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GRASSMANN GEOMETRY ON THE GROUPS

OF RIGID MOTIONS ON THE EUCLIDEAN

AND THE MINKOWSKI PLANES

By

Kenji Kuwabara

Abstract. We study the Grassmann geometries of surfaces when the

ambient spaces are the Lie groups of rigid motions on the Euclidean

and the Minkowski planes, furnished with left invariant metrics.

1. Introduction

Let M be an m-dimensional connected Riemannian manifold and r be an

integer such that 1a ram. Given a nonempty subset S in the Grassmann

bundle GrðTMÞ over M which consists of all r-dimensional linear subspaces of

the tangent spaces of M, an r-dimensional connected submanifold S of M is

called a S-submanifold or simply an associated submanifold if all tangent spaces

of S belong to S, and the collection of such the submanifolds is called a S-

geometry. ‘‘Grassmann geometry’’ is a collected name for such a S-geometry. Let

G denote the identity component of the isometry group of M. Then G acts on

GrðTMÞ through the di¤erentials of isometries and we have many G-orbits in

GrðTMÞ. If S is given by a G-orbit, the S-geometry is in particular called of orbit

type. If M is a Riemannian homogeneous manifold, such a subset S is a

subbundle of GrðTMÞ over M. In the study of Grassmann geometry, we shall

first consider the existence of S-submanifolds for an arbitrary S-geometry, and

next if they exist, we shall consider whether or not such the S-geometry has

somewhat canonical S-submanifolds, eg., totally geodesic submanifolds, minimal

submanifolds, etc.

In the previous paper [2], from this view of points, we have studied the

Grassmann geometry of surfaces, namely the case r ¼ 2, in the 3-dimensional
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Heisenberg group with a left invariant metric. In this paper, we consider the cases

when the ambient spaces M are the Lie groups of rigid motions on the Euclidean

and the Minkowski planes, furnished with left invariant metrics. These spaces

together with the Heisenberg case, are typical examples of 3-dimensional ho-

mogeneous Riemannian manifolds, and as Lie groups they are locally the only,

not nilpotent, solvable Lie groups among the 3-dimensional unimodular Lie

groups, while the Heisenberg group is locally the only, not commutative, nil-

potent Lie group among them.

The aim of this paper is to determine the G-orbital Grassmann geometries of

surfaces on these Riemannian manifolds which have the associated surfaces, and

moreover to clarify geometric properties of their associated surfaces.

2. The Lie Groups of Rigid Motions on the Euclidean and the

Minkowski Planes

Let Eð2Þ denote the Lie group of rigid motions on the Euclidean plane,

which is a semi-direct product of the group Oð2Þ of orthogonal transformations

and the vector group R2 of parallel translations. Moreover let Eð1; 1Þ denote the

Lie group of rigid motions on the Minkowski plane, which is a semi-direct

product of the group Oð1; 1Þ of Lorentz transformations and the vector group R2

of parallel translations. Hereafer we will consider only the connected components

of the identity in these Lie groups. They are also denoted by the same notations

Eð2Þ or Eð1; 1Þ. These Lie groups are solvable and together with any left

invariant metric, become 3-dimensional homogeneous Riemannian manifolds,

denoted by ðM; gÞ. Let l be the Lie algebra of left invariant vector fields on

the Lie group M and h ; i an inner product on l canonically induced from the

Riemannian metric g. Then l is identified with the tangent space TeM at the unity

e and the inner product h ; i is equal to ge.

