOðy2 log yÞ: ð6Þ

Let k0 ¼ byc þ 1. If rðnÞ is the largest powerful divisor of n, then rðnÞ j dk0
.

Indeed, let p be any prime factor of rðnÞ. Then p < w, and the exponent at which

p appears in rðnÞ is at most ðlog wÞ=ðlog 2Þ, because n B E2ðxÞ. Indeed, this fol-

lows since the exponent at which p appears in k0! is at least

bk0=pcb by=wc > y

2w
>

log w

log 2
> rðnÞ;

provided that x is large enough. In particular, m ¼ n=dk0
is squarefree. Let

k0 < p1 < � � � < ps ¼ PðnÞ be all the prime factors of m. Since PðnÞ > QðnÞb
z=log z > y, we have PðnÞQðnÞ jm. It is then clear that

443Number of polynomial maps



dk ¼
dk0

; if k0 a ka p1 � 1;

dk0
p1 � � � pi; if pi a ka piþ1 � 1; i ¼ 1; . . . ; s� 1;

n; if kb ps:

8<
:

Hence,X
y<kan

log dk ¼ ðn� PðnÞÞ log n

þ
Xs�1

i¼1

ðpiþ1 � piÞ log
n

piþ1 � � � ps

� �
þ ðp1 � k0Þ log dk0

¼ ðn� PðnÞÞ log nþ PðnÞ log
n

PðnÞ

� �
� p1 log

n

p2 � � � ps

� �

þ
Xs�1

i¼2

pi log piþ1 þ ðp1 � k0Þ log dk0

¼ n log n� PðnÞ log PðnÞ þOðoðnÞQðnÞ log nÞÞ:

In particular, from (6), we infer that

log f ðnÞ ¼ PðnÞ log PðnÞ þOðoðnÞQðnÞ log nþ y2 log yÞ: ð7Þ

Since n B E1ðxÞUE3ðxÞUE4ðxÞ, we have

oðnÞf log log x; log PðnÞb log zg
log x

log log x
; PðnÞbQðnÞ log x

for x large enough, which implies that

oðnÞQðnÞ log nfPðnÞ log PðnÞ ðlog log xÞ2

log x

 !
:

Also

y2 log yf z log z
ðlog log xÞ2

log x

 !
fPðnÞ log PðnÞ ðlog log xÞ2

log x

 !
:

We now derive from estimate (7) that

log f ðnÞ ¼ 1 þO
ðlog log xÞ2

log x

 ! !
PðnÞ log PðnÞ

for n A NðxÞ, which together with (5) finishes the proof. r
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4 Average Order

We start by obtaining an asymptotic formula for the sum

snðxÞ ¼
X
nax

ðPðnÞ log PðnÞÞn:

Similar sums have been studied by J.-M. De Koninck, A. Ivić, C. Pomerance and

other researchers [2, 3, 5, 7, 8]. In particular, an easy modification of the proof of

Theorem 3 in [7] gives an asymptotic formula for snðxÞ.
Let zðsÞ denote the Riemann-zeta function.

Lemma 3. Let n > 0. We then have the following asymptotic formula:

snðxÞ ¼
zðnþ 1Þ
nþ 1

þO
log log x

log x

� �� �
xnþ1ðlog xÞn�1:

Proof. Let r ¼ bðlog xÞ2c. The contribution to snðxÞ coming from na x

with PðnÞa x=r is obviously at most x1þnðlog xÞ�n. We now have

X
nax

PðnÞ>x=r

ðPðnÞ log PðnÞÞn ¼ 1 þO
log log x

log x

� �� �
ðlog xÞn

X
nax

PðnÞ>x=r

PðnÞn

¼ 1 þO
log log x

log x

� �� �
ðlog xÞn

X
nax

PðnÞn:

For the last sum, the asymptotic formula

X
nax

PðnÞn ¼ zðnþ 1Þ
nþ 1

þO
1

log x

� �� �
xnþ1

log x

is given in the proof of Theorem 3 in [7], and the result now follows. r

It is easy to see that the method of proof of Theorem 3 in [7] can be used to

derive an asymptotic expansion for snðxÞ.
For a positive constant n we define

FnðxÞ ¼
X
nax

ðlog f ðnÞÞn:

Theorem 4. Let n > 0. Then we have the following estimate:

FnðxÞ ¼
zðnþ 1Þ
nþ 1

þO
ðlog log xÞ2

log x

 ! !
xnþ1ðlog xÞn�1:
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Proof. By Lemma 3, it is enough to prove that

FnðxÞ ¼ 1 þO
ðlog log xÞ2

log x

 ! !
snðxÞ:

We consider the same sets E1ðxÞ, E2ðxÞ, E3ðxÞ, E4ðxÞ and NðxÞ as in the

proof of Theorem 2. Since n log nb log f ðnÞbPðnÞ log PðnÞ, the contribution to

both FnðxÞ and snðxÞ from n A 64

i¼1
EiðxÞ is at most

X
n A64

i¼1 EiðxÞ

ðPðnÞ log PðnÞÞn a ðx log xÞn
X5

i¼1

aEiðxÞf xnþ1ðlog xÞn�2:

