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LAGRANGIAN $H$-UMBILICAL SUBMANIFOLDS IN
QUATERNION EUCLIDEAN SPACES

By

Yun Myung OH and Joon Hyuk KANG

Abstract. In [2], B. Y. Chen proved that the Lagrangian H-umbilical
submanifolds in complex Euclidean space $C^{n}$ are Lagrangian pseudo-
spheres and complex extensors of the unit hypersphere of $E^{n}$ , ex-
cept the flat ones. Similar to this, we can define the Lagrangian H-
umbilical submanifold in quatemion space forms. The main purpose
of this paper is to classify the Lagrangian H-umbilical submanifolds
in quatemion Euclidean space $H^{n}$ .

1. Introduction

It has been known that there is no totally umbilical Lagrangian submani-
folds in complex-space-forms except the totally geodesic ones. It was natural to
look for the simplest Lagrangian submanifold next to the totally geodesic ones
in complex-space-form. To do so, B. Y. Chen introduced the notion of the
Lagrangian H-umbilical submanifold [3] and also, in [2], he obtained the classi-
fication theorems for Lagrangian H-umbilical submanifolds in complex Euclidean
space $C^{n}$ .

Similar to the above case, it also has been known that there exist no totally
umbilical Lagrangian submanifold in quatemion-space-form $\tilde{M}^{n}(4c)$ except the
totally geodesic ones. In order to find the next simplest case in quatemion-space-
form $\tilde{M}^{n}(4c)$ , we also introduce the notion of Lagrangian H-umbilical submani-
fold. By a Lagrangian H-umbilical submanifold $M^{n}$ in a quatemion manifold
$\tilde{M}^{n}$ we mean a non-totally geodesic Lagrangian submanifold whose second fun-
damental form is given by
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$h(e_{1}, e_{1})=\lambda_{1}Ie_{1}+\lambda_{2}Je_{1}+\lambda_{3}Ke_{1}$ ,

$h(e_{2}, e_{2})=\cdots=h(e_{n}, e_{n})=\mu_{1}Ie_{1}+\mu_{2}Je_{1}+\mu_{3}Ke_{1}$ ,
(1)

$h(e_{1}, e_{j})=\mu_{1}Ie_{j}+\mu_{2}Je_{j}+\mu_{3}Ke_{j}$ , $j=2,$
$\ldots,$

$n$

$h(e_{j}, e_{k})=0$ , $j\neq k,j,$ $k=2,$ $\ldots,$
$n$

for some functions $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3},$
$\mu_{1},$ $\mu_{2}$ and $\mu_{3}$ with respect to some orthonormal

local frame fields.
According to the above condition, the mean curvature vector $H$ is given by

$H=H_{1}+H_{2}+H_{3}$ , where $H_{1}=\gamma_{1}Ie_{1},$ $H_{2}=\gamma_{2}Je_{1},$ $H_{3}=\gamma_{3}Ke_{1}$ , and $\gamma_{j}=\frac{\lambda_{i}+(n-1)\mu_{i}}{n}$

$(i=1,2,3)$ . The condition (1) is equivalent to

$h(X, Y)=\alpha_{1}(\langle IX, H\rangle\langle IY, H\rangle H_{1}+\alpha_{2}\langle JX, H\rangle\langle JY, H\rangle H_{2}$

$+\alpha_{3}\langle KX, H\rangle\langle KY, H\rangle H_{3})$

$+\beta_{1}(\langle X, Y\rangle H_{1}+\langle IY, H\rangle IX+\langle IX, H\rangle IY)$

$+\beta_{2}(\langle X, Y\rangle H_{2}+\langle JY, H\rangle JX+\langle JX, H\rangle JY)$

$+\beta_{3}(\langle X, Y\rangle H_{3}+\langle KY, H\rangle KX+\langle KX, H\rangle KY)$

for any tangent vectors $X,$ $Y$ , where $\alpha_{j}=\frac{\lambda_{i}-3\mu_{i}}{\gamma_{i}^{3}}$ and $\beta_{j}=\frac{\mu_{i}}{\gamma_{i}}$ for $i=1,2,3$ . Clearly,
a non-minimal Lagrangian H-umbilical submanifold has the shape operator $A_{H}$

at $H$ with two eigenvalues $\lambda$ and $\mu$ , where $\lambda=\sum_{i=1}^{n}\lambda_{j}\gamma_{j}$ and $\mu=\sum_{i=1}^{n}\mu_{l}\gamma_{i}$ with
respect to some orthonormal frame fields.

On the other hand, it also satisfies $\langle h(X, Y), \phi_{j}Z\rangle=\langle h(Z, Y), \phi_{j}X\rangle$ , where
$\phi_{j}$ is one of the element in {I, $J,$ $K$} and $X,$ $Y,$ $Z$ are tangent vectors to $M^{n}$ .
Using this property, we can say that Lagrangian H-umbilical submanifolds are
the simplest Lagrangian submanifolds next to totally geodesic submanifolds in
quatemion Euclidean space.

