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EXTENDING POINTWISE BOUNDED EQUICONTINUOUS
COLLECTIONS OF FUNCTIONS

By

Kaori YAMAZAKI

Abstract. We prove that for a subspace $A$ of a space $X$ , the
following statements are equivalent: (1) for any Fr\’echet spaoe $Y$ ,
every pointwise bounded equicontinuous subset of $C(A, Y)$ can be
extended to a pointwise bounded equicontinuous subset of $C(X, Y)$ ;
(2) every pointwise bounded equicontinuous subset of $C(A)$ can be
extended to a pointwise bounded equicontinuous subset of $C(X);(3)$

for any Fr\’echet space $Y$ , every function $f\in C(A, Y)$ can be extended
to a function $g\in C(X, Y)$ . This theorem and other results obtained
in this paper generalize several known theorems due to Flood, Frantz
and Heath-Lutzer-Zenor, etc.

1. Introduction and Preliminaries

All spaces are assumed to be $T_{1}$ -spaces. For short, we call a topological
vector space a TV-space, and a locally convex TV-space an LCTV-space (see [2],
[12]). In a TV-space, $0$ stands for its origin. For topological spaces $X$ and $Y$ ,
$C(X, Y)$ denotes the set of all continuous functions from $X$ into $Y$ . In particular,
the set of all continuous real-valued (resp. continuous bounded real-valued)
functions is denoted by $C(X)$ (resp. $C^{*}(X)$ ). Let $X$ be a space, $Y$ a TV-spaoe and
$\mathscr{F}=\{f_{\alpha} : \alpha\in\Omega\}\subset C(X, Y)$ . For a point $x\in X,$ $\mathscr{F}$ is said to be equicontinuous
at $x$ if for every neighborhood $V$ of $0$ in $Y$ , there exists a neighborhood $O$ of $x$

in $X$ such that $f_{\alpha}(y)-f_{\alpha}(x)\in V$ for every $y\in O$ and every $\alpha\in\Omega$ . The collec-
tion $\mathscr{F}$ is said to be equicontinuous if $\mathscr{F}$ is equicontinuous at every point $x\in X$ .
The collection $\mathscr{F}$ is said to be pointwise bounded if for every $x\in X$ and every
neighborhood $V$ of $0$ in $Y$ , there exists $e_{x}>0$ such that $r\cdot f_{\alpha}(x)\in V$ for every $r$

with $|r|<e_{X}$ and every $\alpha\in\Omega$ . The collection $\mathscr{F}$ is said to be pointwise totally
bounded if for every $x\in X$ and every neighborhood $V$ of $0$ in $Y$ , there exists a
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finite subset $F$ of $Y$ such that $\{f_{\alpha}(x):\alpha\in\Omega\}\subset F+V$ . As is known, every
pointwise totally bounded subset $\mathscr{F}$ of $C(X, Y)$ is pointwise bounded, and the
converse holds when $Y=R$ . Let $X$ be a space, $A$ a subspace of $X$ and $Y$ a
space. For $\mathscr{F}(=\{f_{\alpha} : \alpha\in\Omega\})\subset C(A, Y)$ and $\mathscr{G}\subset C(X, Y)$ , we say that $\mathscr{F}$ is
extended to $\mathscr{G}$ (or $\mathscr{G}$ is an extension of $\mathscr{F}$ ) if $\mathscr{G}$ is expressed as $\{g_{\alpha} : \alpha\in\Omega\}$ and
$g_{\alpha}|A=f_{\alpha}$ for every $\alpha\in\Omega$ .

The problem “When can a pointwise bounded equicontinuous subset of
$C(A, Y)$ be extended to the one of $C(X, Y)$? was studied by M. Frantz [8],
which was motivated by the Dugundji extension theorem [5].

THEOREM 1.1 (Frantz [8]). For a metrizable space $X$, a closed subspace $A$ of
$X$ and a metrizable LCTV-space $Y$, every pointwise bounded equicontinuous subset
of $C(A, Y)$ can be extended to an equicontinuous subset of $C(X, Y)$ .

It was shown in [8] that the equicontinuous subset $\{f_{n} : n\in N\}$ of $C(\{0,1\})$ ,
defined by $f_{n}(0)=0$ , and $f_{n}(1)=n$ for every $n\in N$ , admits no equicontinuous
extension over $C([0,1])$ . Thus, the pointwise boundedness can not be dropped in
the above theorem.

In this paper, we study the above problem from the following points of view.
In Section 2, we show that Theorem 1.1 remains true if ’metrizable space’ is

weakened to ‘decreasing $(G)$ space’ in the sense of Collins-Roscoe [4] (Theorem
2.1). Stares [18] proved that the Dugundji extension theorem also holds for
decreasing $(G)$ spaces. Our result is along this direction.

In Section 3, we prove the equivalence stated in the abstract (Theorem 3.1).
This generalizes some known results due to Flood [7] and Heath-Lutzer-Zenor
[10], and establishes some incomplete results due to A16 [1] and Gutev [9] (see
Section 3 for details). In particular, Lemma 3.5, which is a key lemma to prove
Theorem 3.1, shows that for a P-embedded subspace $A$ of a space $X$ and a
Fr\’echet space $Y$ , every poinwise bounded equicontinuous subset $\mathscr{F}$ of $C(A, Y)$

has an extender which well behaves like Dugundji’s one in [5]. Some applications
characterizing collectionwise normality are also given (Corollaries 3.7 and 3.9).

In the final part of this section, we show that every (not necessarily pointwise
bounded) equicontinuous subset of $C(X, Y)$ can be extended to an equi-
continuous subset of $C(\gamma X, Y)$ , where $X$ is a Tychonoff space and $\gamma X$ is its
Dieudonn\’e completion (Theorem 3.11). The result slightly improves the one of
Sanchis [15].

