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TOTAL CURVATURE OF NONCOMPACT PIECEWISE
RIEMANNIAN $2$-POLYHEDRA

By

Jin-ichi ITOH and Fumiko OHTSUKA

Abstract. In this paper, we treat piecewise Riemannian 2-polyhedra
which are combinatorial 2-polyhedra such that each 2-simplex is
isometric to a triangle bounded by three smooth curves on some
Riemannian 2-manifold. We will introduce the total curvature $C(X)$

of a piecewise Riemannian 2-polyhedron $X$ not only in the compact
case but also in the noncompact case, and obtain some general-
izations of the Gauss-Bonnet theorem and the Cohn-Vossen theorem.

Furthermore, we will show that the difference between $C(X)$ and
some value conceming to the topology of $X$ coincides with some
expanding growth rate of $X$ .

\S 1. Introduction

It is well-known as the Gauss-Bonnet theorem that the total curvature of
a compact Riemannian 2-manifold $M$ without boundary is equal to $2\pi\chi(M)$ ,
where $\chi(M)$ is the Euler characteristic of $M$ , and also known as the Cohn-Vossen
theorem that the total curvature of noncompact $M$ is not greater than $2\pi\chi(M)$ .
These theorems are very famous and elegant, and it is important to generalize
them to wider classes of objects. There are many approaches to do it. For
example, Banchoff’s result [1] is one of excellent generalizations, whose object is
a piecewise linear finite polyhedron of an arbitrary dimension, and Ballmann-
Buyalo’s result [2] is on a cocompact piecewise Riemannian 2-polyhedron. But
these results essentially treat the case of compact objects and the total curvature
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is determined only by the Euler characteristic. We would like to investigate the
noncompact case, which could probably lead to more attractive results.

The purpose of our study in this paper is to investigate some properties of
noncompact piecewise Riemannian 2-polyhedra which are combinatorial infinite 2-
polyhedra such that each 2-simplex is isometric to the face of a triangle consisting
of three smooth curves on some Riemannian 2-manifold. First, we will introduce
the total curvature $C(X)$ of a compact piecewise Riemannian 2-polyhedron $X$ and
prove the following generalization of the Gauss-Bonnet theorem.

THEOREM 3.2. Let $X$ be a compact piecewise Riemannian 2-polyhedron and
$\mathscr{B}X$ be the closure of the set of all free faces of X. Then

$C(X)+\sum_{p\in 9X}k(p)+\int_{9X}\kappa d_{X}=2\pi\chi(X)$ ,

where $\chi(X)$ is the Euler characteristic of $X,$ $k(p)$ the singular curvature at $p$ and
$\kappa$ the geodesic curvature.

Note that, for a Riemannian manifold $M$ with boundary, the boundary $\partial M$

coincides with the closure of the set of all free faces of $M$ for any triangulation of
$M$ . Therefore, for a piecewise Riemannian 2-manifold $X$ , we shall consider $\mathscr{B}X$

as the boundary of $X$ . And we also note that, for a point $p$ on the boundary of a
Riemannian manifold, $k(p)$ means the exterior angle at $p$ .

We would like to notice that in the case of $\mathscr{B}X=\emptyset$ , the above theorem
coincides with the Gauss-Bonnet Formula 2.3 (the case $\Gamma=\{id\}$ ) in [2]. However,
to investigate the noncompact case, it is important how to consider and treat
“boundaries” of finite 2-polyhedra. Therefore we will introduce precise definitions
of the boundary $\mathscr{B}X$ and the total curvature $C(X)$ , and prove Theorem 3.2.

Next, let $X$ be a finitely connected complete piecewise Riemannian 2-
polyhedron without free faces. Since $X$ is finitely connected, the topological
ideal boundary $X_{\infty}$ of $X$ is defined naturally. For such an noncompact $X$ , we
will define the total curvature $C(X)$ and w-total curvature $\tilde{C}(X)$ . If $X$ admits
total curvature $C(X)$ , then $X$ also admits w-total curvature $\tilde{C}(X)$ , and then
$C(X)=\tilde{C}(X)$ provided $\mathscr{B}X=\emptyset$ . For Riemannian 2-manifolds, to admit total
curvature is equivalent to admit w-total curvature. But for 2-polyhedra, there is
an essential difference, and we will show it in Section 4. Then we will prove the
following theorem of the Cohn-Vossen type.

THEOREM 4.5. If $X$ admits total curvature $C(X)$ , then
$C(X)\leqq 2\pi\chi(X)+\pi\chi(X_{\infty})$ .



Total Curvature of Noncompact 2-Polyhedra 473

We will also illustrate that the above theorem dose not hold under w-total
curvature.

Furthermore, conceming the above generalized Cohn-Vossen theorem, we will
investigate the significance of the difference between the total curvature and the
upper estimate:

$2\pi\chi(X)+\pi\chi(X_{\infty})-C(X)$ .

Let $X$ be a finitely connected, noncompact complete piecewise Riemannian
2-polyhedron admitting total curvature $C(X)$ . Then there is a compact domain
$K$ of $X$ with a piecewise smooth boundary such that $X\backslash K$ is homeomorphic to
$X_{\infty}\times R$ . We will divide $X\backslash K$ into some suitable simplices $\{e_{\lambda}\}(\lambda\in\Lambda)$ . For a
precise definition, see Section 5. For each surface component $e_{\lambda}$ of $X\backslash K$ , let $d_{\lambda}$ be
the interior metric on the closure of $e_{\lambda}$ induced from the piecewise Riemannian
metric $d$ on $X$ , and let $c_{t}:=\bigcup_{\lambda}\{x\in e_{\lambda}|d_{\lambda}(x, K)=t\}$ and $K_{t}:=\bigcup_{\lambda}\{x\in e_{\lambda}|$

$d_{\lambda}(x, K)\leqq t\}\cup K$ . We denote by $L(t)$ the length of $c_{l}$ and by $A(t)$ the area of $K_{t}$ .
Then we have

THEOREM 5.3.

$\lim_{t\rightarrow\infty}\frac{L(t)}{t}=\lim_{\iota\rightarrow\infty}\frac{2A(t)}{t^{2}}=2\pi\chi(X)+\pi\chi(X_{\infty})-C(X)$

This is a generalization of Fiala’s result in [5] (cf. Hartman [6] and Shiohama
[11]), and we would like to suggest to refer to [12] conceming to an isoperimetric
problem for infinitely connected Riemannian manifolds.

We would like to prove the above theorem under simpler situations. However,
for example, it is not true for $c_{t}$ $:=\{x\in X\backslash K|d(x, K)=t\}$ , or for $c_{l}$ being a
distance sphere from an arbitrary fixed point on $X$ . We will also illustrate the
counter example in this case.

\S 2. Preliminaries

We begin with reviewing relevant basic terminologies. For a metric space
(X, $d$) and an interval $I\subset R$ , a curve $\alpha$ : $I\rightarrow X$ is called a geodesic if it is locally
distance minimizing. In what follows we assume that $\alpha$ is parameterized by arc
length. If it is globally distance minimizing, then we call $\alpha$ a minimizing geodesic.
In particular, a minimizing geodesic defined on $[0, \infty$ ) is called a ray. We some-
times identify geodesics with their images.

Now we introduce the definition of a piecewise Riemannian 2-polyhedron.
Let $X$ be a 2-dimensional locally finite simplicial complex. In this paper, the word
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“simplex” means an open simplex. In what follows, we also denote the point-set
of union of all the simplices of $X$ , the polyhedron of $X$ , by the same symbol
X. We introduce a natural metric $d$ on a 2-dimensional polyhedron, simply 2-
polyhedron, $X$ as follows.

First for each 2-simplex $\Delta$ , we take a metric $d_{\Delta}$ on it such that $(\Delta, d_{\Delta})$ is
isometric to some triangle bounded by a piecewise smooth simple closed curve on
a Riemannian 2-manifold whose break points are corresponding to vertices of
$\Delta$ . Here we agree that the induced metric on a l-simplex adjacent to some
2-simplices is independent of the choice of adjacent 2-simplices. Namely, if a
l-simplex $c$ is adjacent to 2-simplices $\Delta_{1},$

$\ldots,$
$\Delta_{n}$ , then the induced metric $d_{i}$ from

$\Delta_{i}$ on $c$ coincides with each other. For each l-simplex which is not a proper face
of any 2-simplex, we may choose any metric. For any pair of points $x,$ $y\in X$ ,
$\gamma:[a, b]\rightarrow X$ is called a piecewise smooth curve from $x$ to $y$ if $\gamma(a)=x,$ $\gamma(b)=y$

and there is a sequence $a=t_{0}<t_{1}<\cdots<t_{k}=b$ such that $\gamma|_{[l_{i- 1},l_{l}]}$ is contained
in a closure of some 2-simplex for each $i$ and is a smooth curve with respect to
the Riemannian metric on the simplex. The length of $\gamma$ is denoted by $l(\gamma):=$

$\sum_{i=1}^{k}l(\gamma|_{[\tau_{\iota- 1},\tau_{l}]})$ , where $l(\gamma|_{|\iota_{j- 1},\iota_{i}]})$ is the length with respect to the differentiable
structure on the simplex. Now we define the metric $d$ by

$ d(x, y);=\inf${ $ l(\gamma)|\gamma$ is a piecewise smooth curve from $x$ to $y$ }.