The main purpose of this paper is to classify the Lagrangian H-umbilical
submanifolds in quatemion Euclidean space.

2. Preliminaries [6]

Let $\tilde{M}^{n}$ be a $4n$-dimensional Riemannian manifold with metric $g.\tilde{M}^{n}$ is
called a quatemion manifold if there exists a 3-dimensional vector space $V$ of
tensors of type $(1, 1)$ with local basis of almost Hermitian structure $I,$ $J$ and $K$

such that
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(a) $IJ=-JI=K,$ $JK=-KJ=I,$ $KI=-IK=J,$ $I^{2}=J^{2}=K^{2}=-1$ ,
(b) for any local cross-section $\varphi$ of $ V,\tilde{\nabla}_{X}\varphi$ is also a cross section of $V$ , when

$X$ is an arbitrary vector field on $\tilde{M}^{n}$ and $\tilde{\nabla}$ the Riemannian connection on $\tilde{M}^{n}$ .
Condition (b) is equivalent to the following condition:
$(b$

‘
$)$ there exist local l-forms $p,$ $q$ and $r$ such that

$\tilde{\nabla}_{X}I=r(X)J-q(X)K$ ,

$\tilde{\nabla}_{X}J=-r(X)I+p(X)K$ ,

$\tilde{\nabla}_{X}K=q(X)I-p(X)J$

Let $X$ be a unit vector on $\tilde{M}^{n}$ . Then $X,$ $IX,$ $JX$ , and $KX$ form an orthonormal
frame on $\tilde{M}^{n}$ . We denote by $Q(X)$ the 4-plane spanned by them. For any two
orthonormal vectors $X,$ $Y$ on $\tilde{M}^{n}$ , if $Q(X)$ and $Q(Y)$ are orthogonal, the plane
$\pi(X, Y)$ spanned by $X,$ $Y$ is called a totally real plane. Any 2-plane in a $Q(X)$

is called a quatemion plane. The sectional curvature of a quatemion plane $\pi$

is called the quatemion sectional curvature of $\pi$ . A quatemion manifold is a
quatemion-space-form if its quatemion sectional curvatures are equal to a con-
stant $4c$ . We denote such a $4n$-dimensional quatemion-space-form by $\tilde{M}^{n}(4c)$ .

It is well known that a quatemion manifold $\tilde{M}^{n}$ is a quatemion-space-form if
and only if its curvature tensor $\tilde{R}$ is of the following form:

(2) $\tilde{R}(X, Y)Z=c\{g(Y, Z)X-g(X, Z)Y$

$+g(IY, Z)IX-g(IX, Z)IY+2g(X, IY)IZ$

$+g(JY, Z)JX-g(JX, Z)JY+2g(X, JY)JZ$

$+g(KY, Z)KX-g(KX, Z)KY+2g(X, KY)KZ\}$

for tangent vectors $X,$ $Y$ and $Z$ on $\tilde{M}^{n}$ .
Let $M$ be an n-dimensional Riemannian manifold and $x:M\rightarrow\tilde{M}^{n}(4c)$ be

an isometric immersion of $M$ into a quatemion-space-form $\tilde{M}^{n}(4c)$ . We call $M$ a
Lagrangian submanifold or a totally real submanifolds of $\tilde{M}^{n}(4c)$ if each 2-plane
of $M$ is mapped by $x$ into a totally real plane in $\tilde{M}^{n}(4c)$ . Consequently if $M$ is
a Lagrangian submanifold of $\tilde{M}^{n}(4c)$ then $\phi(TM)\subset T^{\perp}M$ for $\phi=I,$ $J$ , or $K$ ,
$T^{\perp}M$ is the normal bundle of $M$ in $\tilde{M}^{n}(4c)$ .

For any orthonormal vectors $X,$ $Y$ in $TM,$ $\pi(X, Y)$ is totally real in $\tilde{M}^{n}(4c)$ ,
$Q(X)$ and $Q(Y)$ are orthogonal and $g(X, \varphi Y)=g(\phi X, Y)=0$ for $\varphi,$ $\phi=I,$ $J$ or
$K$ . By (2) we have
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$\tilde{R}(X, Y)Z=c\{g(Y, Z)X-g(X, Z)Y\}$ , for $X,$ $Y,$ $Z\in TM$

If we denote the Levi-Civita connections of $M$ and $\tilde{M}^{n}(4c)$ by $\nabla$ and $\tilde{\nabla}$ , re-
spectively, the formulas of Gauss and Weingarten are respectively given by