Let us recall some definitions. A Fr\’echet space is a completely metrizable
LCTV-space. Note that every Banach space is a Fr\’echet space.
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Let $X$ be a topological space and $Y$ a TV-space. Let $\mathscr{B}$ be a collection of
subsets of $X$ which is closed under finite unions. For $B\in \mathscr{B}$ , a neighborhood $V$ of
$0$ in $Y$ and $f\in C(X, Y)$ , define $N(f, B, V)=\{g\in C(X, Y):f(x)-g(x)\in V$ for
every $x\in B$}. The collection { $N(f, B, V):B\in \mathscr{B},$ $V$ is a neighborhood of $0$ in
$Y\}$ can be taken as a neighborhood base of $f$ and the topology is called as
the topology of uniform convergence if $\mathscr{B}=\{X\}$ , the compact-open topology
if $\mathscr{B}=$ { $K\subset X:K$ is compact}, and the topology of pointwise convergence if
$\mathscr{B}=$ { $F\subset X:F$ is finite}. For a metric LCTV-space $(Y,\rho)$ , denote the open
e-ball and the closed $\epsilon$-ball by $B(O;\epsilon)$ and $\overline{B}(0;\epsilon)$ , respectively; that is,
$B(O;\epsilon)=\{y\in Y:\rho(0, y)<\epsilon\}$ and $\overline{B}(0;\epsilon)=\{y\in Y:p(O, y)\leq\epsilon\}$ . For a metric
LCTV-space $(Y,\rho),$ $\epsilon>0,$ $B\in \mathscr{B}$ and $f\in C(X, Y),$ $N(f, B,\epsilon)$ denotes $N(f,$ $B$ ,
$B(0;\epsilon))$ .

The symbols $C_{k}(X, Y),$ $C_{k}(X)$ or $C_{k^{*}}(X)$ stand for $C(X, Y),$ $C(X)$ or $C^{*}(X)$

with the compact-open topology. Similarly, the symbols $C_{p}(X, Y),$ $C_{p}(X)$ or
$C_{p^{*}}(X)$ stand for $C(X, Y),$ $C(X)$ or $C^{*}(X)$ with the topology of pointwise
convergence.

A space $X$ is said to be a k-space if for every $S\subset X$ , the set $S$ is closed in
$X$ provided that the intersection of $S$ with any compact subspace $Z$ of $X$ is closed
in Z.

Let $X$ be a space and $A$ a subspace of $X$ . For a collection $\mathscr{W}$ of subsets of
$X,$ $\mathscr{W}\wedge A$ stands for $\{W\cap A : W\in \mathscr{W}\}$ . A subspace $A$ is said to be $C$ (resp. $C^{*}$ ) $-$

embedded in $X$ if every real-valued (resp. bounded real-valued) continuous
function on $A$ can be continuously extended over $X$ . A subspace $A$ is said to be
$P^{\gamma}$-embedded in $X$ if for every normal open cover $\mathscr{U}$ of $A$ with $|\mathscr{U}|\leq\gamma$ , there
exists a normal open cover $\gamma$ of $X$ such that $\gamma\wedge A$ refines $\mathscr{U}$ . A subspace $A$ is
said to be P-embedded in $X$ if $A$ is $P^{\gamma}$-embedded in $X$ for every $\gamma$ . It is known
that $A$ is P-embedded in $X$ if and only if every continuous function from $A$ into
any Banach space $Y$ can be extended to a continuous one over $X[2]$ . Moreover,
it is known that ‘Banach space’ in the above can be replaced by ‘Fr\’echet space’
(see [2]). A subspace $A$ is said to be well-embedded in $X$ if every zero-set of $X$

disjoint from $A$ can be completely separated from $A$ in $X$ (see [2], [11]). We use
the following facts without references; (i) $A$ is $P^{N_{0}}$ -embedded in $X$ if and only if $A$

is C-embedded in $X;(ii)$ $A$ is C-embedded in $X$ if and only if $A$ is $C^{*}$ -embedded
and well-embedded in $X;(iii)X$ is collectionwise normal if and only if every
closed subspace $A$ of $X$ is P-embedded in $X$ . For these results, see [2], [11] and
[13].

Other terminology and basic facts are referred to [2], [6], [11], [12] and
[13].
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2. A Generalization of Theorem 1.1 to Decreasing $(G)$ Spaces $X$

Let $X$ be a metrizable space, $A$ a closed subspace of $X$ and $Y$ an LCTV-
space. Let $\Psi$ : $C(A, Y)\rightarrow C(X, Y)$ be Dugundji’s extender constmcted in the
proof of [5, Theorem 4.1]. Theorem 1.1 actually shows that for a pointwise
bounded equicontinuous subset $\{f_{\alpha} : \alpha\in\Omega\}$ of $C(A, Y)$ , the extended collection
$\{\Psi(f_{\alpha}):\alpha\in\Omega\}$ is also equicontinuous.

A spaoe $X$ is said to be decreasing $(G)$ if there exists a collection { $W(x)$ :
$x\in X\}$ , where $\mathscr{V}(x)$ is a collection of sets of the form $W(x)=\{W(n, x) : n\in N\}$

such that (i) $W(n+1,x)\subset W(n, x)\subset X$ for all $x$ and $n$ and (ii) for every $x\in X$

and every open neighborhood $U$ of $x$, there exists an open neighborhood $V(x, U)$

of $x$ such that for every $y\in V(x, U)$ there is $n$ with $x\in W(n, y)\subset U$ ([4]). Note
that every stratifiable space ([3]) is decreasing $(G)$ , and every decreasing $(G)$ space
is hereditarily paracompact.