More generally, let l be a 3-dimensional unimodular Lie algebra with an

inner product h ; i. Then the Lie bracket ½ ; � of l induces a unique symmetric

linear transformation L of l such that ½u; v� ¼ Lðu� vÞ for u; v A l where �
denotes the cross product on l with respect to a fixed orientation. Moreover,

taking the eigenvalues l1, l2, l3 of L and their positively oriented, unit eigen-

vectors E1, E2, E3, we have the following relations:

½E2;E3� ¼ l1E1; ½E3;E1� ¼ l2E2; ½E1;E2� ¼ l3E3:ð2:1Þ

If the Lie algebra l with h ; i is associated with a Lie group M with a left

invariant metric g, by these relations the Levi-Civita connection ‘ of ðM; gÞ is

expressed as follows:
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‘Ei
Ej ¼ ð1=2Þ

X
k

ðaijk � ajki þ akijÞEkð2:2Þ

where aijk ¼ h½Ei;Ej�;Eki and i ¼ 1; 2; 3. Moreover various curvatures of ðM; gÞ
at the unity e can be calculated as follows: The Ricci quadratic form r is dia-

gonalized by the eigenvectors E1, E2, E3, together with its principal Ricci cur-

vatures given by

rðE1Þ ¼ 2m2m3; rðE2Þ ¼ 2m3m1; rðE3Þ ¼ 2m1m2;ð2:3Þ

where li ¼ m1 þ m2 þ m3 � mi for i ¼ 1; 2; 3. In particular, the scalar curvature r

is given by the equation r ¼ 2ðm2m3 þ m3m1 þ m1m2Þ. Also, the sectional curvature

kðu; vÞ of the plane generated by vectors u, v can be explicitly calculated by the

general formula

kðu; vÞ ¼ ku� vk2r=2 � rðu� vÞð2:4Þ

for any 3-dimensional Riemannian manifold. Refer to [3] for the details of these.

Let ðM; gÞ be Eð2Þ with any left invariant metric g. Then the triple

fl1; l2; l3g, determined as above, consists of one zero and two positive constants.

We may here suppose l3 ¼ 0. Moreover the set of isometry classes of left in-

variant metrics on Eð2Þ is characterized by the set

LðEð2ÞÞ ¼ fðl1; l2Þ A R2 : l1 > l2 > 0 or l1 ¼ l2 ¼ 1g;

where the case that l1 ¼ l2 ¼ 1 corresponds to the local Euclidean metric. Next

let ðM; gÞ be Eð1; 1Þ with any left invariant metric g. Then the triple fl1; l2; l3g
consists of zero, positive, and negative constants. We may suppose l1 > 0, l2 < 0,

and l3 ¼ 0. Moreover the set of isometry classes of left invariant metrics on

Eð1; 1Þ is characterized by the set

LðEð1; 1ÞÞ ¼ fðl1; l2Þ A R2 : l1 > 0 > l2 b�l1g:

Refer to [4] for these. In these cases the principal Ricci curvatures of the left

invariant metric g corresponding to ðl1; l2Þ A LðEð2ÞÞ (or LðEð1; 1ÞÞ) are cal-

culated as follows:

rðE1Þ ¼ ðl2
1 � l2

2Þ=2; rðE2Þ ¼ ðl2
2 � l2

1Þ=2; rðE3Þ ¼ �ðl1 � l2Þ2=2:ð2:5Þ

Here we note that the signature of Ricci quadratic form r is ðþ;�;�Þ except for

the case of Eð2Þ that l1 ¼ l2 ¼ 1 and the case of Eð1; 1Þ that l1 ¼ �l2. Also, it is

known that for any left invariant metric of these cases the isometry group of

ðM; gÞ has three dimension except for the local Euclidean case of Eð2Þ. Hence,

for any left invariant metric but for that case, the connected component of the
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identity in the isometry group is equal to the group of all the left translations,

thus, it is isomorphic to Eð2Þ or Eð1; 1Þ.

3. Grassmann Geometry on the Lie Group Eð2Þ

In this section we consider the orbital Grassmann geometry of surfaces in

Eð2Þ, denoted by M, with any left invariant metric g but for the local Euclidean

case. Let G denote the connected component of the identity in the isometry group

of ðM; gÞ. Then, since G is the group of left translations, a G-orbit in the

Grassmann bundle G2ðTMÞ is a homogeneous subbundle of 2-planes on which G

acts simply and transitively. Hence, the orbit space SðGÞ, the set of all the G-

orbits, is identified with the Grassmann manifolds G2ðTeMÞ of linear planes in

TeM, thus, the Grassmann manifold G2ðlÞ where l denotes the Lie algebra of M.

