TSUKUBA J. MATH.
Vol. 30 No. 2 (2006), 433-438

QUANTIFIER ELIMINATION OF THE PRODUCTS OF
ORDERED ABELIAN GROUPS

By

Hiroshi TaNAKA and Hirokazu YoKoOyAMA

Abstract. In this paper, we study the theories of lexicographic
products of ordered abelian groups.

1. Introduction

Komori [2] and Weispfenning [6] showed that the lexicographic product of Z
and Q admits quantifier elimination in a language expanding L,, = {0, +, —, <},
where Z (Q) is the ordered abelian group of integers (of rational numbers).
Moreover they recursively axiomatized Th(Z x Q). Extending these, Suzuki [4]
showed that for the lexicographic product G of an ordered abelian group H and
an ordered divisible abelian group K, if H admits quantifier elimination in a
language L expanding L,,, then G admits quantifier elimination in LU {7}, where
we interpret I as {0} x K. Moreover if H is recursively axiomatizable, then so is
G. In this paper, we give a simple proof for Suzuki’s results. In addition we show
the converse of Suzuki’s results.

2. Main Results

Let % be a language. By an unnested atomic ¥-formula we mean an atomic
formula of one of the following forms: x = y, ¢ = y, F(X) = y or R(X), where x,
y and n-tuple X are free variables, ¢ is some constant symbol in ., F is some
function symbol in ¥ and R is some relation symbol in &.

Let L,; be the language {0,4,—,<} of ordered groups. Let L be the
language Lo, UL, U L., where L, and L, are sets of relation and constant symbols,
respectively. Let H be an L-structure whose reduct to the language L,, is an
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ordered abelian group. Let K be an ordered abelian group and an L,,-structure.
Let I be a new unary relation symbol. We now give the lexicographic product
G:=H x K as an LU {I}-structure by the following interpretation:

) 09 := (07,0%);

2) ¢%:= (c",0K) for each ce L,

3) + and — are defined coordinatewise;

4) < is the lexicographic order of H and K;
5) For each n-ary relation symbol Re L,,

(1
(
(
(
(

G = {(g1,---9n) € G"| (h1,...,h,) € R},

where #; is the first coordinate of g;
(6) 19:={0} x K.
We call this interpretation the product interpretation of H and K.
Let s, t and u be terms. Then, the formula s < tAt<u is written as
s<r<u.

LemMa 1. Let G = H x K be the above structure and g = (g1, ..,gn) a tuple
of elements from G. For each i < n, let g; = (hi,k;) with hje H and k; € K. Let
h=(hi,...,h,). Let ¢(X) be a quantifier-free L-formula. Then there exists a
quantifier-free LU {I}-formula ¢* (%) such that H |= ¢(h) if and only if G |= ¢*(§).

ProoF. Let ¢(X) be a quantifier-free L-formula. Then the formula ¢(X) is
a Boolean combination of the forms #(X) =0, 0 < #(X) and R(#1(X), ..., (X)),
where ¢,1;,...,t, are terms and R is an m-ary relation symbol. Let ¢ ( ) be the
formula obtained from ¢(X) by replacing #(X) =0 and 0 < #(¥) with I(z(X)) and
0 < t(X) A—I(t(X)), respectively. Then H = p(h) if and only if G| ¢*(7). O

*

We give the new structures to show recursive axiomatizability in Theorem 3.

For any model G* of Th(G), we consider the structures H*, K* such that
K*:={geG*|gEI(x)} and H* := {g/~|g e G*}, where an equivalent relation
~on G"bya~b< a—beK*. Then H* is an ordered abelian group as an L-
structure, K* is an ordered abelian group as an L,,-structure. Then we notice that
H = H* and K = K*. Moreover we obtain that G* =,y H* x K* by the next
lemma.

Lemma 2. Suppose that H, K, H*, K* are the above structures. Then we
obtain that H x K = H* x K* in the language LU{I}, where H* x K* is the
product interpretation of H* and K*.
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Proor. It suffices to show that H x K = H* x K* for any finite language of
LU{I}. We fix L' as a finite language of LU {/} and may assume that L’ contains
L,; and {I}. According to [1, Corollary 3.3.3], we have to prove the followings:

for each n<w, HXxK=~,H*xK".

When A4, B are the same structures with a finite language, 4 ~, B means that for
any n-tuple (ci,...,¢,) in AU B, there exists partial isomorphism f from 4 to
B such that we find some n-tuple (d,...,d,) in AU B satisfying the following
conditions: for each i < n if ¢; € A (B, respectively) then let a; = ¢; and b; = d; =
f(c;)e B (let b; = c; and a; = d; = f~'(¢;) € A, respectively) and 4 | ¢(ay, ..., a,)
< BE ¢(by,...,b,) for any unnested atomic formula ¢(xy,...,x,).