Extending Theorem 1.1, we have the following:

THEOREM 2.1. For a decreasing $(G)$ space $X$, a closed subspace $A$ of $X$ and
an LCTV-space $Y$, every pointwise bounded (resp. pointwise totally bounded)
equicontinuous subset of $C(A, Y)$ can be extended to a pointwise bounded (resp.
pointwise totally bounded) equicontinuous subset of $C(X, Y)$ .

$PR\infty F$ . The proof is based on Stares [18]. Let $X$ be a decreasing $(G)$ space,
$A$ a non-empty closed subspace of $X$ and $Y$ an LCTV-space. We will actually
show in the following that for every pointwise bounded (resp. pointwise totally
bounded) equicontinuous subset $\{f_{\alpha} : \alpha\in\Omega\}$ of $C(A, Y)$ , the collection { $\Phi(f_{\alpha})$ :
$\alpha\in\Omega\}$ is pointwise bounded (resp. pointwise totally bounded) equicontinuous,
where $\Phi$ : $C(A, Y)\rightarrow C(X, Y)$ is Dugundji’s extender constructed by Stares in
[18].

Let $\{\mathscr{V}(x):x\in X\}$ , where $\mathscr{V}(x)=\{W(n, x):n\in N\}$ , be a collection sat-
isfying (i) and (ii) in the definition of a decreasing $(G)$ space. Let

$B=\{x\in X-A:x\in V(a, U)$ for some $a\in A$ and some open subset $U$

of $X$ with $a\in U$}.

Moreover, for every $x\in B$, let

$\mathscr{B}_{X}=$ { $V(a,$ $U):x\in V(a,$ $U),$ $a\in A$ , and $U$ is open in $X$}, and

$ m(x)=\max${$n\in N:a\in W(n,$ $x)\subset U$ for some $V(a,$ $U)\in \mathscr{B}_{x}$ },
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the well-definedness of $m(x)$ is due to [18]. Sinoe $X-A$ is paracompact, there
exists a locally finite open cover $\mathscr{U}$ of $X-A$ such that $\mathscr{U}$ refines { $V(x, X-A)$ :
$x\in X-A\}$ . Let $\{p_{U} : U\in \mathscr{U}\}$ be a locally finite partition of unity on $X-A$

subordinated to $\mathscr{U}$ . For every $U\in \mathscr{U}$ , fix $x_{U}\in X-A$ so as to satisfy $p_{U}^{-1}((0,1$ ]) $\subset$

$V(x_{U}, X-A)$ . Fix $a_{0}\in A$ arbitrarily. For every $U\in \mathscr{U}$ , take $a_{U}\in A$ and a
neighborhood $O_{U}$ of $a_{U}$ in $X$ as follows:

If $x_{U}\not\in B$, set $a_{U}=a_{0}$ and $O_{U}=X$ .
If $x_{U}\in B$, select $a_{U}\in A$ and a neighborhood $O_{U}$ of $a_{U}$ in $X$ such that

$a_{U}\in W(m(x_{U}), x_{U})\subset O_{U}$ and $x_{U}\in V(a_{U}, O_{U})$ .
Let $\{f_{\alpha} : \alpha\in\Omega\}$ be a pointwise bounded equicontinuous subset of $C(A, Y)$ .

Define functions $g_{\alpha}$ : $X\rightarrow Y,$ $\alpha\in\Omega$ , by

$g_{\alpha}(x)=\left\{\sum_{U\in\%}^{\alpha}p_{U}(x)\cdot f_{\alpha}(a_{U})f(x)\right.$ $ifx\in Aotherwise$

.

Then, $\{g_{\alpha} : \alpha\in\Omega\}$ is the required extension of $\{f_{\alpha} : \alpha\in\Omega\}$ .
To prove $\{g_{\alpha} : \alpha\in\Omega\}$ is equicontinuous, let $x\in X$ and $W$ be a neighborhood

of $0$ in $Y$ . We may assume $W$ is convex.
Case 1. $x\in A$ . Let $O$ be a neighborhood of $x$ in $X$ satisfying that

$f_{\alpha}(y)\in f_{\alpha}(x)+W$ for every $y\in O\cap A$ and every $\alpha\in\Omega$ . Then, we shall show
that $g_{\alpha}(y)\in g_{\alpha}(x)+W$ for every $y\in V(x, V(x, O))$ and every $\alpha\in\Omega$ . Fix $ y\in$

$V(x, V(x, O))$ and $\alpha\in\Omega$ . Since $V(x, V(x, O))\subset O$ , we may assume $y\in V(x$ ,
$V(x, O))-A$ . Then, by the similar way to [18], $a_{U}\in O$ holds for every $U\in \mathscr{U}$

with $y\in p_{U}^{-1}((0,1$ ]). Hence, it follows that $g_{\alpha}(y)-g_{\alpha}(x)=\sum_{U\in\%}p_{U}(y)$ .
$(f_{\alpha}(a_{U})-f_{\alpha}(x))\in W$ , the last inclusion is due to the convexity of $W$ . Hence,
$g_{\alpha}(y)\in g_{\alpha}(x)+W$ holds for every $y\in V(x, V(x, 0))$ and every $\alpha\in\Omega$ .