This is also bijective to the real projective plane of all the linear lines in l.

Let S2ðlÞ be the unit sphere in l centered at the origin and for W A S2ðlÞ,
let PðWÞ denote the linear plane orthogonal to W . Then, by assigning to W

the sectional curvature kðPðWÞÞ of the plane PðWÞ, we can induce a curvature

function kðWÞ on S2ðlÞ such that kðWÞ ¼ kð�WÞ. Let ðl1; l2Þ be the pair in

LðEð2ÞÞ corresponding to g and fE1;E2;E3g be the orthonormal basis of l given

in (2.1). Moreover identify a vector W in S2ðlÞ with an element ðw1;w2;w3Þ in R3

by the relation W ¼ w1E1 þ w2E2 þ w3E3. Then, by the formula (2.4), it follows

kðWÞ ¼ � ðl1 � l2Þ2

4
� l2

1 � l2
2

2
w2

1 þ l2
1 � l2

2

2
w2

2 þ ðl1 � l2Þ2

2
w2

3 :ð3:6Þ

Next for W A S2ðlÞ let OðWÞ be the G-orbit containing the 2-plane PðWÞ.
We note that OðWÞ ¼ Oð�WÞ. Then we have the following.

Proposition 3.1. There exists an OðWÞ-surface if and only if W ¼ ð0; 0;G1Þ,
thus, PðWÞ is the w1w2-plane.

Proof. Note that OðWÞ can be regarded as a distribution of 2-planes on

M. Then there exists an OðWÞ-surface if and only if the distribution OðWÞ is

involutive. Since OðWÞ is invariant by the left translations, we may take a

suitable basis fU ;Vg of PðWÞ and see whether or not it holds ½U ;V � A PðWÞ,
equivalently, h½U ;V �;Wi ¼ 0.

Let W ¼ ðw1;w2;w3Þ. We first suppose that it holds that w1 ¼ w2 ¼ w3. In

this case it follows W ¼Gð1=
ffiffiffi
3

p
Þð1; 1; 1Þ. Put U ¼ ð1;�1; 0Þ and V ¼ ð1; 0;�1Þ.

Then, the pair fU ;Vg are an orthogonal basis of PðWÞ and moreover it follows
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h½U ;V �;Wi ¼Gðl1 þ l2Þ=
ffiffiffi
3

p
. Since l1 and l2 are positive, this value is not

zero.

We next suppose that it doesn’t hold that w1 ¼ w2 ¼ w3. In this case we put

U ¼ ðw2 � w3;w3 � w1;w1 � w2Þ; V ¼ W �U :

Then, U and V are orthogonal to W , and moreover since U 0 0, they are

linearly independent. Hence, the pair fU ;Vg is a basis of PðWÞ. Moreover it

follows

h½U ;V �;Wi ¼ 2ð1 � w1w2 � w1w3 � w2w3Þðl1w
2
1 þ l2w

2
2Þ:

If l1w
2
1 þ l2w

2
2 0 0, it holds h½U ;V �;Wi ¼ 0 if and only if w1w2 þ w1w3 þ

w2w3 ¼ 1. This, together with the equation w2
1 þ w2

2 þ w2
3 ¼ 1, induces the

equation ðw1 � w2Þ2 þ ðw2 � w3Þ2 þ ðw3 � w1Þ2 ¼ 0. But this is not the case.

Hence it follows l1w
2
1 þ l2w

2
2 ¼ 0. This induces w1 ¼ w2 ¼ 0, which implies W ¼

ð0; 0;G1Þ. r

Remark. Using the Lagrange’s method of indeterminate coe‰cients, we can

see that the critical points of the curvature function kðWÞ on S2ðlÞ given by (3.6)

are:

W ¼ ðG1; 0; 0Þ; ð0;G1; 0Þ; ð0; 0;G1Þ;

and the critical value where W ¼ ð0; 0;G1Þ is ðl1 � l2Þ2=4, which is neither the

maximum nor the minimum of the curvature function k. We here remark that

these calculations need the condition l1 > l2.