DEFINITION 2.1. We call such a space (X, $d$ ) a piecewise Riemannian 2-
polyhedron and $d$ a piecewise Riemannian metric. If $d$ is a complete metric, then
(X, $d$) is called a complete piecewise Riemannian 2-polyhedron.

An i-simplex $\Delta$ of a polyhedron $X$ is called a free face if there is only one
$(i+1)$ -simplex of $X$ which contains $\Delta$ as a face. For a piecewise Riemannian
2-polyhedron $X$ , the closure of the point-set of union of free faces is denoted
by $\mathscr{B}X$ . In our case, free faces are either l-dimensional or O-dimensional. The
complement of it, $X\backslash \mathscr{B}X$ , is denoted by $JX$ . It is clear that the definitions are
independent of the choice of divisions of $X$ .

A piecewise Riemannian 2-polyhedron $X$ is said to be piecewise linear if each
2-simplex is isometric to a geodesic triangle on the Euclidean plane $R^{2}$ .

For a point $p$ on a piecewise Riemannian 2-polyhedron $X$ , we denote by $\mathscr{R}_{p}$

the set of all minimizing geodesics emanating from $p$ . For $\alpha,\beta\in \mathscr{R}_{p}$ we define the
angle at $p$ as follows: For an arbitrarily constant $k$ , we denote by $M(k)$ the 2-
dimensional space form of constant sectional curvature $k$ . For a geodesic triangle
$\Delta(\alpha(s)p\beta(t))$ , let $\tilde{\Delta}(\alpha(s)p\beta(t))$ be a geodesic triangle sketched in $M(k)$ whose cor-
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responding edges have same length as $\Delta(\alpha(s)p\beta(t))$ , and let $\angle_{k}(\alpha(s)p\beta(t))\sim$ be the
angle at $p$ of $\tilde{\Delta}(\alpha(s)p\beta(t))$ . Then it is clear that the limit

$\angle_{p}(\alpha,\beta)$
$:=\lim_{s,t\rightarrow 0}\angle_{k}(\alpha(s)p\beta(t))\sim$

exists, which is independent of the choice of $k$ . We call it the angle at $p$

subtended by $\alpha$ and $\beta$ . It is easily seen that the angle $\angle_{p}$ is a pseudo-metric on
$\mathscr{R}_{p}$ and induces an equivalenoe relation $\sim$ defined as follows: $\alpha\sim\beta$ if and only
if $\angle_{p}(\alpha,\beta)=0$ . The completion of the metric space $(\mathscr{R}_{p}/\sim’\angle_{p})$ is denoted by
$(\Sigma_{p}, \angle_{p})$ and is called the space of directions at $p$ . For a subset $Y$ of $X$ , let

$\mathscr{R}_{p^{Y}}:=$ { $\alpha\in \mathscr{R}_{p}|\alpha([0,$ $\epsilon])\subset Y$ for some $\epsilon>0$ }.
The space of directions with respect to $Y$ , denoted by $\Sigma_{p}^{Y}$ , is the completion of
the metric space $\mathscr{R}_{p^{Y}}/\sim$ .

For a point $p$ on a piecewise Riemannian 2-polyhedron $X$ , the regular cur-
vature $K(p)$ is defined as follows: $K(p)$ is the Gaussian curvature if $p$ is on some
open 2-simplex of $X$ or $K(p)=0$ otherwise.

For $p\in X$ , we will define another curvature. Fix a subdivision of $X$ in which
$p$ is a vertex. Then let

$k(p)=\pi(2-\chi(LK(p)))-L(\Sigma_{p})$ ,

where $\chi(LK(p))$ is the Euler characteristic of the point-set of the linked complex
$LK(p)$ of $p$ , that is $\chi(LK(p)):=a_{p}-b_{p}$ , where $a_{p}$ is the number of l-simplices
adjacent to $p$ and $b_{p}$ the number of 2-simplices adjacent to $p$ , and $L$ is the 1-
dimensional Hausdorff measure on $\Sigma_{p}$ . By definition, $LK(p)$ is the sum of simplices
$\sigma$ on $X$ such that the cone with vertex $p$ and base $\sigma$ is also a simplex of X. $k(p)$

is called the singular curvature at $p$ in this paper. It is clear that, if $p$ is not a
vertex of $X$ , then $k(p)=0$ .

\S 3. Compact Case

Let $X$ be a compact piecewise Riemannian 2-polyhedron, namely a poly-
hedron of a finite complex with a piecewise Riemannian metric. In this section,
we will define the total curvature of $X$ , which is a generalization of total cur-
vature of Riemannian manifolds and prove a generalized Gauss-Bonnet theorem.

Let $C(\Delta)$ be the total curvature of a Riemannian 2-manifold $\Delta$ , and put

$e_{reg}(X)$
$:=\sum_{\Delta:2- simplex}C(\Delta)$

,

namely the integral of the regular curvature $K$ on $X$ , which is called the regular
total curvature.



476 Jin-ichi ITOH and Fumiko $0HTSUKA$

Next we will define a singular total curvature. For a 2-simplex $\Delta$ , there is an
isometric triangle $\tilde{\Delta}$ bounded by three smooth curves in a Riemannian 2-manifold
$M(\Delta)$ . Let $c$ be a l-dimensional face of $\Delta$ and $\tilde{c}$ the corresponding smooth curve
on the boundary $\partial\tilde{\Delta}$ . For such a pair $(c, \Delta),$ $\int_{c}\kappa d_{\Delta}$ is defined by the integral of
the geodesic curvature $\kappa$ on $\tilde{c}$, namely $\int_{\overline{c}}\kappa d_{M(\Delta)}$ . Then we define $e_{sing}(X)$ by

$e_{sing}(X)$
$:=\sum_{p\in JX}k(p)+\sum_{(c,\Delta)}\int_{c}\kappa d_{\Delta}$

and call it the singular total curvature of $X$ , where the summation of the second
term is taken over all pairs $(c, \Delta)$ of an open l-simplex $c\subset JX$ and a 2-simplex
$\Delta$ adjacent to $c$ .

Now we define the total curvature as follows.

DEFINITION 3.1. The total curvature $C(X)$ is defined by

$C(X)$ $:=e_{reg}(X)+e_{sing}(X)$ .

Then we have the following generalized Gauss-Bonnet theorem.

THEOREM 3.2. Let $X$ be a compact piecewise Riemannian 2-polyhedron. Then
we have

$C(X)+\sum_{p\in 9X}k(p)+\int_{9X}\kappa d_{X}=2\pi\chi(X)$ ,

where $\chi(X)$ is the Euler characteristic of $X$ .

REMARK 3.3. Since a l-simplex on $\mathscr{B}X$ is a proper face of the unique
2-simplex, the geodesic curvature at a point of $\mathscr{B}X$ is also uniquely determined.
Hence the last term is expressed as above. If $X$ is a Riemannian 2-manifold
with boundary $\partial X$ , then $\mathscr{B}X$ coincides with $\partial X$ and $k(p)$ is the exterior angle
at $p\in \mathscr{B}X$ . Therefore it is a generalization of the Gauss-Bonnet theorem on
Riemannian 2-manifolds.

REMARK 3.4. In the definition of singular total curvature in this paper,
points on the closure of the free faces are treated separately from the other
points. However Banchoff [1] and Ballmann-Buyalo [2] did not divide them in
their definitions of total curvature for compact piecewise linear or Riemannian
polyhedra. If we follow their fashion, we should define the total curvature $\tilde{C}(X)$

of a compact piecewise Riemannian 2-polyhedron $X$ by



Total Curvature of Noncompact 2-Polyhedra 477

$\tilde{C}(X)=e_{reg}(X)+\tilde{e}_{sing}(X)$ ,

where $\tilde{e}_{sing}(X):=\sum_{p\in X}k(p)+\sum_{(c,\Delta)}\int_{c}\kappa d_{\Delta}$ and $c$ is taken over all l-simplex
of $X$ . Then we have $\tilde{C}(X)=2\pi\chi(X)$ , cf. Theorem 4 in [1] and Gauss-Bonnet
Formula 2.3 in [2].