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)$ ,

$\tilde{\nabla}_{X}\zeta=-A_{\zeta}X+D_{X}\zeta$ ,

for tangent vector fields $X,$ $Y$ and normal vector field $\zeta$ , where $D$ is the normal
connection. The second fundamental form $h$ is related to the shape operator $A_{\zeta}$

by $\langle h(X, Y), \zeta\rangle=\langle A_{\zeta}X, Y\rangle$ for a normal vector $\zeta$ of $M$ . The mean curvature
vector $H$ of $M$ is defined by $H=\frac{1}{n}$ trace $h$ . If we denote the curvature tensors of
$\nabla$ and $D$ by $R$ and $R^{D}$ , then the equations of Gauss, Codazzi and Ricci are given
by

$\langle R(X, Y)Z, W\rangle=\langle h(Y, Z), h(X, W)\rangle-\langle h(X, Z),h(Y, W)\rangle$

$+c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle)$ ,

$(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z)$ ,

$\langle R^{D}(X, Y)\psi Z, \phi W\rangle=\langle[A_{\psi Z}, A_{\phi W}]X, Y\rangle$

$+c(\langle X, I\phi W\rangle\langle Y, I\psi Z\rangle-\langle X, I\psi Z\rangle\langle Y, I\phi W\rangle)$

$+(\langle X,J\phi W\rangle\langle Y,J\psi Z\rangle-\langle X, J\psi Z\rangle\langle Y, J\phi W\rangle)$

$+(\langle X, K\phi W\rangle\langle Y, K\psi Z\rangle-\langle X, K\psi Z\rangle\langle Y, K\phi W\rangle)$ ,

where $X,$ $Y,$ $Z,$ $W$ are tangent vector fields and $\phi,$ $\psi=I,$ $J$ , or $K$ .
Finally, we recall a definition of warped product [1]. Let $N_{1},$ $N_{2}$ be two

Riemannian manifolds with Riemannian metrics $g1,$ $g2$ , respectively and $f$ a
positive function on $N_{1}$ . Then the metric $g=g1+f^{2}g2$ is called a warped
product metric on $N_{1}\times N_{2}$ . The manifold $N_{1}\times N_{2}$ with the warped product
metric $g=g1+f^{2}g2$ is called a warped product manifold. The function $f$ is
called the warping function of the warped product manifold.

3. Quaternion Extensors

In this section we are going to investigate the geometry of quatemion
extensors. First of all, we have the following definition.
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Let $G:M^{n-1}\rightarrow E^{m}$ be an isometric immersion of a Riemannian $(n-1)-$

manifold into Euclidean m-space $E^{m}$ and $F:I\rightarrow H$ a unit speed curve in the
quatemion plane. Consider the following extension $\phi$ given by

$\phi=F\otimes G:I\times M^{n-1}\rightarrow H\otimes E^{m}=H^{m}$ ,

where $\phi=F\otimes G$ is the tensor product immersion of $F$ and $G$ defined by

$(F\otimes G)(s,p)=F(s)\otimes G(p)$ ; $s\in I,$ $p\in M^{n-1}$ .

We call such an extension $\phi=F\otimes G$ a quatemion extensor of $G$ via $F$ .
An immersion $f:N\rightarrow E^{m}$ is called spherical (respectively, unit spherical) if

$N$ is immersed into a hypersphere (respectively, unit hypersphere) of $E^{m}$ centered
at the origin. The quatemion extensor $\phi$ : $F\otimes G:I\times M^{n-1}\rightarrow H^{m}$ is called F-
isometric if, for each $p\in M^{n-1}$ , the immersion $F\otimes G(p)$ : $I\rightarrow H^{m}$ : $ s\mapsto F(s)\otimes$

$G(p)$ is isometric. Similarly, the quatemion extensor is called G-isometric if, for
each $s\in I$ , the immersion $F(s)\otimes G:M^{n-1}\rightarrow H^{m}$ : $p\mapsto F(s)\otimes G(p)$ is isometric.

LEMMA 3.1. Let $G:M^{n-1}\rightarrow E^{m}$ be an isometric immersion of a Riemannian
$(n-1)$ -manifold into Euclidean m-space $E^{m}$ and $F:I\rightarrow H$ a unit speed curve in
the quaternion plane. Then

(1) the quaternion extensor $\phi=F\otimes G$ is F-isometric if and only $lfG$ is unit
spherical,

(2) the quaternion extensor $\phi=F\otimes G$ is G-isometric if and only if $F$ is unit
spherical,

(3) the quaternion extensor $\phi=F\otimes G$ is totally real if and only if either $G$ is
spherical or $F(s)=cf(s)$ for some constant $c\in H$ and real-valued function $f$ .