Case 2. $x\in X-A$ . There exist a neighborhood $O_{1}$ of $x$ in $X-A$ and
finitely many elements $U_{1},$

$\ldots,$
$U_{n}\in \mathscr{U}$ such that $ O_{1}\cap U=\emptyset$ for every $ U\in$

$\mathscr{U}-\{U_{1}, \ldots, U_{n}\}$ . Sinoe $\{f_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded, there exists $e_{x}>0$

such that $r\cdot f_{\alpha}(a_{U_{i}})\in W$ for every $r$ with $|r|<e_{X}$ , every $\alpha\in\Omega$ and every $l=$

$1,$
$\ldots,$

$n$ . Then, there exists a neighborhood $O_{2}$ of $x$ in $X-A$ such that
$|p_{U_{i}}(y)-p_{U_{i}}(x)|<e_{x}/n$ for every $y\in O_{2}$ and every $i=1,$

$\ldots,$
$n$ . Let $y\in 0_{1}\cap O_{2}$

and $\alpha\in\Omega$ . Then, $g_{\alpha}(y)-g_{\alpha}(x)=(1/n)\sum_{i=1}^{n}n\cdot(p_{U_{i}}(y)-pU_{i}(x))\cdot f_{\alpha}(a_{U_{i}})$ . Then,
we have $n\cdot(pU_{i}(y)-p_{U_{i}}(x))\cdot f_{\alpha}(a_{U_{i}})\in W$ for every $i=1,$

$\ldots,$
$n$ . Sinoe $W$ is

convex, it follows that $g_{\alpha}(y)-g_{\alpha}(x)\in W$ .
Hence, these complete the proof that $\{g_{\alpha} : \alpha\in\Omega\}$ is equicontinuous.
To see $\{g_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded, let $x\in X$ . We may assume $ x\in$

$X-A$ . Let $W$ be a neighborhood of $0$ in $Y$ . We may assume $W$ is convex. Since
$\mathscr{U}$ is point-finite, there exist finite elements $U_{1},$

$\ldots,$
$U_{n}\in \mathscr{U}$ such that $x\not\in U$ for
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every $U\in \mathscr{U}-\{U_{1}, \ldots, U_{n}\}$ . Sinoe $\{f_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded, there exists
$e_{x}>0$ such that $r\cdot f_{\alpha}(a_{U_{i}})\in W$ for every $r$ with $|r|<e_{x},$ . every $\alpha\in\Omega$ and every
$i=1,$

$\ldots,$
$n$ . For every $r$ with $|r|<e_{x}$ and every $\alpha\in\Omega$ , we have $r\cdot g_{\alpha}(x)=$

$\sum_{i=1,\ldots,n}p_{U_{i}}(x)\cdot(r\cdot f_{\alpha}(a_{U_{i}}))\in W$ , the last inclusion is due to the convexity of $W$ .
Henoe $\{g_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded.

The case of pointwise total boundedness is left to the reader. This completes
the proof. $\square $

COROLLARY 2.2. For a stratifiable space $X$, a closed subspace $A$ of $X$ and
an LCTV-space $Y$, every pointwise bounded (resp. pointwise totally bounded)
equicontinuous subset of $C(A, Y)$ can be extended to a pointwise bounded (resp.
pointwise totally bounded) equicontinuous subset of $C(X, Y)$ .

Note that, on Theorem 2.1, the assumption of being decreasing $(G)$ can not
be weakened to being hereditarily paracompact. For example, let $X$ be the
Michael line [6, 5.1.32] and $A$ the set of all rationals. For a (complete) LCTV-
spaoe $Y=C_{k}(P)$ , where $P$ is the set of all irrationals and a continuous func-
tion $f$ : $A\rightarrow Y$ defined by $f(x)(y)=1/(x-y),$ $x\in A$ and $y\in P,$ $f$ can not be
extended over $X$ (see Sennott [16]).

3. Extending Pointwise Bounded Equicontinuous Collections of Functions
with Values in Fr\’echet Spaces

In this section, we describe subspaoes which admit extending pointwise
bounded equicontinuous collections of functions with values in Fr\’echet spaces.
The main result is the following Theorem 3.1. The equivalenoe (2) $\Leftrightarrow(3)$ was
announced without proofs by Al\’o [1], but later this was withdrawn under a
review of Sennott [17]. Assuming that $X$ is a Tychonoff space, (2) $\Leftrightarrow(3)$ was
proved by Flood [7, Theorem 5.9.2] by categorical methods, and it seems to be
essential to assume being Tychonoff spaces in his proof. The equivalence
(3) $\Leftrightarrow(4)$ was first stated by Gutev [9], with incomplete proof, for Banach
spaces $Y$ .

THEOREM 3.1. Let $X$ be a space and $A$ a subspace of X Then, the following
statements are equivalent:

(1) for any Fr\’echet space $Y$, every pointwise bounded equicontinuous subset of
$C(A, Y)$ can be extended to a pointwise bounded equicontinuous subset of $C(X, Y)$ ;

(2) every pointwise bounded equicontinuous subset of $C(A)$ can be extended to
a pointwise bounded equicontinuous subset of $C(X)$ ;
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(3) $A$ is P-embedded in $X$ (that is, for any Fr\’echet space $Y$, every function
$f\in C(A, Y)$ can be extended to a function $g\in C(X, Y))$ ;

(4) for any Fr\’echet space $Y$, every pointwise totally bounded equicontinuous
subset of $C(A, Y)$ can be extended to a pointwise totally bounded equicontinuous
subset of $C(X, Y)$ .

For the proof, we prepare some lemmas. For a subspaoe $S$ of a spaoe $X,$ $Int_{X}S$

stands for the interior of $S$ in $X$ .

LEMMA 3.2. Let $X$ be a space, $Y$ a TV-space and $\{f_{\alpha} : \alpha\in\Omega\}$ a subset of
$C(X, Y)$ . For every neighborhood $V$ of $0$ in $Y$ and every $x\in X$ , define

$O_{x}(V)=Int_{X}(\cap\{f_{\alpha}^{-1}(f_{\alpha}(x)+V) : \alpha\in\Omega\})$ ,

and put $\mathcal{O}_{V}=\{O_{x}(V):x\in X\}$ . Then, the following hold.
(1) $\{f_{\alpha} : \alpha\in\Omega\}$ is equicontinuous $lf$ and only if $\mathcal{O}_{V}$ is an open cover of $X$ for

every neighborhood $V$ of $0$ in $Y$.
(2) If $V$ and $W$ are neighborhoods of $0$ in $Y$ satisfying that $W+W\subset V$

and $W$ is symmetric, then $St(x, \mathcal{O}_{W})(=\cup\{O\in \mathcal{O}_{W} : x\in O\})\subset O_{x}(V)$ for every
$x\in X$ .