PROOF OF THEOREM 3.2. Let $\mathscr{F}=\{\Delta_{k}\}$ be the open 2-simplices of $X$ ,
$\mathscr{S}=\{c_{j}\}$ the open l-simplices, and V“ the vertices. For a vertex $x\in\gamma a_{X}$ denotes
the number of l-simplices adjacent to $x$ and $b_{x}$ the number of such 2-simplices.
Then, using the Gauss-Bonnet theorem for any 2-simplex $\Delta\in \mathscr{F}$ , we have

$C(X)=e_{reg}X+e_{sing}X$

$=2(\neq \mathscr{F})\pi-$
$\sum_{\Gamma,X\in r,\Delta\in\swarrow(x\in\ovalbox{\tt\small REJECT}\Delta)}(\pi-L(\Sigma_{x}^{\Delta}))-\sum_{\Delta\in\ovalbox{\tt\small REJECT}}\int_{\ovalbox{\tt\small REJECT}\Delta}\kappa d_{\Delta}$

$+\sum_{x\in\gamma\cap JX}(2\pi-a_{X}\pi+b_{X}\pi-L(\Sigma_{x}))+\sum_{(c,\Delta)\in \mathscr{J}\times \mathscr{J},c\subset \mathscr{J}X}\int_{c}\kappa d_{\Delta}$ ,

where $\#\mathscr{F}$ is the cardinal number of $\mathscr{F}$ and $\mathscr{B}\Delta$ is the point-set of union
of proper faces of $\Delta$ . Note that $\sum_{x\in\gamma\cap JX}a_{X}\pi=\sum_{x\in\gamma}a_{X}\pi-\sum_{x\in\gamma\cap 9X}a_{x}\pi=$

$2\pi\neq \mathscr{S}-\sum_{x\in}$ , nesx $ a_{X}\pi$ and $b_{x}\pi-L(\Sigma_{X})=\sum_{\Delta\in F(x\in\ovalbox{\tt\small REJECT}\Delta)}(\pi-L(\Sigma_{X}^{\Delta}))$ . Hence

$C(X)=2(\neq \mathscr{F})\pi-\sum_{x\in Y\cap\ovalbox{\tt\small REJECT} X,\Delta\in\ovalbox{\tt\small REJECT}(x\in\ovalbox{\tt\small REJECT}\Delta)}(\pi-L(\Sigma_{X}^{\Delta}))-\sum_{(c,\Delta)\in \mathscr{J}\times \mathscr{J},c\subset\ovalbox{\tt\small REJECT} X}\int_{c}\kappa d_{\Delta}$

$+2\pi\#(\mathscr{V}\cap JX)-2\pi\#\mathscr{S}+\sum_{x\in\gamma\cap\ovalbox{\tt\small REJECT} X}a_{x}\pi$

$=2\pi\chi(X)-2\pi\#(\gamma\cap \mathscr{B}X)+\sum_{x\in\nu^{\wedge}n\ovalbox{\tt\small REJECT} x}a_{x}\pi$

$-\sum_{x\in Y\cap\ovalbox{\tt\small REJECT} X}(b_{X}\pi-L(\Sigma_{X}))-\int_{\mathscr{D}X}\kappa d_{X}$

$=2\pi\chi(X)-\sum_{x\in\gamma\cap \mathscr{D}X}\{\pi(2-a_{X}+b_{X})-L(\Sigma_{X})\}-\int_{\ovalbox{\tt\small REJECT} X}\kappa d_{X}$

$=2\pi\chi(X)-\sum_{x\in\ovalbox{\tt\small REJECT} X}k(x)-\int_{\ovalbox{\tt\small REJECT} X}\kappa d_{X}$ .

This completes the proof. $\square $
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\S 4. Noncompact Case

To begin with, we will introduce two kinds of definitions of total curvature of
a noncompact complete piecewise Riemannian 2-polyhedron $X$ , which are both
natural.

DEFINITION 4.1. Let $\{D_{i}\}$ be an increasing sequence of compact piecewise
Riemannian 2-polyhedra such that $\cup D_{j}=X$ . If the limit $\lim_{j\rightarrow\infty}C(D_{j})$ exists
on $[-\infty, \infty]$ and is independent of the choice of $\{D_{i}\}$ , then it is called the total
curvature of $X$ and is denoted by $C(X)$ . If $C(X)$ is defined, then $X$ is said to
admit total curvature.

DEFINITION 4.2. Let $e_{reg}(X)$ be the improper integral of $K$ on $X$ , and
$\tilde{e}_{sing}(X):=\sum_{p\in X}k(p)+\sum_{(c,\Delta)}\int_{c}\kappa d_{\Delta}$ provided the sum is absolutely convergent.
Note that $\{p\in X|k(p)\neq 0\}$ is contained in the set of the vertices of $X$ , which
is a countable set. If the sum $e_{reg}(X)+\tilde{e}_{sing}(X)$ makes sense, then it is called the
w-total curvature of $X$ and is denoted by $\tilde{C}(X)$ . If $\tilde{C}(X)$ is defined, then $X$ is said
to admits w-total curvature.

Definition 4.2 is restated as follows: Let $\{D_{i}\}$ be an increasing sequence
of a compact piecewise Riemannian 2-polyhedron $X$ such that $\cup D_{i}=X$ . We
denote by $\partial D_{l}$ the topological boundary of $D_{j}$ as a subset of $X$ . If the limit
$\lim_{j\rightarrow\infty}\{\tilde{C}(D_{j})-\sum_{p\in\partial D_{j}}k(p)-\sum_{(c,\Delta),c\subset\partial D_{i}}\int_{c}\kappa d_{\Delta}\}$ exists on $[-\infty, \infty]$ and is in-
dependent of the choice of $\{D_{j}\}$ , then it is called the w-total curvature of $X$ and is
denoted by $\tilde{C}(X)$ . If $\tilde{C}(X)$ is defined, then $X$ is said to admit w-total curvature.

It is easily seen that if a piecewise Riemannian 2-polyhedron $X$ without free
faces admits total curvature $C(X)$ , then $X$ admits w-total curvature $\tilde{C}(X)$ and
$\tilde{C}(X)=C(X)$ .

Note that, for a Riemannian 2-manifold without boundary, above two defi-
nitions are equivalent, but admitting total curvature is strictly stronger than ad-
mitting w-total curvature for a piecewise Riemannian 2-polyhedron without free
faces, which is shown in the following example.

EXAMPLE 4.3. We will illustrate an example which admits w-total curvature
and dose not admit total curvature.

Let $X$ be a piecewise linear 2-polyhedron consisting of a flat cylinder at-
taching a broken flat strip defined as follows:
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$X$ $:=\{(x_{1}, x_{2}, x_{3})\in R^{3}|(x_{1}, x_{2})\in A\}$

$\cup\{(x_{1},x_{2}, x_{3})\in R^{3}|(x_{1}, x_{3})\in B, 0\leqq x_{2}\leqq 3\}$ ,

where $A:=$ { $(x_{1},$ $x_{2})\in R^{2}|0\leqq x_{1}\leqq 3,$ $x_{2}=0$ or $3$ } $\cup\{(x_{1}, x_{2})\in R^{2}|x_{1}=0$ or 3,
$0\leqq x_{2}\leqq 3\}$ and $B:=\{(\iota+1, t+2n)\in R^{2}|0\leqq t\leqq 1,n\in Z\}\cap\{(2-t, t+2n+1)$

$\in R^{2}|0\leqq t\leqq 1,$ $n\in Z$ }. See Figure 1. Then $X$ does not admit total curvature, but
w-total curvature.

Figure 1. $A,$ $B$ and $X$

In fact, since $k(x)=0$ for any point $x\in X$ and $\int_{c}\kappa d_{\Delta}=0$ for any pair $(c, \Delta)$ ,
$X$ admits w-total curvature

$\tilde{C}(X)=e_{reg}(X)+\tilde{e}_{sing}(X)=0$ .

On the other hand, we will take two increasing sequences $\{E_{j}\}$ and $\{D_{i}\}$

defined by

$E_{l}$ $:=\{(x_{1}, x_{2},x_{3})\in X|-2i\leqq x_{3}\leqq 2i\}$ and

$D_{l}$ $:=E_{j}\cup\{(x_{1}, x_{2}, x_{3})\in X|x_{1}\leqq x_{3}-2i+1,2i\leqq x_{3}\leqq 2i+1\}$

$\cup\{(x_{1}, x_{2}, x_{3})\in X|x_{1}\leqq 2i+3-x_{3},2i+1\leqq x_{3}\leqq 2i+2\}$ .

Then we have $C(E_{i})=0$ because $e_{reg}(E_{i})=e_{sing}(E_{i})=0$ , and $ C(D_{i})=\pi$ be-
cause $k(p)=\pi/2$ for $p=(2,0,2i+1)$ or $(2,3,2i+1)$ . Note that two points
$(1,0,2i),$ $(1,3,2i)\in D_{i}$ are on $\mathscr{B}D_{i}$ . Therefore we have

$\lim_{i\rightarrow\infty}C(E_{j})\neq\lim_{i\rightarrow\infty}C(D_{i})$ ,

which implies that $X$ does not admit total curvature.
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As to define the Euler characteristic of noncompact piecewise Riemannian
2-polyhedron $X$ , there may be several manners. In this paper, we will investigate
the following simplest case.