PROOF. The statements (1) and (2) come from straightforward computations.
By a direct computation, the quatemion extensor is totally real if and only if,

for any $s\in I,$ $p\in M^{n-1}$ and $Y\in T_{p}M^{n-1}$ , we have

Real $(\varphi F(s)\overline{F}^{\prime}(s))\cdot\langle G(p), Y\rangle=0$ ,

where $\overline{F}$ ‘ denotes the quatemionic conjugate of $F^{\prime}$ and Real $(\varphi F(s)\overline{F}^{\prime}(s))$ the
real part of $\varphi F(s)\overline{F}^{\prime}(s)$ for $\varphi=i,j$ or $k$ . Therefore, we have either $\langle G(p), Y\rangle$

$=0$ for all $p\in M^{n-1}$ , $Y\in T_{p}M^{n-1}$ or Real(iF(s)F’(s)) $=Real(jF(s)\overline{F}^{\prime}(s))=$

Real(kF(s)F’(s)) $=0$ for all $s\in I$ . If the first case occurs, then $G$ is spherical. If $F$

is given by $F(s)=a(s)+ib(s)+jc(s)+kd(s)$ , where $a,$ $b,$ $c$ , and $d$ are real
valued functions, and the second condition is tme, then we have the following
system of ODES:
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$ab’-a^{\prime}b+cd^{\prime}-c^{\prime}d=0$

$ac^{\prime}-a^{\prime}c+b^{\prime}d-bd^{\prime}=0$

$ad^{\prime}-a^{\prime}d+bc^{\prime}-b^{\prime}c=0$

By solving this system, we can find that $F(s)=ca(s)$ for a constant $c\in H$ .

A submanifold $M^{n-1}$ of $E^{m}$ is said to be of essential codimension one if
locally $M^{n-1}$ is contained in an affine n-subspace of $E^{m}$ .

PROPOSITION 3.2. Let $G:M^{n-1}\rightarrow E^{m}$ be an isometric immersion of a
Riemannian $(n-1)$ -manifold into Euclidean m-space $E^{m}$ and $F:I\rightarrow H$ a unit
speed curve. Then the quaternion extensor $\phi=F\otimes G:I\times M^{n-1}\rightarrow H^{m}$ is totally
geodesic (with respect to the induced metric) if and only if one of the following two
cases occurs:

(1) $G:M^{n-1}\rightarrow E^{m}$ is of essential codimension one and $F(s)=(s+a)c$ for
some real number $a$ and some unit quaternion number $c$ .

(2) $n=2$ and $G$ is a line in $E^{m}$ .

PROOF. Since $\phi$ is totally geodesic, $\phi_{ss},$ $YZ\phi,$ $Y\phi_{s}$ are tangent vector fields
for $Y,$ $Z$ vector fields tangent to the second component of $I\times M^{n-1}$ . By using
the fact $ F^{J/}(s)\otimes\xi$ is normal to $I\times M^{n-1}$ in $H^{m}$ (via $\phi$) for any unit normal
vector field $\xi$ of $M^{n-1}$ in $E^{m}$ , we get the following two equations.

(3) $\langle F^{\prime\prime}(s), F^{\prime\prime}(s)\rangle\langle\xi, G(p)\rangle=0$

(4) $\langle F^{\prime\prime}(s), F(s)\rangle\langle\xi, h_{G}(Y, Z)\rangle=0$ ,

for any vector fields $Y,$ $Z$ tangent to $M^{n-1}$ and for any $s\in I$ and point $p\in M^{n-1}$ ,
where $h_{G}$ is the second fundamental form of $G:M^{n-1}\rightarrow E^{m}$ .

We can divide our case as follows:
Case (1) $F^{r/}=0$

This case follows from the case (i) in proposition 2.2 in [2] so that we can
deduce statement (1).

Case (2) $F^{\prime\prime}\neq 0$

By (3), we get $\langle\xi, G(p)\rangle=0$ for any normal vector field $\xi$ to $M^{n-1}$ in $E^{m}$

and any point $p\in M^{n-1}$ . Since $\phi$ is totally geodesic, $ YZ\phi$ is a tangent vector field
for $Y,$ $Z$ tangent to $M^{n-1}$ in $E^{m}$ which yields

(5) $ 0=\langle F^{\prime}, F\rangle\langle\xi,h_{G}(Y, Z)\rangle$
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Suppose $G$ is non totally geodesic. Then (5) gives $\langle F^{\prime}, F\rangle=0$ and thus $\Vert F\Vert^{2}$ is
a constant. Also, we get $\langle F^{\prime\prime}, F\rangle=0$ because of (4). Combining these conditions
for $F$ implies $F^{\prime}=0$ which is impossible. Therefore, $G$ must be totally geodesic
which implies that $G(M^{n-1})$ is an open portion of an affine $(n-1)$ -subspace, say
$E$, of $E^{m}$ .

Now, we can consider two cases below.
Case (2-i): $n\geq 3$ . In this case, for each $p\in G(M^{n-1})$ with $G(p)\neq 0$ , there

exist a nonzero vector $Y\in T_{p}M^{n-1}$ which is not parallel to $G(p)$ . For such $Y$ , we
can say that $Y\phi_{s}=\alpha(s)F^{\prime}(s)\otimes G+\beta(s)F\otimes Z$ for some real valued functions $\alpha$ ,
$\beta$ and some tangent vector Z. It implies that $F$ and $F^{\prime}$ are parallel which is
impossible.