The unnested atomic L-formulas are of the formulas of the forms x = y,
y=¢y=0,x0+x1 =y, —x=1y, R(X), xo <x1, I(x), where x, y, xp, x; and
n-tuple X are free variables.

For n<w, let (¢1,...,¢,) be any n-tuple from (H x K)U(H* x K*).
When we see it coordinatewisely, we have partial isomorphisms f: H — H*
and ¢g: K — K* satisfying the above condition. We will obtain some rn-tuple
(dy,...,d,) as follows: for i <n if ¢; is in H x K then we split it into ¢; = (h;, k;)
and let a;=¢; and b;=d; = (h}, k)= (f(hi),g9(k))) e H* x K*. If ¢; is in

H* x K* then we let b; =c¢; and a; = d; = (hi,ki) = (f ' (h?),g7 ' (k})) e H x K
similarly. Then we have that H x K E ¢(ay,...,a,) & H* x K* E ¢(by,...,by)
for every unnested atomic L’-formula ¢(xi,...,x,).

In the case of “xo+x;=)" we obtain that a;+a =a; < (h,k)+
(hj kj) = (hi ki) < (hi + by = by and - ki + k; = ki) < (f (hi) + f () = f (k) and
g(ki) + 9(ky) = glkn)) & (hf +ht =i and k; + k7 = k7) & (bt K7) + (i K7) =
(hy ki) < bi+bj = by.

Moreover we can also argue the other cases similarly. Therefore it holds that
HxK~,H" x K*. O

We now give a simple proof for Suzuki’s results [4].

THEOREM 3. Let G = H x K be the above structure. If the ordered abelian
group H admits quantifier elimination in L and the ordered abelian group K is
divisible, then the ordered abelian group G admits quantifier elimination in LU {I}.
Moreover, if H is recursively axiomatizable, then so is G.

Proor. Let dxp(x, y) be an LU {I}-formula, where ¢(x, y) is a quantifier-
free LU{I}-formula. We may assume that the formula ¢ is of the form
@1 A Ag;, where each ¢; is an atomic formula or the negation of an atomic
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formula. Since ¢(x, y) is a quantifier-free LU {I}-formula, the formula ¢(x, y) is
a Boolean combination of the forms mx = #(7), t(y) < mx, mx < (y), I(s(x, ¥))
and R(si(x,¥),...,s/(x,¥)), where /, m are positive integers, ¢,s,s;,...,5 are
terms and R is an [-ary relation symbol. Now the formulas = s and ¢ < s are
equivalent to nt = ns and nt < ns for each positive integer n, respectively. Hence,
we may assume that the formula ¢(x, ) is equivalent to either #(y) < mx <
u(y) A(x,p) or mx=s(y)A(x,y), where the formula (x,y) is a finite
conjunction of formulas of the forms I, R(s,...,s;) or negation of these.

Let the formula ¢(x, y) be #(7) < mx < u(y) Ay(x,¥). Let §=(g1,--.,9n)
be a tuple of elements from the ordered abelian group G. For each i <n, let

= (h;,k;) with h;e H and k; e K. Let h = (hy,...,h,) and k = (ky,...,k,). Let

Y!'(x,7) be the formula obtained from w(x,7) by replacing I(z(x,¥)) with
t(x,y) = 0. Let 2(¥) (u*(¥)) be the term obtained from #(¥) (u(¥)) by replacing
each ce L, with 0. Then G Ix(#(g) < mx < u(g) Ay¥(x,g)) if and only if

(1) H & 3x(t(h) < mx < u(h) A/ (x, 7)),

(2) H E 3x(t(h) = mx < u(h) A" (x,h)) and K = Ix(2(k) < mx),

(3) H [ 3x(t(h) < mx = u(h) A" (x,h)) and K = Ix(mx < u?(k)), or

4) H &= 3x(t(h) = mx = u(h) At (x,h)) and K E Ix(2(k) < mx < u?(k)).
Since the ordered abelian group H admits quantifier elimination in L and the
ordered abelian group K is divisible, there exist quantifier-free L-formulas 6;(7),
0,(¥), 65(7) and 64(7) such that G E Ix(¢(g) < mx < u(g) AY(x,g)) if and only if

(1) H = 0u(h),
(2) HE 0:(h),
(3) H = 05(h), or

(4) H | 04(h) A t(h) = u(h) and K | (k) < u?(k).
By Lemma 1, there exist quantifier-free LU {I}-formulas 0] (7), 05(¥), 05(7) and
0, (¥) such that G E Ix(¢(g) < mx < u(g) Ay(x,g)) if and only if

(1) G E61(9),

(2) G E6;(9),

(3) G E065(9), or

4) G k= 04(9) A 1(g) <u(g) A(u(g) — 1(g))-
Hence, the formula Ix(#(¥) < mx < u(y) A(x, ¥)) is equivalent to a quantifier-
free LU {I}-formula.