The proof of Lemma 3.2 is straightforward. By this lemma, we immediately have
the following:

LEMMA 3.3. Let $X$ be a space and $Y$ a TV-space. Let $\{f_{\alpha} : \alpha\in\Omega\}$ be an
equicontinuous subset of $C(X, Y)$ , and $V$ a neighborhood of $0$ in Y Then, the
collection $\mathcal{O}_{V}$ d.efined as in Lemma 3.2 is a normal open cover of $X$.

The proof of the following lemma is easy and omitted.

LEMMA 3.4. Let $X$ be a space and $A$ a well-embedded subspace of X Assume
that $F$ is the intersection of a zero-set and a cozero-set of $X$, and $F$ is disjoint from
A. Then, there exists a cozero-set $U$ of $X$ such that $F\subset U\subset X-A$ .

The following lemma is essential for the proof, and seems to be interesting
in itself. For a space $X$ , a subspaoe $A$ of $X$ and $\mathscr{F}\subset C(A, Y)$ , a map $\Phi$ :
$\mathscr{F}\rightarrow C(X, Y)$ is said to be an extender if $\Phi(f)|A=f$ for every $f\in \mathscr{F}$ .
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LEMMA 3.5. Let $X$ be a space, $A$ a P-embedded subspace of $X$ and $Y$ a
Fr\’echet space. Let $\mathscr{F}=\{f_{\alpha} : \alpha\in\Omega\}$ be a pointwise bounded equicontinuous subset
of $C(A, Y)$ . Then, there exists an extender $\Phi$ : $\mathscr{F}\rightarrow C(X, Y)$ satisfying that

(i) $\Phi(f_{\alpha})(X)$ is contained in the closed convex hull of $f_{\alpha}(A)$ for every $\alpha\in\Omega$ ;
(ii) $\Phi(\mathscr{F})$ is pointwise bounded equicontinuous;
(iii) $\Phi$ is continuous when $C(A, Y)$ and $C(X, Y)$ carry either one of the

compact-open topology, the topology ofpointwise convergence and the topology of
umform convergence, where $\mathscr{F}$ has the subspace topology of $C(A, Y)$ .

If, in addition, $\mathscr{F}$ is pointwise totally bounded, then $\Phi(\mathscr{F})$ is also pointwise
totally bounded.

$PR\infty F$ OF LEMMA 3.5. Let $X$ be a space, $A$ a P-embedded subspaoe of $X$

and $(Y,\rho)$ a Fr\’echet space, where $\rho$ is an invariant metric on $Y$ (see [12]).
Let $\mathscr{F}=\{f_{\alpha} : \alpha\in\Omega\}$ be a pointwise bounded equicontinuous subset of $C(A, Y)$ .
For every $n\in N$ , there exists a convex symmetric neighborhood $S_{n}$ of $0$ in $Y$ such
that $S_{n}+S_{n}\subset B(0;1/2^{n})$ . For every $n\in N$ and every $a\in A$ , define $O_{a}(S_{n})=$

$Int_{A}(\cap\{f_{\alpha}^{-1}(f_{\alpha}(a)+S_{n}):\alpha\in\Omega\})$ like in Lemma 3.2.
First, we shall define a sequence $\{r_{n} : n\in N\}$ of locally finite cozero-set

covers of $X$ , for some index set $B$ , such that
(i) $\gamma_{n}$ is expressed as $\gamma_{n}=\{V_{(\beta_{1},\ldots,\beta_{n})} : (\beta_{1}, \ldots, \beta_{n})\in B^{n}\}$ ;
(ii) $\gamma_{n}\wedge A$ refines $\{O_{a}(S_{n}) : a\in A\}$ ;
(iii) $\cup\{V_{(\beta_{1},\ldots,\beta_{n},\beta_{n+1})} : \beta_{n+1}\in B\}=V_{(\beta_{1},\ldots,\beta_{n})}$ for all $(\beta_{1}, \ldots,\beta_{n})\in B^{n}$ ;
(iv) If $ V_{(\beta_{1},\ldots,\beta_{n})}\neq\emptyset$ , then $ V_{(\beta_{1},\ldots,\beta_{n})}\cap A\neq\emptyset$ .

Let $B$ be any infinite set with $|B|\geq|2^{X}|$ and fix it. From Lemma 3.3,
$\{O_{a}(S_{i}):a\in A\}$ is a normal open cover of $A$ for every $i\in N$ . Since $A$ is P-
embedded in $X$ , for every $i\in N$ , there exists a locally finite cozero-set cover
$\{W_{\beta} : \beta\in B_{j}\}$ of $X$ such that $\{W_{\beta} : \beta\in B_{i}\}\wedge A$ refines $\{O_{a}(S_{j}):a\in A\}$ . We may
assume $B=B_{i}$ for every $i\in N$ , because we can regard $B_{l}$ as a subset of $B$ and set
$ W_{\beta}=\emptyset$ for $\beta\in B-B_{j}$ . Sinoe the first step constmcting $\gamma_{1}$ can be similarly
proved if we put $V_{(}$ ) $=X$ in the following proof, we only show the general step.
Assume that $\gamma_{1}\ldots\gamma_{n}$ have been constmcted so as to satisfy the conditions
from (i) to (iv) above. Let $(\beta_{1}, \ldots,\beta_{n})\in B^{n}$ be fixed. Put $B_{(\beta_{1},\ldots,\beta_{n})}=\{\beta\in B$ :
$V_{(\beta_{1},\ldots,\beta_{n})}\cap W_{\beta}\cap A\neq\emptyset\}$ . By Lemma 3.4, there exists a cozero-set $D_{(\beta_{1},\ldots,\beta_{n})}$ of $X$

such that

$V_{(\beta_{1},\ldots,\beta_{n})}-\cup\{W_{\beta} : \beta\in B_{(\beta_{1},\ldots,\beta_{n})}\}\subset D_{(\beta_{1},\ldots,\beta_{n})}\subset X-A$ .