Case (2-ii): $n=2$ . In this case, $G$ is an open portion of a line, say $L$ in $E^{m}$ .
The converse can be proved easily.

PROPOSITION 3.3. let $\iota$ : $S^{n-1}\rightarrow E^{n}$ be the inclusion of the unit hypersphere of
$E^{n}$ (centered at the origin). Then every quaternion extensor of $\iota$ via a unit speed
curve $F$ in $H$ is a Lagrangian H-umbilical submamfold of $H^{n}$ unless $F(s)=(s+a)c$

for some real number $a$ and some unit quaternion number $c$ .

PROOF. By a direct computation, we can easily see that $\phi=F\otimes\iota$ is a
Lagrangian H-umbilical submanifold satisfying

$h(e_{1}, e_{1})=\lambda_{I}Ie_{1}+\lambda_{J}Je_{1}+\lambda_{K}Ke_{1}$ ,

$h(e_{1}, e_{j})=\mu_{I}Ie_{j}+\mu_{J}Je_{j}+\mu_{K}Ke_{j}$ , for $j=2,$
$\ldots,$

$n$

$h(e_{j}, e_{j})=\mu_{I}Ie_{1}+\mu_{J}Je_{1}+\mu_{K}Ke_{1}$ , for $j=2,$
$\ldots,$

$n$

$h(e_{j}, e_{k})=0$ , for $j\neq k=2,$
$\ldots,$

$n$ ,

where $\lambda_{\varphi}=\langle F^{\prime\prime}, \varphi F^{\prime}\rangle$ and $\mu_{\varphi}=\{(\frac{F}{\Vert F\Vert})^{\prime},$ $\varphi(\frac{F}{\Vert F\Vert})\}$ for $\varphi=I,J$ or $K$ and
$\{e_{1}, e_{2}, \ldots, e_{n}\}$ is an orthonormal local frame field. Without difficulty, we can get
that $\phi$ is totally geodesic if $F(s)=(s+a)c$ for some real number $a$ and some unit
quatemion number $c$ .

4. Main Theorem

The main result of this section is to classify Lagrangian H-umbilical sub-
manifolds of quatemion Euclidean space. To do this, we need to review the
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Lagrangian pseudo-sphere in $C^{n}$ ([2]). For a real number $b>0$ , let $F:R\rightarrow C$ be
the unit speed curve given by

$F(s)=\frac{e^{2bsi}+1}{2bi}$

With respect to the induced metric, the complex extensor $\phi=F\otimes\iota$ of the unit
hypersphere of $E^{n}$ via $F$ is a Lagrangian isometric immersion of an open portion
of an n-sphere $S^{n}(b^{2})$ of sectional curvature $b^{2}$ into $C^{n}$ . It is called a Lagrangian
pseudo-sphere. It has been shown that it is a Lagrangian H-umbilical submani-
fold in $C^{n}$ satisfying the following second fundamental form:

(6) $h(e_{1}, e_{1})=2bJe_{1}$ , $h(e_{j}, e_{j})=bJe_{1}$ , $i\geq 2$

$h(e_{1}, e_{j})=bJe_{j}$ , $h(e_{j}, e_{k})=0$ , for $j\neq k=2,$
$\ldots,$

$n$ ,

for some nontrivial function $b$ with respect to some suitable orthonormal local
frame field. Up to rigid motions in $C^{n}$ , it is unique.

THEOREM 4.1. Let $n\geq 3$ and $L:M\rightarrow H^{n}$ be a Lagrangian H-umbilical
isometric immersion.

We have one of these three cases:
(A) $M$ is flat or,
(B) up to rigid motions of $H^{n},$ $L$ is a Lagrangian pseudo-sphere in $C^{n}$ , or
(C) up to rigid motions of $H^{n},$ $L$ is a quaternion extensor of the unit

hypersphere of $E^{n}$ .

PROOF. Let $n\geq 3$ and $L:M\rightarrow H^{n}$ be a Lagrangian H-umbilical isometric
immersion whose second fundamental form is given by

$h(e_{1}, e_{1})=\lambda_{1}Ie_{1}+\lambda_{2}Je_{1}+\lambda_{3}Ke_{1}$ ,

$h(e_{1}, e_{j})=\mu_{1}Ie_{j}+\mu_{2}Je_{j}+\mu_{3}Ke_{j}$ , for $j=2,$ $\ldots,$
$n$

(7)
$h(e_{j}, e_{j})=\mu_{1}Ie_{1}+\mu_{2}Je_{1}+\mu_{3}Ke_{1}$ , for $j=2,$

$\ldots,$
$n$

$h(e_{j}, e_{k})=0$ , for $j\neq k=2,$ $\ldots,n$ ,

for some functions $\lambda_{i},$ $\mu_{l}(i=1,2,3)$ with respect to some suitable orthonormal
local frame fields $\{e_{1}, e_{2}, \ldots, e_{n}\}$ with the dual l-forms $\omega^{1},$