DEFINITION 4.4. A noncompact piecewise Riemannian 2-polyhedron $X$ is said
to be finitely connected, if it is homeomorphic to a compact 2-polyhedron $\tilde{X}$ with
finitely many points $\{p_{1}, \ldots, p_{n}\}$ removed.

For such a 2-polyhedron $X$ , let $L_{l}$ be the point-set of the linked complex
$LK(p_{i})$ of $p_{j}$ on $\tilde{X}$ , and $X_{\infty}$ the disjoint union of $\{L_{j}\}$ . By definition, $LK(p_{j})$ is
the sum of simplices $\sigma$ on $\tilde{X}$ such that the cone with vertex $p_{i}$ and base $\sigma$ is also
a simplex of $\tilde{X}$ . We may assume that $ L_{j}\cap L_{j}=\emptyset$ for $l\neq j$ by taking a sub-
division if necessary. Then there is a large compact set $D$ on $X$ such that $X\backslash D$ is
homeomorphic to $X_{\infty}\times R$ . Since $X$ is homotopic to $D$ , the Euler characteristic $\chi(X)$

of $X$ is, by definition, equal to $\chi(\tilde{X})-n+\chi(X_{\infty})$ . Note that $\tilde{X}$ is a finite polyhedron
but $X$ is not so, that is, the structure of $X$ as a polyhedron is quite different from
that of $\tilde{X}$ . Now, we have the following theorem of a Cohn-Vossen type.

THEOREM 4.5. Let $X$ be a finitely connected noncompact complete piecewise
Riemannian 2-polyhedron without free faces admitting total curvature. Then we have

$C(X)\leqq 2\pi\chi(X)-\pi\chi(X_{\infty})$ .

REMARK 4.6. If $X$ is a Riemannian 2-manifold without boundary, then
$\chi(X_{\infty})=0$ . Hence the above theorem coincides with Theorem 6 in [4]. For an
odd-dimensional piecewise linear polyhedron $X$ without free faces, on which a
total curvature $C(X)$ can be also defined similarly, it holds that

$C(X)=0=2\pi\chi(X)-\pi\chi(X_{\infty})$ .

(For the definition and the proof, see \S 6. Appendix below.)

REMARK 4.7. In Theorem 4.5, it is an essential assumption that $X$ admits
total curvature. We will illustrate an example (Example 4.8) of a finitely connected
noncompact piecewise Riemannian 2-polyhedron $X$ without free faces admitting
w-total curvature such that $\tilde{C}(X)>2\pi\chi(X)-\pi\chi(X_{\infty})$ .

PROOF OF THEOREM 4.5. Since $X$ is finitely connected, $\chi(X)$ and $\chi(X_{\infty})$ are
finite. Therefore if $ C(X)=-\infty$ , then the statement is clear. So we assume that
$ C(X)\neq-\infty$ . Hence $ e_{reg}^{-}(X):=\int_{X}K^{-}d_{X}<\infty$ and $ e_{sing}^{-}(X):=\sum k^{-}<\infty$ , where
$K^{-};=\max\{-K, 0\}$ and $k^{-}:=\max\{-k, 0\}$ .
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Now we will take an increasing sequence $\{D_{i}\}$ of compact piecewise Rie-
mannian 2-polyhedra such that $X=\cup D_{i}$ and $X\backslash D_{i}$ is homeomorphic to
$\partial D_{j}\times R$ , where $\partial D_{i}$ is the topological boundary of $D_{i}$ as a subset of $X$ . This
is possible also by the finite connectivity of $X$ . Note that $\chi(X)=\chi(D_{j})$ and
$\chi(X_{\infty})=\chi(\partial D_{j})$ . We may assume that $\partial D_{j}=\mathscr{B}D_{j}$ for such a domain $D_{j}$ , since $X$

has no free faces. Then, since $X$ admits total curvature, we have

$C(X)=\lim_{j\rightarrow\infty}C(D_{j})$

$=\lim_{i\rightarrow\infty}\{2\pi\chi(D_{j})-\sum_{x\in 9D_{i}}\{\pi(2-\chi(LK(x))^{D_{i}})-L(\Sigma_{X}^{D_{i}})\}-\int_{9D_{i}}\kappa d_{D_{i}}\}$ ,

where $\chi(LK(x))^{D_{j}}$ is the Euler characteristic of the linked complex of $x$ in $D_{i}$ . To
conclude the proof, since it holds that $2\pi\chi(D_{j})=2\pi\chi(X)$ , it is sufficient to show
that

$\lim_{i\rightarrow\infty}\{\pi\chi(\mathscr{B}D_{i})-\sum_{X\in\ovalbox{\tt\small REJECT} D_{i}}\{\pi(2-\chi(LK(x))^{D_{j}})-L(\Sigma_{x}^{D_{i}})\}-\int_{9D_{i}}\kappa d_{D_{j}}\}\leqq 0$ .

Speaking more precisely, we will show the above inequality restricted to each end
of $X$ . Fix a number $i_{0}$ and let $U_{1},$

$\ldots,$
$U_{m}$ be the connected components of $X\backslash D_{j_{0}}$

and $c_{j^{i}}:=\mathscr{B}D_{j}\cap U_{j}$ . We will show that for any $j=1,$
$\ldots,$

$m$

$\lim_{i\rightarrow\infty}\{\pi\chi(c_{j^{i}})-\sum_{x\in c_{j^{i}}}\{\pi(2-\chi(LK(x))^{D_{i}})-L(\Sigma_{x}^{D_{i}})\}-\int_{c_{j^{i}}}\kappa d_{D_{i}}\}\leqq 0$ .

If $U_{j}$ is l-dimensional, then $c_{j^{i}}$ consists of a single point $x$ . Hence $\chi(c_{j^{i}})=$

$\chi(x)=1$ and $\chi(LK(x))^{D_{i}}=1$ , and we agree that $L(\Sigma_{X}^{D_{i}}),$
$\int_{c_{j}}\kappa d_{X}$ are equal to $0$ .

Hence $\lim_{i\rightarrow\infty}\{\pi\chi(c_{j^{i}})-\sum_{x\in c_{j}^{i}}\{\pi(2-\chi(LK(x))^{D_{i}})-L(\Sigma_{X}^{D_{i}})\}-\int_{c_{j^{i}}}\kappa d_{D_{i}}\}=0$ .
If $U_{j}$ is homeomorphic to a cylinder, then $c_{j^{i}}$ is homeomorphic to a circle.

Then $U_{j}$ attached the cone over $c_{j^{i_{0}}}$ , which is homeomorphic to $R^{2}$ , admits total
curvature. That is, it is a good surface in the sense of [10]. Hence from Theorem
4.1 in [10], it is shown that

$\lim_{i\rightarrow\infty}\{\pi\chi(c_{j^{i}})-\sum_{x\in c_{j^{i}}}\{\pi(2-\chi(LK(x))^{D_{j}})-L(\Sigma_{x}^{D_{i}})\}-\int_{c_{j^{i}}}\kappa d_{D_{i}}\}$

$=\lim_{i\rightarrow\infty}-\{\sum_{X\in c_{j^{i}}}(\pi-L(\Sigma_{x}^{D_{j}}))+\int_{c_{j^{i}}}\kappa d_{D_{i}}\}\leqq 0$ .
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Finally we will deal with the other $U_{j}$ . Let $\{e_{\lambda}|\lambda\in\Lambda\}$ be a cellular de-
composition of $U_{j}$ such that every l-cell is adjacent to at least three 2-cells. We
denote by $a$ and $b$ the number of l-cells and that of 2-cells of $\{e_{\lambda}\}$ respectively.
Note that there are no vertices in $\{e_{\lambda}\}$ . It is clear that $\chi(c_{j^{i}})=a-b<0$ and
$\chi(LK(x))^{D_{j}}=1$ for any $x\in c_{j^{i}}$ .