In case $ B_{(\beta_{1},\ldots,\beta_{n})}\neq\emptyset$ , pick up and fix a $\beta_{(\beta_{1},\ldots,\beta_{\hslash})}\in B_{(\beta_{1},\ldots,\beta_{n})}$ , and define for every
$\beta\in B$,
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$V_{(\beta_{1},\ldots,\beta_{n},\beta)}=\left\{\begin{array}{l}V_{(\beta_{1},\ldots,\beta_{n})}\cap(W_{\beta}\cup D_{(\beta_{l},\ldots,\beta_{n})}) if\beta=\beta_{(\beta_{l},\ldots,\beta_{n})}\\V_{(\beta_{1},\ldots,\beta_{n})}\cap W_{\beta} if\beta\in B_{(\beta_{1},\ldots,\beta_{n})}-\{\beta_{(\beta_{l},\ldots,\beta_{n})}\}\\\emptyset if\beta\not\in B_{(\beta_{l},\ldots,\beta_{n})}.\end{array}\right.$

In case $ B_{(\beta_{1},\ldots,\beta_{n})}=\emptyset$ , define $ V_{(\beta_{1},\ldots,\beta_{n},\beta)}=\emptyset$ for all $\beta\in B$ .
Then, $\{V_{(\beta_{1},\ldots,\beta_{n},\beta_{n+1})} : (\beta_{1}, \ldots,\beta_{n},\beta_{n+1})\in B^{n+1}\}$ is the required $\gamma_{n+1}$ .
Second, we show that there exists a locally finite partition of unity $\mathscr{P}_{n}=$

$\{p(\beta_{1},\ldots,\beta_{n}):(\beta_{1}, \ldots,\beta_{n})\in B^{n}\}$ on $X$ for each $n\in N$ such that $p_{(\beta_{1},\ldots,\beta_{n})}^{-1}((0,1$ ]) $=$

$V_{(\beta_{1},\ldots,\beta_{n})}$ and $\sum_{\beta\in B}p(\beta_{1},\ldots,\beta_{n},\beta)(x)=p_{(\beta_{1},\ldots,\beta_{n})}(x)$ for $x\in X$ .
Indeed, assume that $\mathscr{P}_{n}$ is constructed. Let $(\beta_{1}, \ldots,\beta_{n})\in B^{n}$ be fixed.

Since $\{V_{(\beta_{1},\ldots,\beta_{n},\beta)} : \beta\in B\}$ is a locally finite cozero-set cover of $V_{(\beta_{1},\ldots,\beta_{n})}$ , there
exists a locally finite partition of unity $\{q_{(\beta_{1},\ldots,\beta_{n},\beta)} : \beta\in B\}$ on $V_{(\beta_{1},\ldots,\beta_{n})}$ such
that $q_{(\beta_{1},\ldots,\beta_{n},\beta)}^{-1}((0,1$ ]) $=V_{(\beta_{1},\ldots,\beta_{n},\beta)}$ for every $\beta\in B$ . For every $(\beta_{1}, \ldots,\beta_{n})\in B^{n}$

and $\beta\in B$ , define

$p(\beta_{1},\ldots,\beta_{n},\beta)(x)=\left\{\begin{array}{l}p(\beta_{1},\ldots,\beta_{n})(x)\cdot q(\beta_{l},\ldots,\beta_{n},\beta)(x) ifx\in V_{(\beta_{1},\ldots,\beta_{n})},\\0 otherwise\end{array}\right.$

for every $x\in X$ . Then, one can show that the function $p_{(\beta_{1},\ldots,\beta_{n},\beta)}$ : $X\rightarrow[0,1]$

is continuous and $\mathscr{P}_{n+1}=\{p_{(\beta_{1},\ldots,\beta_{n},\beta_{n+1})} : (\beta_{1}, \ldots,\beta_{n},\beta_{n+1})\in B^{n+1}\}$ is now the
required partition of unity.

Third, we shall construct an extension of $f_{\alpha}$ over $X$ for every $\alpha\in\Omega$ . If
$ V_{(\beta_{1},\ldots,\beta_{n})}\neq\emptyset$ , pick up an element $a_{(\beta_{1},\ldots,\beta_{n})}\in V_{(\beta_{1},\ldots,\beta_{n})}\cap A$ and fix it. For every
$n\in N$ and every $\alpha\in\Omega$ , define a continuous function $g_{\alpha}^{n}$ : $X\rightarrow Y$ by $g_{\alpha}^{n}(x)=$

$\sum_{(\beta_{1},\ldots,\beta_{n})\in B^{n}}p_{(\beta_{1},\ldots,\beta_{n})}(x)\cdot f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{n})})$ for every $x\in X$ . Then, for every $n\in N$ ,
every $\alpha\in\Omega$ and every $x\in A$ , note that:

If $p(\beta_{1},\ldots,\beta_{n})(x)>0$ , then $f_{\alpha}(x)-f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{n})})\in S_{n}+S_{n}$ . (1)

Indeed, if $p_{(\beta_{1},\ldots,\beta_{n})}(x)>0$ , then $x,$ $a_{(\beta_{1},\ldots,\beta_{n})}\in O_{a}(S_{n})$ for some $a\in A$ . So, (1)
holds. Hence, by (1) and the convexity of $S_{n}+S_{n}$ , we have