We now consider the function SðnÞ ¼ minfk : n j k!g, which is usually referred

to as the Smarandache function, although it has appeared explicitly long before,

for example, in the paper of A. J. Kempner [9] which dates back to 1921. Clearly,

f ðnÞa nSðnÞ:

We put FðxÞ ¼ fn : SðnÞ > PðnÞg. K. Ford (see [4]), has shown that

aFðxÞa x expð�ð
ffiffiffi
2

p
þ oð1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log x log log x

p
Þf x

ðlog xÞ2
:

Since for n A E4ðxÞ we have QðnÞ > z=log x > z1=2, (and therefore we also

have PðnÞa n=QðnÞa x=z1=2), the contribution to FnðxÞ and to snðxÞ coming

from n A E4ðxÞ is at mostX
n AE4ðxÞ

ðlog f ðnÞÞn faFðxÞðn log nÞn þ
X

n AE3ðxÞnFðxÞ
ðPðnÞ log nÞn

f xnþ1ðlog xÞnz�n=2 þ xðxz�1=2 log xÞn f xnþ1ðlog xÞn�2:

Finally, by Theorem 2, we obtain

FnðxÞ ¼
X

n ANðxÞ
ðlog f ðnÞÞn þOðxnþ1ðlog xÞn�2Þ

¼ 1 þO
ðlog log xÞ2

log x

 ! ! X
n ANðxÞ

ðPðnÞ logP ðnÞÞn þOðxnþ1ðlog xÞn�2Þ

¼ 1 þO
ðlog log xÞ2

log x

 ! !
snðxÞ þOðxnþ1ðlog xÞn�2Þ

¼ 1 þO
ðlog log xÞ2

log x

 ! !
snðxÞ;

which concludes the proof. r
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5 Distribution of Values

Theorem 5. The function f ðnÞ is bijective.

Proof. For a prime p, we use ordp s to denote the p-adic order of the

integer s. We also denote by kpðsÞ the largest k such that ordp k!a ordp s.

If m0 n, then there is a prime p such that ordp m0 ordp n. Assume that

ordp m < ordp n:

Then it is clear that kpðmÞa kpðnÞ. Therefore

ordp f ðmÞ ¼
XkpðmÞ

k¼1

ðordp m� ordp k!Þ <
XkpðmÞ

k¼1

ðordp n� ordp k!Þ

a
XkpðnÞ
k¼1

ðordp n� ordp k!Þ ¼ ordp f ðmÞ;

which concludes the proof. r

Let VðxÞ ¼ f f ðnÞa xg be set of values of f ðnÞ in the interval ½1; x�.

Theorem 6. The following bound holds:

exp

ffiffiffiffiffiffiffiffiffiffiffi
log x

p
log log x

 !
faVðxÞf exp

2 log x log log log x

log log x

� �
:

Proof. Let us put

y ¼ 3 log x

2 log log x
and z ¼ log x

log log x
:

Clearly the prime divisors of n and f ðnÞ coincide, in particular Pð f ðnÞÞ ¼ PðnÞ.
Now from (2) we conclude that Pð f ðnÞÞa y, provided that x is large enough.

Using the bound

log Cðx; yÞ ¼ Z 1 þO
1

log y
þ 1

log log x

� �� �
;

where

Z ¼ log x

log y
log 1 þ y

log x

� �
þ y

log y
log 1 þ log x

y

� �
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(see Theorem 2 of Chapter III.5.1 in [11]) on the number Cðx; yÞ of integers

ma x with PðmÞa y, and remarking that

Z ¼ ð1 þ oð1ÞÞ 3 log x log log log x

2 log log x
;

we obtain the upper bound.

On the other hand, note that if n is squarefree then f ðnÞa nPðnÞ (because njk!
for all kbPðnÞ). Furthermore, since in this case

n

�����
Y

paPðnÞ
p ¼ expðð1 þ oð1ÞÞPðnÞÞ;

we also have that log na ð1 þ oð1ÞÞPðnÞ. Hence, log f ðnÞa ð1 þ oð1ÞÞPðnÞ2 as

n ! y through squarefree values. Thus, if we let x be large and

w ¼ 9

10

ffiffiffiffiffiffiffiffiffiffiffi
log x

p
;

then f ðnÞa x for all squarefree positive integers n with PðnÞ < w, provided that

x is large enough. Certainly, the number of such values of n is

2pðwÞ ¼ exp ð1 þ oð1ÞÞ 9 log 2

5

ffiffiffiffiffiffiffiffiffiffiffi
log x

p
log log x

 !
;

and the result now follows from Theorem 5 together with the inequality

ð9 log 2Þ=5 > 1. r
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