For every 2-cell $e\in\{e_{\lambda}\}$ , let $U_{e}$ be the double of the closure $\overline{e}$ of $e$ identified
their boundaries $\partial e$ to each other, which is homeomorphic to $R^{2}$ . Since $X$ admits
total curvature, we can easily seen that $U_{e}$ also admits total curvature and is a
good surface in the sense of [10]. (In Example 4.2, constmct $U_{e}$ similarly. Then
there exists $U_{e}$ which does not admit total curvature.) Therefore similarly as
above, we have that

$\lim_{i\rightarrow\infty}\sum_{x\in\tilde{c_{e}^{i}}}(\pi-L(\Sigma_{x}^{\overline{D_{i}}}))+\int_{\overline{c_{e^{i}}}}\kappa d_{\tilde{D_{i}}}\geqq 0$
,

where $\overline{D_{i}}$ is the closure of a corresponding double of $D_{i}\cap\overline{e}$ in $U_{e}$ and $\overline{c_{e^{i}}}$ is the
boundary of $\overline{D_{i}}$ in $U_{e}$ . To sum up, we have

$\lim_{i\rightarrow\infty}\sum_{e:2- cel1}\{\sum_{x\in\overline{c_{e}^{i}}}(\pi-L(\Sigma_{X}^{\overline{D_{i}}}))+\int_{\overline{c_{e^{i}}}}\kappa d_{\overline{D_{i}}}\}$

$=\lim_{i\rightarrow\infty}\{\sum_{- ce}\sum_{x\in c_{e^{j}}}2(\pi-L(\Sigma_{X}^{D_{i}}))+\sum_{x\in c_{j^{i}}\backslash \cup c_{e}^{i}}\{a_{x}\pi-2L(\Sigma_{X}^{D_{i}})\}+2\int_{c_{j^{i}}}\kappa d_{D_{i}}\}$

$=2\lim_{i\rightarrow\infty}\{\sum_{x\in c_{j^{i}}}(\pi-L(\Sigma_{X}^{D_{i}}))+\int_{c_{j^{i}}}\kappa d_{D_{j}}\}+2(b-a)\pi$ ,

where $c_{e}^{i}:=c_{j^{j}}\cap e$ and $a_{X}$ is the number of l-cells on $c_{j^{i}}$ adjacent to $x$ . The last
equality comes from $\sum_{x\in c_{j^{i}}\backslash \cup c_{e}^{i}}a_{x}=2b$ . Therefore we have

$\lim_{i\rightarrow\infty}\{\pi\chi(c_{j^{i}})-\sum_{X\in c_{j^{i}}}\{\pi(2-\chi(LK(x))^{D_{j}})-L(\Sigma_{x}^{D_{j}})\}-\int_{c_{j^{i}}}\kappa d_{D_{i}}\}$

$\leqq(a-b)\pi+(b-a)\pi=0$ ,

which completes the proof. $\square $

As mentioned in a previous remark, we will give a counter example.
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EXAMPLE 4.8. Let $\coprod_{a}(a>0)$ be a trapezoid with bottom angles $\frac{\pi}{2}-a$ , and
hence the other two angles are equal to $\frac{\pi}{2}+a$ . The length of the bottom, the
diagonal line and the side line of $\coprod_{a}$ are denoted by $\alpha_{0},$ $\alpha_{1}$ and $\alpha_{2}$ , respectively.
To assemble four $\coprod_{a}$ , construct a truncated pyramid and make, altemately
upside down, a pile $M_{1}$ of these truncated pyramids attached the square base
$\coprod(p_{1}, p2, p4, p3)$ as in Figure 2. Naturally, $M_{1}$ is homeomorphic to $R^{2}$ . Let
$\coprod_{2a}(ql, p1, p2, r_{1})$ be a trapezoid with $\angle p1=\angle p2=\frac{\pi}{2}+2a,$ $\angle q\iota=\angle r_{1}=\frac{\pi}{2}-2a$ ,
$|p_{1}p_{2}|=\alpha_{0},$ $|p1q1|=\alpha_{1}$ and $M_{2}$ be a pile of trapezoids $\coprod_{2a}(q1, p1, p2, r_{1})$ and
$\coprod_{2a}(q_{i}, q_{i+1}, r_{i+1}, r_{j})$ , altemately upside down, the length of whose side line alter-
nates $\alpha_{1}$ and $\alpha_{2}$ . Then $M_{2}$ is homeomorphic to a half strip, whose boundary is the
broken geodesic joining the points $\{. . . , q_{3}, q2q1pl,p_{2}, r_{1}, r_{2}, \ldots\}$ . Then $X$ is a
piecewise linear polyhedron constructed from $M_{1}$ and $M_{2}$ identified the boundary
of $M_{2}$ to the corresponding broken geodesic joining the points $\{$ . . . , $q_{3},$ $q2,$ $q_{1},$ $p1$ ,
$p_{2},$ $r_{1},$ $r_{2},$ $\ldots$ } on $M_{1}$ like as in Figure 2.

Then, since $\chi(X)=1$ and $\chi(X_{\infty})=-1$ , we have $2\pi\chi(X)-\pi\chi(X_{\infty})=3\pi$ . On
the other hand, we have $k(p1)=k(p2)=\pi,$ $k(p3)=k(p4)=\frac{\pi}{2}+2a$ and $k(q_{i})=$

$k(r_{j})=0$ , where $pl,$ $\ldots,$ $p4$ are vertices of the bottom of $M_{1}$ and $q_{j},$ $r_{j}$ are the
other vertices. Hence $\tilde{C}(X)=3\pi+4a>2\pi\chi(X)-\pi\chi(X_{\infty})$ .

Figure 2. $\coprod_{a},$ $M_{1}$ and $M_{2}$
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REMARK 4.9. Although we have dealt with a noncompact complete piece-
wise Riemannian 2-polyhedron $X$ without free faces in this section, we have the
following result in the case of $\mathscr{B}X\neq\emptyset$ by applying Theorem 4.5: If $X$ is a
finitely connected noncompact complete piecewise Riemannian 2-polyhedron ad-
mitting total curvature and $\sum_{p\in 9X}k(p)+\int_{9X}\kappa d_{X}$ is finite, then

$C(X)+\sum_{2p\in iX}k(p)+\int_{9X}\kappa d_{X}\leqq 2\pi\chi(X)-\pi\chi(X_{\infty})$ .

In fact, let $\hat{X}$ be a double of $X$ obtained by identifying $\mathscr{B}X$ . Then applying
Theorem 4.5, we have

$C(\hat{X})\leqq 2\pi\chi(\hat{X})-\pi\chi(\hat{X}_{\infty})$ .

Here note that

$C(\hat{X})=2C(X)+2\sum_{p\in 9X}k(p)+2\int_{9X}\kappa d_{X}-\sum_{p\in 9X}\pi(2-\chi(L(\mathscr{B}X)(p)))$

$=2C(X)+2\sum_{p\in 9X}k(p)+2\int_{i}p\chi\kappa d_{X}-2\pi\{\chi(\mathscr{B}X)+\chi(\mathscr{B}X_{\infty})\}$ ,

where $L(\mathscr{B}X)(p)$ is the linked complex of $\mathscr{B}X$ at $p$ , and hence $\chi(L(\mathscr{B}X)(p))$ is
the number of edges adjacent to $p$ of $\mathscr{B}X$ . On the other hand we have

$2\pi\chi(\hat{X})-\pi\chi(\hat{X}_{\infty})=2\pi(2\chi(X)-\chi(\mathscr{B}X))-\pi(2\chi(X_{\infty})-\chi(\mathscr{B}X_{\infty}))$ ,

which leads us to the above inequality. (Compare [14] for the Riemannian case
with boundary.)

\S 5. Relation Between Total Curvature and Expanding Growth

In this section, we will investigate about the difference of the both sides of
the inequality of Theorem 4.5, $\{2\pi\chi(X)-\pi\chi(X_{\infty})\}-C(X)$ , for a finitely con-
nected noncompact complete piecewise Riemannian 2-polyhedron without free
faces admitting total curvature. In the Riemannian case, the difference means the
expanding growth rate of a manifold. There are many results around a relation
between total curvature and expanding growth. For example, Theorem $D$ in [11]
states that the normalized length of geodesic sphere tends to the difference. We
will generalize this theorem later.

First, similarly to Fiala [5] and Hartman [6], we will prepare the following
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PROPOSITION 5.1. Let $X$ be a piecewise Riemannian 2-polyhedron homeo-
morphic to $R^{2}$ and $x_{0}$ a point on X. Let $c_{t}$ $:=\{x\in X|d(x, x_{0})=\iota\}$ and $L(t)$ be $\iota he$

length of $c_{l}$ . Then $L(t)$ is continuous and $d_{l}fferentiable$ at almost all $t$ and

$\frac{dL}{dt}(t)=\int_{c_{t}}\kappa(s)ds-\sum 2\tan\frac{\theta_{i}}{2}$ ,

where $\kappa$ is a geodesic curvature on $c_{t}and-\theta_{j}$ is an exterior angle at a broken point
of $c_{t}$ .

PROOF. The proof is essentially the same to [5] and [6]. We will explain in
detail only about complicated phenomena caused by dealing with piecewise Rie-
mannian object, but in brief about similar arguments.

For an arbitrarily given $r>0$ , let $K_{r}=\{x\in X|d(x, x_{0})\leqq r\}$ , the bounded
component of $X$ bounded by $c_{r}=\{x\in X|d(x,x_{0})=r\}$ , and $\mathscr{R}_{r}$ the set of all
maximal minimizing normal geodesic segments emanating from $x_{0}$ on $K_{r}$ . Note
that if two geodesics in $\mathscr{B}_{r}$ coincide beyond some point, then we consider one of
them ends at the point. Geodesics may branch off on a vertex with nonpositive
singular curvature or on a point of l-simplex with negative geodesic curvature.