$f_{\alpha}(x)-g_{\alpha}^{n}(x)\in S_{n}+S_{n}\subset B(0;1/2^{n})$ . (2)

Let $(\beta_{1}, \ldots,\beta_{n})\in B^{n}$ and $\beta\in B$ . Sinoe $a_{(\beta_{1},\ldots,\beta_{n})}$ and $a_{(\beta_{1},\ldots,\beta_{n},\beta)}$ is contained in
$V_{(\beta_{1},\ldots,\beta_{n})}\cap A$ , it follows that $a_{(\beta_{1},\ldots,\beta_{n})},$

$a_{(\beta_{1},\ldots,\beta_{n},\beta)}\in 0_{a}(S_{n})$ for some $a\in A$ . So, we
have

$f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{n})})-f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{n},\beta)})\in S_{n}+S_{n}$ . (3)

Hence, for every $n\in N$ , every $\alpha\in\Omega$ and every $x\in X$ , by (3) and the convexity of
$S_{n}+S_{n}$ , we have

$g_{\alpha}^{n}(x)-g_{\alpha}^{n+1}(x)\in S_{n}+S_{n}\subset B(0;1/2^{n})$ . (4)
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By (2), (4) and the fact that $p$ is invariant, we have

$\rho(f_{\alpha}(x), g_{\alpha}^{n}(x))<\frac{1}{2^{n}}$ for every $n\in N$ , every $\alpha\in\Omega$ and every $x\in A$ , (5)

$p(g_{\alpha}^{n}(x), g_{\alpha}^{n+1}(x))<\frac{1}{2^{n}}$ for every $n\in N$ , every $\alpha\in\Omega$ and every $x\in X$ . (6)

Henoe, by (5), (6) and the completeness of $Y$ , the function $g_{\alpha}$ : $X\rightarrow Y$ defined by
$g_{\alpha}(x)=\lim_{n\rightarrow\infty}g_{\alpha}^{n}(x),$ $\alpha\in\Omega$ and $x\in X$ , is continuous and an extension of $f_{\alpha}$ .
Define an extender $\Phi$ : $\mathscr{F}\rightarrow C(X, Y)$ by $\Phi(f_{\alpha})=g_{\alpha}$ for every $\alpha\in\Omega$ . Clearly,
$g_{\alpha}(X)=\Phi(f_{\alpha})(X)$ is contained in the closed convex hull of $f_{\alpha}(A)$ for every $\alpha\in\Omega$ .

In particular, it follows from (6) and the invariantness of $\rho$ that

$g_{\alpha}(x)\in g_{\alpha}^{n}(x)+\overline{B}(0;1/2^{n-1})$ (7)

for every $n\in N$ , every $x\in X$ and every $\alpha\in\Omega$ .
Fourth, we shall prove $\{g_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded equicontinuous.

To do this, fix $x\in X$ . Let $W$ be a neighborhood of $0$ in $Y$ . Let $V$ be a convex
and circled neighborhood of $0$ in $Y$ with $V+V+V\subset W$ , and $m\in N$ with
$\overline{B}(0;1/2^{m-1})\subset V$ . Sinoe $\{V_{(\beta_{1},\ldots,\beta_{m})} : (\beta_{1}, \ldots, \beta_{m})\in B^{m}\}$ is locally finite, there
exist a neighborhood $O$ of $x$ in $X$ and a non-empty finite subset $\Lambda$ of $B^{m}$ such
that $ O\cap V_{(\beta_{1},\ldots,\beta_{m})}=\emptyset$ for every $(\beta_{1}, \ldots,\beta_{m})\in B^{m}-\Lambda$ . Since $\{f_{\alpha} : \alpha\in\Omega\}$ is
pointwise bounded, there exists $e_{x}>0$ such that

$r\cdot f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{m})})\in V$ (8)

for every $r$ with $|r|<e_{x}$ , every $\alpha\in\Omega$ and every $(\beta_{1}, \ldots,\beta_{m})\in\Lambda$ . Hence, $r\cdot g_{\alpha}^{m}(x)$

$=\sum_{(\beta_{1},\ldots,\beta_{m})\in\Lambda}p(\beta_{1},\ldots,\beta_{m})(x)\cdot(r\cdot f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{m})}))$ . From (8) and the convexity of $V$ ,

we have

$r\cdot g_{\alpha}^{m}(x)\in V$ . (9)

Let $r$ with $|r|<e_{x}\wedge 1$ and $\alpha\in\Omega$ . Then, by (7), (9) and being circled of $V$ , we
have that $r\cdot g_{\alpha}(x)\in r\cdot(g_{\alpha}^{m}(x)+\overline{B}(0;1/2^{m-1}))\subset V+V\subset W$ . This completes the
proof that $\{g_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded.

On the other hand, sinoe $p_{(\beta_{1},\ldots,\beta_{m})}$ is continuous, there exists a neighborhood
$O$ ‘ of $x$ in $X$ such that

$|p(\beta_{1},\ldots,\beta_{m})(y)-p(\beta_{1},\ldots,\beta_{m})(x)|<e_{x}/|\Lambda|$ (10)

for every $y\in O^{\prime}$ and every $(\beta_{1}, \ldots,\beta_{m})\in\Lambda$ , where $|\Lambda|$ denotes the cardinality of
$\Lambda$ . Fix $y\in O\cap 0^{\prime}$ and $\alpha\in\Omega$ . Then, it follows that
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$g_{\alpha}^{m}(y)-g_{\alpha}^{m}(x)$

$=\frac{1}{|\Lambda|}(\sum_{(\beta_{1},\ldots,\beta_{m})\in\Lambda}|\Lambda|\cdot(p(\beta_{1},\ldots,\beta_{m})(y)-p(\beta_{1},\ldots,\beta_{m})(x))\cdot f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{m})}))$ .