$\ldots,$

$\omega^{n}$ . Let $(\omega_{A}^{B})$ ,
$A,$ $B=1,$ $\ldots$ , $n$ be the connection form on $M$ defined by $\omega_{i}^{j}(e_{k})=\langle\tilde{\nabla}_{e_{k}}e_{i}, e_{j}\rangle$ for
$i,j,k=1,$ $\ldots,n$ . By (7) and Codazzi equation, we have
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(8) $e_{1}(\mu_{1})=(\lambda_{1}-2\mu_{1})\omega_{1}^{j}(e_{j})+\lambda_{2}\mu_{3}-\lambda_{3}\mu_{2}$

$e_{1}(\mu_{2})=(\lambda_{2}-2\mu_{2})\omega_{1}^{j}(e_{j})+\lambda_{3}\mu_{1}-\lambda_{1}\mu_{3}$

$e_{1}(\mu_{3})=(\lambda_{3}-2\mu_{3})\omega_{1}^{j}(e_{j})+\lambda_{1}\mu_{2}-\lambda_{2}\mu_{1}$

(9) $e_{j}(\lambda_{1})=(\lambda_{1}-2\mu_{1})\omega_{1}^{j}(e_{1})$

$e_{j}(\lambda_{2})=(\lambda_{2}-2\mu_{2})\omega_{1}^{j}(e_{1})$

$e_{j}(\lambda_{3})=(\lambda_{3}-2\mu_{3})\omega_{1}^{j}(e_{1})$ for $j=2,$
$\ldots,$

$n$

(10) $(\lambda_{1}-2\mu_{1})\omega_{1}^{k}(e_{j})=0$

$(\lambda_{2}-2\mu_{2})\omega_{1}^{k}(e_{j})=0$

$(\lambda_{3}-2\mu_{3})\omega_{1}^{k}(e_{j})=0$ for $k\neq j=2,$ $\ldots,n$

(11) $e_{j}(\mu_{1})=3\mu_{1}\omega_{1}^{j}(e_{1})$

$e_{j}(\mu_{2})=3\mu_{2}\omega_{1}^{j}(e_{1})$

$e_{j}(\mu_{3})=3\mu_{3}\omega_{1}^{j}(e_{1})$ for $j=2,$
$\ldots,$

$n$

(12) $\mu_{1}\omega_{1}^{k}(e_{1})=\mu_{2}\omega_{1}^{k}(e_{1})=\mu_{3}\omega_{1}^{k}(e_{1})=0$ , $k=2,$ $\ldots,$
$n$

Here, (10) and (12) hold only for $n\geq 3$ .
Let’s first consider the case if $M$ is of constant sectional curvature, then

(7) implies that $\mu_{1}(\lambda_{1}-2\mu_{1})+\mu_{2}(\lambda_{2}-2\mu_{2})+\mu_{3}(\lambda_{3}-2\mu_{3})=0$ . Furthermore, the
equations in (10) provide the following two cases:

(a) $\lambda_{j}=2\mu_{l}$ for $i=1,2,3$

If $\mu_{1}=\mu_{2}=\mu_{3}=0$ , then $M$ is flat.
From now on, we assume that there exists one $i$ such that $\mu_{i}\neq 0$ . Then the

subset $V=$ {$p\in M|\mu_{1}(p)\neq 0$ or $\mu_{2}(p)\neq 0$ or $\mu_{3}(p)\neq 0$ } is a nonempty open
subset of $M$ . The assumption and the equations in (8), (11) and (12) imply that
$\mu_{1},$ $\mu_{2}$ and $\mu_{3}$ are constants on $V$ . Then Gauss equation shows $V$ is a real-space-
form of constant sectional curvature $\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}$ , say $b^{2}\neq 0$ . By continuity,
$V=M$ . By making a proper translation and rescaling, we can say that $M$

satisfies the second fundamental form given in (6). Moreover, we also can check
that the first normal space is parallel with respect to the normal connection so
that by applying the result of Erbacher [5], $M$ can be immersed into complex
Euclidean space $C^{n}$ which implies that $M$ is a Lagrangian pseudo-sphere in
$C^{n}$ .
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(b) There exists one $i$ such that $\lambda_{i}\neq 2\mu_{i}$ , and still we have $\mu_{1}(\lambda_{1}-2\mu_{1})+$

$\mu_{2}(\lambda_{2}-2\mu_{2})+\mu_{3}(\lambda_{3}-2\mu_{3})=0$ .
By (10) and our assumption, we know that $\omega_{1}^{j}(e_{k})=0$ for $k\neq j=2,$

$\ldots,$
$n$ ,

and using (8) and (12), we get

(13) $\omega_{1}^{j}=\frac{e_{1}(\mu_{2})-\lambda_{3}\mu_{1}+\lambda_{1}\mu_{3}}{\lambda_{2}-2\mu_{2}}\omega^{j}$