It seems to be helpful to describe how a minimal geodesic $\gamma$ emanating from
$x_{0}$ will branch off on an l-simplex $c$ more precisely. We assume that a geodesic
$\gamma$ on 2-simplex $e_{1}$ is contacting to l-simplex $c\subset \mathscr{B}e_{1}$ at $p$ . Because $c$ has a nega-
tive geodesic curvature at $p$ with respect to $e_{1},$ $\gamma$ does not necessarily branch off
at $p$ . It depends on the geodesic curvature of $c$ with respect to another adjacent
2-simplex $e_{2}$ . Of course, $\gamma$ branches off if another geodesic curvature of $c$ at $p$ is
also negative. When $\gamma$ does not branch off at $p$ , minimal geodesics emanating
from $x_{0}$ sufficiently close to $\gamma$ intersect transversely at the intersection with $c$ even
if $\gamma$ dose not intersect transversely at $p$ . Hence branching along $c$ occurs on at
most countable intervals of $c$ .

Therefore it is clear that $\mathscr{R}_{r}$ can be parametrized by a space of directions $\Sigma_{x_{0}}$

at $x_{0}$ , a suitable subset $\theta_{v}\subset\Sigma_{v}$ for such a vertex $v$ as above and such l-simplices
as above. Precisely, $\theta_{v}$ is defined as follows (see the middle case of Figure 3): Let
$A_{v}\subset\Sigma_{v}$ be the set of all initial directions of minimizing geodesic segment from $v$

to $x_{0}$ . Then

$\theta_{v}=$ { $x\in\Sigma_{v}|\angle_{v}(x,$ $ y)\geqq\pi$ for any $y\in A_{v}$ }.

Fix a geodesic segment $\gamma_{0}\in \mathscr{R}_{r}$ . Then $\mathscr{R}_{r}$ is parameterized anti-clockwise and
consistently from $\gamma_{0}$ by $f:[0, L_{r}]\rightarrow \mathscr{R}_{r}$ . Naturally $f(O)=f(L_{r})=\gamma_{0}$ . The term
“consistently” means as follows: The middle case of Figure 3 implies that there
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$X_{0}$
$X_{0}$

branching off at $v$ branching off along $c$

Figure 3. Minimizing geodesics emanating from $x_{0}$

are many geodesics which coincide to each other beyond $v$ . In such a case, we
consider that the geodesic parametrized by “the smallest number” is extended
beyond $v$ and other geodesics end at $v$ .

We will explain the meaning of “the smallest number” and the para-
metrization of $R_{r}$ in the following simple example. Let $M$ be a piecewise Rie-
mannian 2-polyhedron homeomorphic to a plane $R^{2}$ such that no geodesics
emanating from $x_{0}\in M$ branch off except at a point $v\in M$ and there are just two
minimizing geodesic segments $\gamma l,$ $\gamma_{2}$ from $x_{0}$ to $v$ . Assume that $\Sigma_{x_{0}}$ is para-
metrized anti-clockwise by $\alpha$ : $[0, l_{0}]\rightarrow\Sigma_{x_{0}}$ with $\gamma_{\alpha(0)}=\gamma_{\alpha(T_{0})}=\gamma_{1}$ and $\gamma_{\alpha(s_{0})}=\gamma_{2}$

$(0<s_{0}<l_{0})$ , where $\gamma_{\alpha(s)}$ is the geodesic containing in $\alpha(s)$ . Then we consider
that $\gamma_{\alpha(0)}=\gamma \mathfrak{l}$ is extended beyond $v$ and $\alpha(s_{0})=\gamma_{2}$ ends at $v$ . In this case,
$R_{r}$ is parametrized as follows: Let $\theta_{v}\subset\Sigma_{v}$ be parametrized anti-clockwise by
$\beta:[0, l_{2}]\rightarrow\theta_{v}$ and $\gamma_{\beta(s)}$ is the geodesic containing in $\beta(s)$ . Then we can take a
parametrization $f:[0, l_{1}+l_{2}]\rightarrow R_{r}$ defined by

$\left\{\begin{array}{l}f(s)isthe\min imizinggeodesicsegmentconsistingof\gamma_{l}and\gamma_{\beta(s)}for0<s<l_{2},\\f(s)isthe\min imizinggeodesicsegment\gamma_{\alpha(s)} forl_{2}<s<l_{2}+l_{l}.\end{array}\right.$

Note that $f(l_{2}+s_{0})=\gamma_{2}$ ends at $v$ and the length of $f(s)$ is continuous except $0$

and $l_{2}+s_{0}$ .
We denote by $p(s)$ the length of $f(s)$ . Then $f(\rho(s))$ is a cut point of $x_{0}$ along

$f(s)$ except finite points if $\rho(s)<r$ , and $\rho$ is continuous except only finite points.
Note that $\rho$ is continuous in Riemannian case, but in our case there are some
points where $\rho$ is not continuous. See the middle case of Figure 3.

Now let $K_{r}$ be parametrized by $F(s, t)=(f(s))(t)$ , where the domain of $F$

is $D:=\{(s, t)|s\in[0, L_{r}], t\in[0,\rho(s)]\}$ . Note that there is a division of the domain
$D$ into at most countable domains $\{D_{i}\}$ such that $F$ is a usual geodesic variation
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on each $D_{j}$ . Similarly to Hartman [6], for almost all $t$ with $0<t<r$ , it holds
that $\rho(s)=t$ has a finite number of solutions and $c_{t}=\{F(s, t)|(s, t)\in D\}$ is a
set of simple closed curves with finite broken points. If we regard $\partial F/\partial s(s, t)=$

$0$ for a point $(s, t)$ where $\partial F/\partial s$ is not defined, then $L(t)$ is expressed as
$\int_{0^{L_{r}}}\Vert\partial F/\partial s(s, t)\Vert ds$ . Computing $dL/dt(t)$ for a suitable reparametrization for such
almost all $t$ similarly in [5], we have the conclusion. $\square $

Under the assumption that $X$ admits total curvature, we can obtain more
precise observation on a distance sphere $c_{t}$ . Namely, similarly to Shiohama [11],
we have

PROPOSITION 5.2. Let $X$ be a noncompact piecewise Riemannian 2-polyhedron
homeomorphic to $R^{2}$ admitting total curvature $C(X)$ , and $x_{0}$ be a point on X. Let
$c_{t}$ $:=\{x\in X|d(x, x_{0})=t\}$ and $L(t)$ be the length of $c_{t}$ . We denote by $K_{l}$ the
bounded component bounded by $c_{t}$ and by $A(t)$ the area of $K_{t}$ . Then

$\lim_{l\rightarrow\infty}\frac{L(t)}{t}=\lim_{l\rightarrow\infty}\frac{2A(t)}{t^{2}}=2\pi-C(X)$ .

PROOF. Since the proof is also essentially the same to [11], we will only
explain its outline.

Let $\mathscr{B}$ be the set of rays emanating from $x_{0}$ . Then $X\backslash \mathscr{R}$ is expressed as at
most countable disjoint union $\bigcup_{\lambda\in\Lambda}D_{\lambda}$ . Note that $D_{\lambda}$ is not necessarily to be
unbounded. For an unbounded component $D_{\lambda}$ , we have by Lemma 3.2 in [7] that

$(*)$
$C(\overline{D}_{\lambda})=L(\Sigma_{x_{0}}^{\overline{D}_{\lambda}})-\sum_{x\in\ovalbox{\tt\small REJECT} D_{\lambda}\backslash \{x_{0}\}}(\pi-L(\Sigma_{x}^{\overline{D}_{\lambda}}))$

,

where $\overline{D}_{\lambda}$ is the closure of $D_{\lambda}$ . This equality $(*)$ is corresponding to Theorem A
in [11].

This equality $(*)$ implies that there exists a large number $r$ such that $c_{l}$ is
homeomorphic to a circle for any $t>r$ (confer Theorem $B$ in [11]). In fact, if
we assume that $c_{t}$ is not connected, then we can take an unbounded component
$D$ of $X\backslash \mathscr{R}$ such that $ C(\overline{D})=L(\Sigma_{x_{0}}^{\overline{D}})-\sum_{x\in 9D\backslash \{x_{0}\}}(\pi-L(\Sigma_{X}^{\overline{D}}))+\pi$ , which is a
contradiction. Furthermore under the assumption that $c_{l}$ is not a circle, we can
take such a component implying a contradiction. Hence $L(t)$ is continuous on
$t>r$ , and $L(t)$ is differentiable at almost all points. Especially $L(t)$ is ab-
solutely continuous (cf. [13]). Then we have $L(t)=\int_{r^{t}}L^{\prime}(t)dt+L(r)$ and $A(t)=$

$\int_{r^{t}}L(t)dt+A(r)$ for $t>r$ .
For any $x\in X$ , let $\theta(x);=L(\Sigma_{X}^{E(x)})$ , where $E(x)$ is the maximal bounded

component bounded by two minimizing geodesic segments from $x_{0}$ to $x$ . Then
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from $(*)$ , it is seen that for any $\epsilon>0$ there is a large number $t(\epsilon)$ such that
$\sum_{x\in c},$ $\theta(x)<\epsilon$ for any $t>t(\epsilon)$ (confer Theorem $C$ in [11]).