Now we consider the OðWÞ-geometry when W ¼ ð0; 0;G1Þ. Hereafter we

rewrite this W by W0. To see geometric properties of the OðW0Þ-surfaces, namely,

the leaves of OðW0Þ, we decompose the Levi-Civita connection ‘ of ðM; gÞ into

the tangent part D and the normal part P of the distribution OðW0Þ. More

pricisely,

‘XY ¼ DXY þPðX ;YÞ

for vector fields X ;Y A OðW0Þ. Then the restrictions of D and P onto each leaf

give the Levi-Civita connection on the leaf with respect to the metric induced

from g, and the second fundamental form of the leaf, respectively. Now, taking

note of the fact that E1 and E2 are left invariant base fields of OðW0Þ, we can

calculate the Levi-Civita connection ‘ of ðM; gÞ as follows:

‘E1
E1 ¼ ‘E2

E2 ¼ 0; ‘E1
E2 ¼ ‘E2

E1 ¼ � l1 � l2

2
E3:ð3:7Þ
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Consequently it follows DEi
Ej ¼ 0 for i ¼ 1; 2, and

PðE1;E1Þ ¼ PðE2;E2Þ ¼ 0; PðE1;E2Þ ¼ PðE2;E1Þ ¼ � l1 � l2

2
E3:ð3:8Þ

Summing up the arguments in this section, we have the following theorem.

Theorem 3.2. Let ðM; gÞ be the group Eð2Þ with any left invariant metric g

which is not the local Euclidean metric, and let ðl1; l2Þ be the element in LðEð2ÞÞ
corresponding to g.

Then, among G-orbital Grassmann geometries of surfaces in M, the OðW0Þ-
geometry is the only one which has associated surfaces.

Moreover, any OðW0Þ-surface S is a minimal flat surface in M such that (i) it

has not a totally geodesic point, and (ii) kðTpSÞ ¼ ðl1 � l2Þ2=4 > 0 for any p A S.

Remark. A maximal OðW0Þ-surface, a maximal leaf of OðW0Þ, is complete

since OðW0Þ is a left-invariant distribution on the Lie group M. Moreover, since

any left translation is an isometry of ðM; gÞ, all the maximal OðW0Þ-surfaces are

congruent to each other.

4. Grassmann Geometry on the Lie Group Eð1; 1Þ

Next we consider the orbital Grassmann geometry of surfaces in Eð1; 1Þ with

any left invariant metric g. We denote by ðM; gÞ this Riemannian manifold and

we retain the same notations as in the previous section. For example, G is the

group of left translations of M, l is the Lie algebra of left invariant vector fields

on M, k is the curvature function on the unit sphere S2ðlÞ, and so on.

Now let ðl1; l2Þ be the pair in LðEð1; 1ÞÞ corresponding to g and fE1;E2;E3g
be the orthonormal basis of l given in (2.1). Moreover for W A S2ðlÞ, let wi,

i ¼ 1; 2; 3, be the i-th coe‰cients of W with respect to the basis fE1;E2;E3g.

Then, similarly to the case of Eð2Þ, the curvature function kðWÞ is given by

kðWÞ ¼ � ðl1 � l2Þ2

4
� l2

1 � l2
2

2
w2

1 þ l2
1 � l2

2

2
w2

2 þ ðl1 � l2Þ2

2
w2

3 :ð4:9Þ

We here note that though the form of kðWÞ is the same as in the case of Eð2Þ, in

this case l1 is positive and l2 is negative, while in the case of Eð2Þ both l1 and l2

are positive.

Next for W A S2ðlÞ we consider the G-orbit OðWÞ containing the 2-plane

PðWÞ, and give the condition for the existence of an OðWÞ-surface.
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Proposition 4.1. There exists an OðWÞ-surface if and only if the coe‰cients

wi of W satisfy the following equations:

w2
1 þ w2

2 þ w2
3 ¼ 1 and l1w

2
1 þ l2w

2
2 ¼ 0:ð4:10Þ

Proof. Similarly to Proposition 3.1, we divide the proof into case (i) that

w1 ¼ w2 ¼ w3ð¼G1=
ffiffiffi
3

p
Þ and case (ii) that it doesn’t hold, and for each case take

the same left invariant vector fields U and V as in the proposition. Then, the

condition for the existence of a OðWÞ-surface is similarly given by the equation

h½U ;V �;Wi ¼ 0.