Suppose we define $f=\frac{e_{1}(\mu_{2})-\lambda_{3}\mu_{1}+\lambda_{1}\mu_{3}}{\lambda_{2}-2\mu_{2}}$ . Let $D$ be the distribution spanned by $e_{1}$

and $D^{\perp}$ be the distribution spanned by $\{e_{2}, e_{3}, \ldots, e_{n}\}$ . Since $\omega_{1}^{j}(e_{k})=0$ for
$k\neq j=2,$

$\ldots,$
$n$ , the distribution $D^{\perp}$ is integrable. Also, the distribution $D$ is

integrable since it is l-dimensional. Therefore there exists local coordinates
$\{x_{1}, x_{2}, \ldots, x_{n}\}$ such that $e_{1}=\frac{\partial}{\partial x_{1}}$ and $D^{\perp}$ is spanned by $\{\frac{\partial}{\partial x_{2}},$ $\frac{\partial}{\partial x_{n}}\}$ . Using
(13), we obtain

(14) $\langle\nabla_{X}Y, e_{1}\rangle=-f\langle X, Y\rangle$ , X, $Y\in D^{\perp}$

It implies that $D^{\perp}$ is a spherical distribution and furthermore, each leaf of $D^{\perp}$ is
of constant sectional curvature $\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}+f^{2}$ . Now, by applying a result of
Hiepko [8], $M$ is isometric to a warped product $I\times_{\omega(s)}S^{n-1}$ , where $S^{n-1}$ is the
unit $(n-1)$ sphere and $\omega(s)$ is a warping function.

Using the spherical coordinates $\{u_{2}, \ldots, u_{n}\}$ on the unit sphere, we can
choose the metric

$g=ds^{2}+\omega^{2}(s)\{du_{2}^{2}+\cos^{2}u_{2}du_{3}^{2}+\cdots+\cos^{2}u_{2}\cdots\cos^{2}u_{n-1}du_{n}^{2}\}$

on $I\times_{\omega(s)}S^{n-1}$ . By using this metric $g$ , we have

$\nabla_{\partial/\partial s^{\frac{\partial}{\partial s}}}=0$ , $\nabla_{\partial/\partial s}\frac{\partial}{\partial u_{k}}=\frac{\omega^{\prime}}{\omega}\frac{\partial}{\partial u_{k}}$ , $\nabla_{\partial/\partial u_{2}}\frac{\partial}{\partial u_{2}}=-\omega\omega^{\prime}\frac{\partial}{\partial s}$ ,

$\nabla_{\partial/\partial u_{i}}\frac{\partial}{\partial u_{j}}=-\tan u_{i}\frac{\partial}{\partial u_{j}}$ , $2\leq i<j$ ,

(15)
$\nabla_{\partial/\partial uj}\frac{\partial}{\partial u_{j}}=-\omega\omega^{\prime}\cos^{2}u_{2}\cdots\cos^{2}u_{j-1^{\frac{\partial}{\partial s}}}$

$+\sum_{k=2}^{n-1}\frac{\sin 2u_{k}}{2}\cos^{2}u_{k+1}\cdots\cos^{2}u_{j-1}\frac{\partial}{\partial u_{k}}$ , $j\geq 2$

By substituting $X=Y=\frac{\partial}{\partial u_{2}}$ into (14) and using (15), we get

$\frac{\omega^{\prime}}{\omega}=f$



Lagrangian H-umbilical submanifolds in quatemion Euclidean spaces 243

Furthermore, computing the sectional curvatures spanned by $\frac{\partial}{\partial u_{2}}\frac{\partial}{\partial u_{3}}$ and $\frac{\partial}{\partial s}\frac{\partial}{\partial u_{2}}$

derive the following condition for the warping function:

$\frac{1}{\omega^{2}}-f^{2}=-\frac{\omega^{J/}}{\omega}=\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}=\overline{\mu}^{2}$

Note here that $\overline{\mu}$ is a constant by our assumption. These conditions provide a
differential equation

$f^{2}+f^{\prime}+\overline{\mu}^{2}=0$

and then

$\omega(s)=\cos\overline{\mu}s$ , $f(s)=-\overline{\mu}\tan\overline{\mu}s$

By doing the same procedure in theorem 4.1 [2], we obtain that $L$ is a quatemion
extensor of the unit hypersphere of $E^{n}$ .