Here we recall the statement of Proposition 5.1: $dL/dt(t)=\int_{c_{l}}\kappa(s)ds-$

$\sum 2\tan\theta_{j}/2$ . Then, applying Theorem 3.2 and noting that the singular curvature
$k(x_{i})$ at a broken point $x_{i}$ on $c_{l}=\mathscr{B}K_{t}$ is equal to $-\theta_{j}$ , we have

$\frac{dL}{dt}(t)=2\pi\chi(K_{t})-C(K_{t})-\sum_{p\in 9K_{l}}k(p)-\sum 2\tan\frac{\theta_{i}}{2}$

$=2\pi-C(K_{t})-\sum\{2\tan\frac{\theta_{i}}{2}-\theta_{j}\}$ .

Since $\theta_{j}/2<\tan\theta_{j}/2<\theta_{i}$ for a small $\theta_{j}$ (for example for $0<\theta_{j}\leqq\pi/3$ ), we have
that $ 0\leqq\sum\{2\tan\theta_{j}/2-\theta_{j}\}<\epsilon$ for any $t>t(\epsilon)$ provided $\epsilon\leqq\pi/3$ . Hence for
$t>t(\epsilon)$

$(**)$ $2\pi-C(K_{t})-\epsilon<\frac{dL}{dt}(t)\leqq 2\pi-C(K_{t})$ .

Now in the case that $ C(X)=-\infty$ , we have that $L(t),$ $ A(t)\rightarrow\infty$ and

$\lim_{l\rightarrow\infty}\frac{L(t)}{t}=\lim_{l\rightarrow\infty}\frac{dL}{dt}(\iota)=\infty$

$\lim_{t\rightarrow\infty}\frac{2A(t)}{t^{2}}=\lim_{t\rightarrow\infty}\frac{d^{2}A}{dt^{2}}(\iota)=\lim_{l\rightarrow\infty}\frac{dL}{d\iota}(t)=\infty$ ,

which is the conclusion.
If $ C(X)>-\infty$ , then there is a large $t^{\prime}(\epsilon)$ such that $|C(K_{f})-C(X)|<\epsilon$ for

any $t>t^{\prime}(\epsilon)$ . Put $T(\epsilon):=\max(r, t(\epsilon),$ $t^{\prime}(\epsilon))$ . Then from $(**)$ ,

$2\pi-C(X)-2\epsilon<\frac{dL}{dt}(\iota)\leqq 2\pi-C(X)+\epsilon$

for any $t>T(\epsilon)$ , and hence

$\lim_{t\rightarrow\infty}\frac{L(t)}{t}=2\pi-C(X)$ .

Furthermore from $A(t)=\int_{T(\epsilon)}^{t}L(t)dt+A(T(\epsilon))$ and the above estimate of $dL/dt$ ,

$\lim_{l\rightarrow\infty}\frac{2A(t)}{t^{2}}=2\pi-C(X)$ ,

which is the conclusion. $\square $

Now we will treat a piecewise Riemannian 2-polyhedron. Let $X$ be a finitely
connected, noncompact piecewise Riemannian 2-polyhedron without boundary
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admitting total curvature. Then there is a compact piecewise Riemannian 2-
subpolyhedron $K$ of $X$ such that $X\backslash K$ is homeomorphic to $X_{\infty}\times R$ .

Let $U_{1},$
$\ldots,$

$U_{m}$ be the connected components of $X\backslash K$ .
For any $i=1,$

$\ldots,$
$m$ and any $t>0$ , we define the sets $c_{t}^{i}$ and $K_{l}^{i}$ as follows:

If $U_{i}$ is l-dimensional or is homeomorphic to a cylinder, then $c_{l}^{i}:=\{x\in U_{i}|$

$d_{U_{i}}(x, \partial U_{j})=t\}$ and $K_{t}^{i}$ $:=\{x\in U_{i}|d_{U_{i}}(x, \partial U_{i})\leqq t\}$ , where $d_{U_{i}}$ is the interior
distance on the closure of $U_{i}$ . For another $U_{i}$ , we will divide it into surface
components. By definition, we call a connected component of the set of all points
having a neighborhood homeomorphic to a two-dimensional open disk by a
surface component. Let $\{e_{\lambda}|\lambda\in\Lambda\}$ be the set of all surface components of $U_{i}$ ,
and for each 2-cell $e_{\lambda}$ put $c_{t}^{\lambda}$ $:=\{x\in e_{\lambda}|d_{e_{\lambda}}(x, K\cap\partial e_{\lambda})=\iota\}$ and $K_{t}^{\lambda}$ $:=\{x\in e_{\lambda}|$

$d_{e_{\lambda}}(x, K\cap\partial e_{\lambda})\leqq t\}$ , and then $c_{t}^{i}$ and $K_{t}^{i}$ are, by definition, the closure of $\bigcup_{\lambda}c_{t}^{\lambda}$

and $\bigcup_{\lambda}K_{t}^{\lambda}$ on $U_{i}$ , respectively. Note that $c_{t}^{i}$ is not necessarily connected.

THEOREM 5.3. Let $L_{l}(t)$ be the length of $c_{l}^{i},$ $A_{j}(t)$ the area of $K_{\iota}^{i},$ $A(K)$ the
area of $K$ , and $L(t);=\sum_{j}L_{j}(t),$ $A(t):=\sum_{j}A_{j}(t)+A(K)$ . Then we have

$\lim_{t\rightarrow\infty}\frac{L(t)}{t}=\lim_{\iota\rightarrow\infty}\frac{2A(t)}{t^{2}}=2\pi\chi(X)-\pi\chi(X_{\infty})-C(X)$

PROOF. For the connected components $U_{1},$
$\ldots,$

$U_{m}$ of $X\backslash K$ , we first prove
that for some extension $\tilde{U}_{i}$ of $U_{j}$ attaching a suitable domain $D_{i}$ ,

$(*)$ $\lim_{\iota\rightarrow\infty}\frac{L_{i}(t)}{L}=\lim_{t\rightarrow\infty}\frac{2A_{i}(t)}{t^{2}}=2\pi\chi(D_{l})-\pi\chi(\partial U_{i})-C(\tilde{U}_{i})$ .

If $U_{i}$ is l-dimensional, then $L_{j}(t)=A_{j}(t)=0$ , and $\lim_{l\rightarrow\infty}L_{l}(t)/t=$

$\lim_{t\rightarrow\infty}2A_{j}(t)/t^{2}=0$ . Now let $\tilde{U}_{l}$ be $U_{i}$ attaching a 2-sphere $D_{j}$ . Note that
$2\pi\chi(D_{j})-\pi\chi(\partial U_{i})-C(\tilde{U}_{j})=4\pi-\pi-3\pi=0$ , and $(*)$ is satisfied.

In the case that $U_{i}$ is homeomorphic to a cylinder, let $\tilde{U}_{j}$ be a piece-
wise Riemannian 2-polyhedron homeomorphic to $R^{2}$ obtained as $U_{i}$ attach-
ing a suitable closed disk $D_{i}$ of center $p$ with radius $l$ . Then by Propo-
sition 5.2, $\lim_{\iota\rightarrow\infty}L_{i}(t-l)/t=\lim_{t\rightarrow\infty}2A_{l}(t-l)/t^{2}=2\pi-C(\tilde{U}_{j})$ . Note that
$\lim_{t\rightarrow\infty}L_{i}(t-l)/t=\lim_{\iota\rightarrow\infty}L_{i}(t)/t,$ $\lim_{\iota\rightarrow\infty}2A_{j}(t-l)/t^{2}=\lim_{t\rightarrow\infty}2A_{j}(t)/t^{2}$ and
$2\pi-C(\tilde{U}_{j})=2\pi\chi(D_{i})-\pi\chi(\partial U_{i})-C(\tilde{U}_{i})$ .