For case (i), since h½U ;V �;Wi ¼Gðl1 þ l2Þ=
ffiffiffi
3

p
, the above equality occurs

only for the case when l1 þ l2 ¼ 0. For case (ii), similarly to Proposition 3.1,

the equation holds if and only if l1w
2
1 þ l2w

2
2 ¼ 0. These prove our proposition.

r

Remark. Similarly to the case of Eð2Þ, the orbit space SðGÞ of G-orbits

can be identified with the real projective plane over l. Then the set of G-orbits

which have the associated surfaces coincides with two projective lines defined by

the second equation of (4.10).

Also, using the Lagrange’s method of indeterminate coe‰cients, we can see

that the set of critical points of the curvature function kðWÞ on S2ðlÞ given by

(4.9) is:

fðG1; 0; 0Þ; ð0;G1; 0Þ; ð0; 0;G1Þg

when l1 þ l2 0 0, and fð0; 0;G1ÞgU fðw1;w2;w3Þ;w2
1 þ w2

2 ¼ 1;w3 ¼ 0g when

l1 þ l2 ¼ 0. Particularly, if we regard ð0; 0;G1Þ as a point in the projective plane,

it gives the unique common point on the above two projective lines, and also

attains the maximum values ðl1 � l2Þ2=4 of kðWÞ.

Now we take a W which satisfies the equations (4.10), and consider the

OðWÞ-geometry for such a W . First, using the formula (2.2), we concretely write

down the Levi-Civita connection ‘ of ðM; gÞ by the terms of li’s and Ei’s:

‘E1
E2 ¼ ‘E2

E1 ¼ �ðl1 � l2Þ=2E3;ð4:11Þ

‘E1
E3 ¼ ðl1 � l2Þ=2E2; ‘E2

E3 ¼ ðl1 � l2Þ=2E1;

‘E3
E1 ¼ ðl1 þ l2Þ=2E2; ‘E3

E2 ¼ �ðl1 þ l2Þ=2E1;

‘E1
E1 ¼ ‘E2

E2 ¼ ‘E3
E3 ¼ 0:

To see geometric properties of the OðWÞ-surfaces, namly, the leaves of the

distribution OðWÞ, we next see the Gauss curvature kD and the second fun-
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damental form P of leaves. Let W ¼ ðw1;w2;w3Þ. Then, by the relations (4.10)

between wi’s, the formula (4.9) of kðWÞ is rewritten in the term of w1 as follows:

kðWÞ ¼ ðl1 � l2Þ2

4
þ 2l1ðl2 � l1Þw2

1 :ð4:12Þ

Now we divide the case into two according as w1 is zero or not.

First suppose w1 0 0, and set X ¼ ðw2;�w1; 0Þ and Y ¼ ðw3; 0;�w1Þ. Then

the pair fX ;Yg is a basis of OðWÞ. By the fomulas (4.11), it follows

‘XX ¼ w1w2ðl1 � l2ÞE3; ‘YY ¼ �w1w3l1E2;

‘XY ¼ l1 � l2

2
w1ð�w2E2 þ w3E3 þ w1E1Þ;

‘YX ¼ w1

2
fðl1 � l2Þw3E3 � ðl1 þ l2Þw2E2 � ðl1 þ l2Þw1E1g;

and moreover by taking the normal components of these,

PðX ;X Þ ¼ w1w2w3ðl1 � l2ÞW ; PðY ;Y Þ ¼ �w1w2w3l1W ;ð4:13Þ

PðX ;Y Þ ¼ l1 � l2

2
w1ð1 � 2w2

2ÞW ¼ l1 � l2

2
w1 1 þ 2l1

l2
w2

1

� �
W ;

PðY ;X Þ ¼ w1

2
fðl1 � l2Þw2

3 � ðl1 þ l2Þw2
2 � ðl1 þ l2Þw2

1gW

¼ l1 � l2

2
w1 1 þ 2l1

l2
w2

1

� �
W

where the second equations in the last two equations are obtained by using (4.10).