Now, we assume that $M$ does not contain open subset of constant sectional
curvature. Then

$U:=$ {$p\in M:\mu_{1}(\lambda_{1}-2\mu_{1})+\mu_{2}(\lambda_{2}-2\mu_{2})+\mu_{3}(\lambda_{3}-2\mu_{3})\neq 0$ at $p$ }

is an open dense subset of $M$ .
By (8), on $U$ , we obtain

$\omega_{1}^{j}(e_{j})=\frac{\mu_{1}e_{1}(\mu_{1})+\mu_{2}e_{1}(\mu_{2})+\mu_{3}e_{1}(\mu_{3})}{\mu_{1}(\lambda_{1}-2\mu_{1})+\mu_{2}(\lambda_{2}-2\mu_{2})+\mu_{3}(\lambda_{3}-2\mu_{3})}$

Since $n\geq 3,$ $\omega_{1}^{j}(e_{k})=0$ for $k\neq j=2,$
$\ldots,$

$n$ on $U$ . Therefore,

$\omega_{1}^{j}=\frac{\mu_{1}e_{1}(\mu_{1})+\mu_{2}e_{1}(\mu_{2})+\mu_{3}e_{1}(\mu_{3})}{\mu_{1}(\lambda_{1}-2\mu_{1})+\mu_{2}(\lambda_{2}-2\mu_{2})+\mu_{3}(\lambda_{3}-2\mu_{3})}\omega^{j}$

Let’s define $\overline{f}=\frac{\mu_{1}e_{1}(\mu_{1})+\mu_{2}e_{1}(\mu_{2})+\mu_{3}e_{1}(\mu_{3})}{\mu_{1}(\lambda_{1}-2\mu_{1})+\mu_{2}(\lambda_{2}-2\mu_{2})+\mu_{3}(\lambda_{3}-2\mu_{3})}$ . Using this $\overline{f}$, the conclusion follows
in the same way we have seen the above case.

Similar to the complex case, we have the following same result for
Lagrangian H-umbilical surface in quatemion Euclidean space $H^{2}$ .

THEOREM 4.2. Let $L:M\rightarrow H^{2}$ be a Lagrangian H-umbilical surface
satisfying
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$h(e_{1}, e_{1})=\lambda_{1}Ie\mathfrak{l}+\lambda_{2}Je_{1}+\lambda_{3}Ke_{1}$ ,

$h(e_{2}, e_{2})=\mu_{1}Ie_{1}+\mu_{2}Je_{1}+\mu_{3}Ke\mathfrak{l}$ ,

$h(e_{1},e_{2})=\mu_{1}Ie_{2}+\mu_{2}Je_{2}+\mu_{3}Ke_{2}$ ,

such that the integral curves of $e_{1}$ are geodesics in M. Then
(1) $M$ is flat or,
(2) up to rigid motions of $H^{2},$ $L$ is a Lagrangian pseudo-sphere in $C^{2}$ or
(3) up to rigid motions of $H^{2},$ $L$ is a quaternion extensor of the unit circle

of $E^{2}$ .

PROOF. By Codazzi equation, we get

(16) $e_{1}(\mu_{1})=(\lambda_{1}-2\mu_{1})\omega_{1}^{2}(e_{2})+\lambda_{2}\mu_{3}-\lambda_{3}\mu_{2}$

$e_{1}(\mu_{2})=(\lambda_{2}-2\mu_{2})\omega_{1}^{2}(e_{2})+\lambda_{3}\mu_{1}-\lambda_{1}\mu_{3}$

$e_{1}(\mu_{3})=(\lambda_{3}-2\mu_{3})\omega_{1}^{2}(e_{2})+\lambda_{1}\mu_{2}-\lambda_{2}\mu_{1}$

The assumption that the integral curves of $e_{1}$ are geodesics in $M$ yields

(17) $e_{2}(\mu_{j})=e_{2}(\lambda_{j})=0$ , $i=1,2,3$

We note here that this assumption is needed to replace the equation (13) obtained
because $n\geq 3$ . If we have $\lambda_{i}=2\mu_{j}$ for $i=1,2,3$ in (16), and using (17), the
sectional curvature of the surface $\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}$ becomes a constant. If all $\mu_{j}\prime s$ are
identically zero, then it is a flat surface. 0therwise, doing the same work in the
case (a) of theorem 4.1, we can say that it is a Lagrangian pseudo-sphere in $C^{2}$ .
If there exists one $i$ , saying $i=1$ such that $\lambda_{1}\neq 2\mu_{1}$ , then we have

(18) $\omega_{1}^{2}=\frac{e_{1}(\mu_{1})-\lambda_{2}\mu_{3}+\lambda_{3}\mu_{2}}{\lambda_{1}-2\mu_{1}}\omega^{1}$

and then the rest of the proof is exactly identical by taking into account
$f=\frac{e_{1}(\mu_{1})-\lambda_{2}\mu_{3}+\lambda_{3}\mu_{2}}{\lambda_{1}-2\mu_{1}}$ in Theorem 4.1.

REMARK. The explicit description of flat Lagrangian H-umbilical submani-
folds in a quatemion Euclidean space will be discussed in [7].

The author would like to thank Prof. B. Y. Chen for suggesting the problem
and for useful discussions on this topic. Thanks also to the referee for several
useful suggestions and corrections which improve the paper.
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