For the other $U_{j}$ , we took a cellular decomposition $\{e_{\lambda}|\lambda\in\Lambda\}$ of $U_{i}$ , in
which the set of 2-cells are the surface components of $U_{i}$ . For each 2-cell $e_{\lambda}$ ,
construct $U_{\lambda}$ to be a double of $e_{\lambda}$ . Here we do not identify the points cor-
responding a point on $\partial U_{i}$ . Hence $U_{\lambda}$ is homeomorphic to a cylinder. We can
attach a suitable closed disk $D_{\lambda}$ as above case and construct $\tilde{U}_{\lambda}$ . Then by
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Proposition 5.2, $\lim_{\iota\rightarrow\infty}2L_{\lambda}(t)/t=\lim_{t\rightarrow\infty}4A_{\lambda}(t)/t^{2}=2\pi-C(\tilde{U}_{\lambda})$ , where $L_{\lambda}(t)$

is the length of $cf$ and $A_{\lambda}(t)$ the area of $K/$ .
Now let $D_{j}$ be $\cup D_{\lambda}$ identified the points corresponding the same point on

$\partial U_{i}$ . Then we have $\chi(D_{j})=\chi(\partial U_{i})+b$ , where $b$ is the number of 2-cells of $\{e_{\lambda}\}$ .
Furthermore let $\tilde{U}_{i}$ be $U_{j}$ attaching $D_{i}$ . It is clear that $2e_{reg}(\tilde{U}_{j})-\sum e_{reg}(\tilde{U}_{\lambda})=$

$e_{reg}(D_{i})$ and 2 $\sum_{(c,\Delta),\Delta\subset\overline{U}_{i}}\int_{c}\kappa d_{\Delta}-\sum_{\lambda}\sum_{(c,\Delta),\Delta\subset\overline{U}_{\lambda}}\int_{c}\kappa d_{\Delta}=\sum_{(c,\Delta),\Delta\subset D_{j}}\int_{c}\kappa d_{\Delta}$ ,

and from some easily computation we also have $2e_{sing}(\tilde{U}_{j})-\sum e_{sing}(\tilde{U}_{\lambda})=$

$e_{sing}(D_{l})$ . Therefore $2C(\tilde{U}_{j})-\sum C(\tilde{U}_{\lambda})=2\pi\chi(D_{j})$ .
Hence $\lim_{l\rightarrow\infty}L_{j}(t)/t=\lim_{l\rightarrow\infty}2A_{j}(t)/t^{2}=\sum_{\lambda}\{\pi-C(\tilde{U}_{\lambda})/2\}=b\pi-C(\tilde{U}_{j})$

$+\pi\chi(D_{i})=2\pi\chi(D_{j})-\pi\chi(\partial U_{i})-C(\tilde{U}_{i})$ .
Summing up the equality $(*)$ and noting that $\sum\{C(\tilde{U}_{j})-2\pi\chi(D_{j})\}=$

$C(X)-2\pi\chi(K)$ , we have

$\lim_{l\rightarrow\infty}\frac{L(t)}{t}=\lim_{l\rightarrow\infty}\frac{2A(t)}{\iota^{2}}$

$=\sum_{i=1}^{m}\{2\pi\chi(D_{j})-\pi\chi(\partial U_{i})-C(\tilde{U}_{j})\}$

$=2\pi\chi(K)-\pi\chi(\partial K)-C(X)$

$=2\pi\chi(X)-\pi\chi(X_{\infty})-C(X)$ ,

which complete the proof. $\square $

Now, we will illustrate the example mentioned in the introduction.

EXAMPLE. Let $M_{1}$ be a flat cylinder attaching a closed disk $K$ and $M_{2}$ a flat
tmncated sector with vertical angle $\pi/2$ , and let $p1$ be a point on $\partial K$ and $p2$ the
antipodal point of $p\mathfrak{l}$ on $\partial K$ . On $M_{1}$ , let $l_{l}(i=1,2)$ be a spiral whose angle with
$\partial K$ at the starting point $p_{j}$ is $\pi/4$ , and $l_{3}$ the straight segment from $p1$ to $p2$ on
$K$ . Then we will constmct the piecewise Riemannian 2-polyhedron $X$ from $M_{1}$

and $M_{2}$ identifying $l_{1}\cup l_{2}\cup l_{3}$ with $\partial M_{2}$ like as Figure 4.
Let $\tilde{c}_{l}:=\{x\in X|d(x, K)=\iota\}$ . Then $L(\tilde{c}_{t})=l_{3}\pi+\{2t+l_{3}\}$ for any $t>0$ .

Hence we have that

$\lim_{l\rightarrow\infty}\frac{L(\tilde{c}_{l})}{t}=2$ .

On the other hand, it is clear that $\chi(X)=1,$ $\chi(X_{\infty})=-1$ and $C(X)=5\pi/2$ .
Therefore it holds that

$2\pi\chi(X)-\pi\chi(X_{\infty})-C(X)=\frac{\pi}{2}<\lim_{l\rightarrow\infty}\frac{L(\tilde{c}_{t})}{\iota}$ .
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Figure 4. How to construct a counter example

We should note that, for the above $X$ and $K\subset X$ , it is easy to see that Theorem
5.3 is true naturally. In fact, if we define $c_{t}$ as in Theorem 5.3, then we have

$2\pi\chi(X)-\pi\chi(X_{\infty})-C(X)=\lim_{t\rightarrow\infty}\frac{L(c_{t})}{t}=\frac{\pi}{2}$ .

6. Appendix

As we mentioned in Remark 4.6, we will deal with total curvature of finitely
connected odd-dimensional piecewise linear manifolds.

First we will introduce the definition of total curvature of compact piecewise
linear polyhedron $X$ after Banchoff [1].

DEFINITION 6.1. Let $X$ be a compact piecewise linear polyhedron and $V$

the vertices of $X$ . Fix a vertex $v$ and open i-simplex $\sigma$ which is adjacent to $v$ .
Assume that $\sigma$ is embedded in $R^{l}$ . Let $S^{i-1}$ be the unit tangent sphere at $v$ and
$I:=\{x\in S^{l-1}|\gamma_{x}\cap\sigma\neq\otimes\}$ , where $\gamma_{X}$ is a geodesic with initial vector $x$ . Then the
normalized exterior angle of $\sigma$ at $v$ is defined by

$a(v, \sigma)$ $:=Vol(A)/Vol(S^{i-1})$ ,
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where $A:=$ { $x\in S^{i-1}|\angle(x,$ $y)\leqq\pi/2$ for all $y\in I$ }. Particularly let $a(v, \sigma)=1$ in
the case that $i=0$ , and $a(v, \sigma)=1/2$ when $i=1$ . Then we define the curvature
$k(v)$ at $v$ and the total curvature $\hat{C}(X)$ of $X$ by

$k(v)=\sigma;adjacent\sum_{\iota\circ v}(-1)^{\dim\sigma}a(v, \sigma)$ and $\hat{C}(X)=\sum_{v\in V}k(v)$ .

REMARK 6.2. Since $Vol(S^{n})$ depends on $n$ , Banchoff has used the normalized
value. For 2-dimensional case, singular curvature defined in Section 2 is the
product of $k$ multiplied by $ 2\pi$ .

Banchoff has not distinguished boundary points from interior points in his
definition. However as to deal with noncompact polyhedra in the similar way to
the Riemannian case, we should redefine total curvature as follows.

DEFINITION 6.3. Let $X$ be a compact piecewise linear l-polyhedron and $V$

the vertices of $X$ . The closure of the point-set of union of $(l-1)$ -simplices which
is a proper face of only one i-simplex is denoted by $\mathscr{B}X$ . The complement of it,
$X\backslash \mathscr{B}X$ , is denoted by $JX$ . (It is clear that the definitions are independent of the
choice of divisions of $X.$ ) Then the total curvature $C(X)$ of $X$ is defined by

$C(X)=\sum_{v\in V\cap JX}k(v)$ .

Since it is known as Theorem 4 in [1] that $\hat{C}(X)=\chi(X)$ , we have a Gauss-
Bonnet type equality, namely $C(X)=\chi(X)-\sum_{v\in V\cap\ovalbox{\tt\small REJECT} X}k(v)$ .

Now let $X$ be a noncompact piecewise linear manifold without boundary.
Then the total curvature $C(X)$ is defined as $\sum_{v\in V}k(v)$ provided the sum makes
sense. In the case of $\dim X=2$ , this definition corresponds to w-total curvature.

Furthermore we assume that $X$ is odd-dimensional. It is also well-known by
Corollary 2 in [1] that $k(v)=0$ for any vertex $v\in X$ . Hence we have $C(X)=0$ .
Tuming our attention to Euler characteristic, we have that

$\chi(X)-\frac{1}{2}\chi(X_{\infty})=0$

provided $X$ is finitely connected. In fact, by finitely connectedness of $X$ , there is
a large compact piecewise linear submanifold $K\subset X$ such that $X$ and $X_{\infty}$ are
homeomorphic to $JK$ and $\mathscr{B}K$ respectively. Let $\tilde{K}$ be a double of $K$ identified on
$\mathscr{B}K$ . Then we have that $2\chi(K)-\chi(\mathscr{B}K)=\chi(\tilde{K})=C(\tilde{K})=0$ , since $\tilde{K}$ is a com-
pact odd-dimensional piecewise linear manifold. Therefore it hold that $C(X)=$
$\chi(X)-\chi(X_{\infty})/2$ .
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