Similarly, the formula Ix(mx = s(y) A¥(x, ¥)) is equivalent to a quantifier-

)
)
)
)

free LU {I}-formula. It follows that the ordered abelian group G admits quantifier
elimination in LU {[}.
Last we show that in the theorem, if H is recursively axiomatizable, so is G.
By lemma 2, for any model G* of Th(G) there exist H* E Th(H) and
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K* E Th(K) such that G* is elementarily equivalent to H* x K*. Thus we have
G is recursively axiomatizable since H is recursively axiomatizable. O

Finally we show the converse of Suzuki’s results.

THEOREM 4. Let G = H x K be the above structure. If the ordered abelian
group G admits quantifier elimination in LU {I}, then the ordered abelian group H
admits quantifier elimination in L and the ordered abelian group K is divisible.
Moreover if G is recursively axiomatizable, then so is H.

Proor. First, we show that the ordered abelian group H admits quantifier
elimination in L. Let 3x¢(x, 7) be an L-formula, where ¢(x, y) is a quantifier-
free L-formula. Since ¢(x, y) is a quantifier-free L-formula, the formula ¢(x, )
is a Boolean combination of the forms mx = #(y), #(¥) < mx, mx < ¢(y) and
R(s1(x,¥),...,s1(x,y)), where [, m are positive integers, t,s,s],...,s5 are terms
and R is an /-ary relation symbol.

Let ¢*(x, y) be the formula obtained from ¢(x, y) by replacing mx = (),
t(y) <mx and mx < t(y) with I(¢(y) —mx), ((y) <mxA—I(t(y)—mx) and
mx < t(¥) A= (t(¥) — mx), respectively. Let i = (hy,...,h,) be a tuple of ele-
ments from the ordered abelian group H. Then, we have

H | Ixp(x,h) & G E Ixp*(x, (h,0)),

where (h,0) := ((h1,0),..., (h,,0)). Since the ordered abelian group G admits
quantifier elimination in LU {I}, there exists a quantifier-free LU {/}-formula
V() such that
G | 3xp"(x, (h,0)) & G y((h,0)).
Let y/(7) be the formula obtained from /() by replacing I(#(7)) with ¢(7) = 0.
Then we have
G y((h,0)) & H [ y'(h).

It follows that the ordered abelian group H admits quantifier elimination in L.

Next, we show that the ordered abelian group K is divisible. Let a € K. Let n

be a positive integer. Since the ordered abelian group G admits quantifier elimi-
nation in LU {7}, there exists a quantifier-free LU {/}-formula 6,(x) such that

G E 3((0,0) = ny A1(3)) = 0,((0,)).

We have G |= 6,((0,0)). Suppose that @ > 0. Then we have G = 6,((0,na)). Now
the formula 6,(x) is a Boolean combination of the forms mx =1, t < mx, mx < t,
I(mx+t) and R(mx+sy,...,mx+s;), where [,m,my,...,m; are positive inte-
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gers, t,s1,...,5 are terms which do not contain a free variable and R is an /-ary
relation symbol. Notice that X =0,sK =0,...,sX =0.

In the case that G = m(0,na) = ¢, we have a =0, a contradiction.

In the case that G = 1 < m(0,na), we have t < 0. Hence G =t < m(0,a).

In the case that G Em(0,na) < t, we have G Em(0,a) <t by a > 0.

In the case that Gk I(m(0,na)+1t), we have ¢ =0. Hence G}
I(m(0,a) + 1).

In the case that G |= R(m(0,na) +sy,...,m;(0,na) +s;), since R® depends
only on R, G E R(m(0,a) + s1,...,m(0,a) + s;).

Hence, if @ > 0, then G = 0,((0,a)). Similarly, if ¢ <0, then G = 6,((0,q)).
It follows that the ordered abelian group K is divisible.

Last we show that if G is recursively axiomatizable, then so is H. However
we can show it like the proof of Theorem 4. O
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