Also, by the first equation of (4.10), it follows

hX ;XihY ;Yi� hX ;Yi2 ¼ ðw2
1 þ w2

2Þðw2
1 þ w2

3Þ � w2
2w

2
3 ¼ w2

1 :ð4:14Þ

Then, by (4.12), (4.13), (4.14) and the Gauss equation of leaves, the Gauss

curvature kDðWÞ is given as follows:

kDðWÞ ¼ kðWÞ � hPðX ;Y Þ;PðX ;YÞi� hPðX ;XÞ;PðY ;YÞi
hX ;XihY ;Yi� hX ;Yi2

ð4:15Þ

¼ ðl1 � l2Þ2

4
þ 2l1ðl2 � l1Þw2

1 � ðl1 � l2Þ2ð1 � 2w2
2Þ

2

4

� l1ðl1 � l2Þw2
2w

2
3

¼ �l1ðl1 � l2Þw2
1 < 0
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where the equations (4.10) are again used. Next, to calculate the mean curvature

H of leaves, we make an orthonormal basis fX̂X ; ŶYg from fX ;Yg by the Schmidt

orthonormalization method. Namely let

X̂X ¼ X=kXk; ŶY ¼ ðY � hY ; X̂XiX̂XÞ=kY � hY ; X̂XiX̂Xk:

Then, using the equations (4.10), we can see that

hH;Wi ¼ hPðX̂X ; X̂XÞ þPðŶY ; ŶY Þ;Wi ¼ �w2w3

w1
ðl1w

2
1 þ l2w

2
2Þ ¼ 0:ð4:16Þ

Hence the leaves of OðWÞ are minimal.

Next suppose w1 ¼ 0. In this case w2 ¼ 0 by (4.10). Set X ¼ ð1; 0; 0Þ and

Y ¼ ð0; 1; 0Þ. We note that the pair fX ;Yg is an orthonormal basis of OðWÞ.
Then, by (4.11) and (4.12), it follows

‘XX ¼ ‘YY ¼ 0; ‘XY ¼ ‘YX ¼ �ðl1 � l2Þ=2E3;

PðX ;X Þ ¼ PðY ;YÞ ¼ 0; PðX ;Y Þ ¼ PðY ;X Þ ¼ �ðl1 � l2Þ=2E3;ð4:17Þ

and moreover

kðWÞ ¼ ðl1 � l2Þ2=4:ð4:18Þ

Hence by (4.17) it follows H ¼ 0, and by (4.18) and the Gauss equation, it

follows kDðWÞ ¼ 0. These imply that the leaves of OðWÞ are flat minimal

surfaces.

Summing up the arguments in this section, we have the following theorem.

Theorem 4.2. Let ðM; gÞ be the group Eð1; 1Þ with any left invariant metric g

and ðl1; l2Þ the element in LðEð1; 1ÞÞ corresponding to g. Moreover take W A S2ðlÞ
and let wi, i ¼ 1; 2; 3, be the coe‰cients of W with respect to the orthonormal basis

fE1;E2;E3g of l.

Then, an OðWÞ-geometry has an OðWÞ-surface if and only if the coe‰cients

wi of W satisfy the equations (4.10). Under this condition, the curvature function

kðWÞ moves the values between the positive maximum ðl1 � l2Þ2=4 and the

minimum ðl1 þ ð3 þ 2
ffiffiffi
2

p
Þl2Þðl1 þ ð3 � 2

ffiffiffi
2

p
Þl2Þ=4.

Moreover, for such a OðWÞ-geometry, the OðWÞ-surfaces are minimal surfaces

in M with the constant nonpositive curvature �l1ðl1 � l2Þw2
1 , where 0aw2

1 a

l2=ðl2 � l1Þ. In particular they are flat if and only if w1 ¼ 0, thus, w2 ¼ 0,

equivalently W ¼ ð0; 0;G1Þ.
Also, an OðWÞ-geometry has the totally geodesic OðWÞ-surfaces if and only if

l1 þ l2 ¼ 0 and the coe‰cient w3 is equal to 0.
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Proof. The first claim is the one of Proposition 4.1. From (4.10), we can

see that 0aw2
1 a l2=ðl2 � l1Þ. Then, by (4.12), we can calculate the bounds of

KðWÞ for such W ’s.

The second claim has been done in the arguments of this section. We prove

the third claim. We first note that if it is the case when w1 ¼ 0, the OðWÞ-surfaces

are not totally geodesic and in this case w3 0 0 by (4.10). Hence we may consider

the case when w1 0 0. In this case it follows w2 0 0 by (4.10). We now recall

the formulas (4.13) for the second fundamental form of OðWÞ-surfaces. In the

formulas, it holds w3 ¼ 0 if and only if PðX ;XÞ ¼ 0. Also, if w3 ¼ 0, it holds

PðY ;YÞ ¼ 0 and then it holds PðY ;XÞ ¼ 0 if and only if l1 þ l2 ¼ 0. These

prove the third claim. r

Remark. As described in the last remark of the previous section, a maximal

OðWÞ-surface, if it exists, is complete, and then all the maximal OðWÞ-surfaces

are congruent to each other.

Remark. The solution of the equations (4.10) can be parametrized by the

coe‰cient w1 as follows:

w1;G

ffiffiffiffiffiffiffiffiffi
� l1

l2

s
w1;G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðl2 � l1Þ

l2
w2

1

s !
;

where the signs of the 2nd and the 3rd parts can be taken independently. Since

OðWÞ ¼ Oð�WÞ, we may here assume that w1 b 0. Then the above paramet-

rization gives that of all the G-orbital OðWÞ-geometries which have the associated

surfaces. This parametization is devided into 4 series by the di¤erence of the signs

of the 2nd and the 3rd parts. In each series if two geometries are di¤erent, their

associated surfaces are not congruent to each other. Because they have di¤erent

Gauss curvatures.

Also, these 4 series look very similar from geometric properties of the

associated surfaces. In fact, consider the linear transformation j of l defined by

the equation jðw1;w2;w3Þ ¼ ðw1;�w2;�w3Þ. Then it is an isometric automor-

phism of l and at the same time changes the signs of the 2nd and the 3rd

components of the above parametrization. So, if in place of Eð1; 1Þ, we con-

sider its universal covering, j induces an isometric automorphism on it and

consequently it holds jðOðWÞÞ ¼ OðjðWÞÞ. Hence the OðWÞ-geometry and the

OðjðWÞÞ-geometry on the universal covering are equivalent to each other. But we

don’t know a relationship between 2 series obtained by changing the either sign
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of the 2nd and the 3rd parts. In this situation, the linear isometry f of l defined

by the equation fðw1;w2;w3Þ ¼ ðw1;�w2;w3Þ is not an automorphism of l.

Remark. We last remark about a relation between the Grassmann geo-

metries of Eð2Þ and Eð1; 1Þ. Consider the complexification lC of the Lie algebra l

of Eð1; 1Þ and put

F1 ¼
ffiffiffiffiffiffiffi
�1

p
E1; F2 ¼ E2; F3 ¼

ffiffiffiffiffiffiffi
�1

p
E3:

Then these Fi generate a real form of lC and satisfy that

½F1;F2� ¼ 0; ½F2;F3� ¼ l1F1; ½F3;F1� ¼ ð�l2ÞF2;

where �l2 b l1 > 0. Hence the real form is isomorphic to the Lie algebra Eð2Þ.
From this fact and the results of Theorem 4.2, it may be expected that there

exist somewhat relations between two OðWÞ-geometries of Eð2Þ and Eð1; 1Þ
when W ¼ ð0; 0;G1Þ, and between the local Euclidean geometry of Eð2Þ and the

geometry of Eð1; 1Þ when l1 þ l2 ¼ 0 and w3 ¼ 0.
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