Hence, by (8), (10) and the convexity of $V$ , we have

$g_{\alpha}^{m}(y)-g_{\alpha}^{m}(x)\in V.$ (11)

Moreover, by (7) and (11), we have that

$g_{\alpha}(y)-g_{\alpha}(x)\in\overline{B}(0;1/2^{m-1})+V+\overline{B}(0;1/2^{m-1})\subset V+V+V\subset W$ .

This completes the proof that $\{g_{\alpha} : \alpha\in\Omega\}$ is equicontinuous at $x$ .
Fifth, to prove $\Phi$ is continuous with respect to the compact-open topology

and the topology of pointwise convergence, it suffices to show the case of the
topology of pointwise convergence. For, the topology of pointwise convergence
coincides with the compact-open topology on $\mathscr{F}$ and $\Phi(\mathscr{F})$ . Sinoe the proof is
not difficult, we left it to the reader.

Finally, assume that $\{f_{\alpha} : \alpha\in\Omega\}$ is pointwise totally bounded. Let $x\in X$ be
fixed and $W$ a neighborhood of $0$ in $Y$ . Moreover, let $V,$ $m$ and $\Lambda$ be as in the
first part of the proof of the pointwise boundedness of $\{g_{\alpha} : \alpha\in\Omega\}$ . For every
$(\beta_{1}, \ldots,\beta_{m})\in\Lambda$ , let $N_{(\beta_{1},\ldots,\beta_{m})}$ be a finite subset of $Y$ such that {$f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{m})})$ :
$\alpha\in\Omega\}\subset N_{(\beta_{1},\ldots,\beta_{m})}+V$ . Let

$N^{\prime}=\{y(\beta_{1},\ldots,\beta_{m})$

Then, $N^{\prime}$ is finite. For $\alpha\in\Omega$ , we can express $f_{\alpha}(a_{(\beta_{1},\ldots,\beta_{m})})=y_{(\beta_{1},\ldots,\beta_{m})}^{\alpha}+u_{(\beta_{1},\ldots,\beta_{m})}^{\alpha}$ ,
where $y_{(\beta_{1},\ldots,\beta_{m})}^{\alpha}\in N_{(\beta_{1},\ldots,\beta_{m})}$ and $u_{(\beta_{1},\ldots,\beta_{m})}^{\alpha}\in V$ . Then, we have

$g_{\alpha}^{m}(x)\in N^{\prime}+V$ . (12)
Hence, by (7) and (12),

$g_{\alpha}(x)\in g_{\alpha}^{m}(x)+\overline{B}(0;1/2^{m-1})\subset N^{\prime}+V+V\subset N^{\prime}+W$

for every $\alpha\in\Omega$ . Hence, we have $\{g_{\alpha}(x):\alpha\in\Omega\}\subset N^{\prime}+W$ . It shows that
$\{g_{\alpha} : \alpha\in\Omega\}$ is pointwise totally bounded. This completes the proof. $\square $

We now sketch the outline of an altemative proof of Lemma 3.5 using a
Dugundji extender instead of normal covers, which was suggested by the referee
of the first version of this paper.
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$0UTLINE$ OF THE PROOF OF LEMMA 3.5 (ALTERNATIVE). Let $X$ be a spaoe, $A$ a
P-embedded subspace of $X$ and $(Y,\rho)$ a Fr\’echet space, where $p$ is an invariant
metric on $Y$ (see [12]). Let $\mathscr{F}=\{f_{\alpha}:\alpha\in\Omega\}$ be a pointwise bounded equi-
continuous subset of $C(A, Y)$ . First consider a pseudo-metric $d_{F}$ on $A$ defined by
$d_{F}(x, x^{\prime})=\sup_{\alpha\in\Omega}(p(f_{\alpha}(x),f_{\alpha}(x^{\prime}))\wedge 1),$ $x,x^{\prime}\in A$ .

CLAIM 1. $d_{F}$ is continuous.

This follows from the equicontinuity of $\mathscr{F}$ .
By the assumption, $d_{F}$ can be extended to a continuous pseudo-metric $d$ on

X. For $x,$
$x^{\prime}\in X$ , define an equivalenoe relation $xRx^{\prime}$ by $d(x, x^{\prime})=0$ . Let $X/d$

be the set of all the equivalence classes defined by $R$ . For classes $[x],$ $[x^{\prime}]\in$

$X/d$ , define $d^{*}([x], [x^{\prime}])=d(x, x^{\prime})$ . Then, $d^{*}$ defines a metric on $X/d$ . Define
$q:X\rightarrow X/d$ by $q(x)=[x]$ . Then, $q:X\rightarrow(X/d, d^{*})$ is a continuous map onto
the metric spaoe $(X/d, d^{*})$ .

Let $A_{d}=q(A)\subset X/d$ . For every $[x]\in A_{d}$ , choose $a_{x}\in A$ satisfying that
$[x]=[a_{x}]$ . For every $\alpha\in\Omega$ , define a function $f_{\alpha^{*}}$ : $A_{d}\rightarrow Y$ by $f_{\alpha^{*}}([x])=f_{\alpha}(a_{x})$ .
Consider the map $\Psi_{1}$ : $\mathscr{F}\rightarrow C(A_{d}, Y)$ defined by $\Psi_{1}(f_{\alpha})=f_{\alpha^{*}},$ $\alpha\in\Omega$ . Then we
easily have the following:

CLAIM 2. For every $\epsilon>0$ with $\epsilon<1$ , every $a,$
$a^{\prime}\in A$ and every $\alpha\in\Omega$ ,

$ d^{*}([a], [a^{\prime}])<\epsilon\Rightarrow p(f_{\alpha}^{*}([a]),f_{\alpha}^{*}([a^{\prime}]))<\epsilon$ .

For later use, we now consider the following conditions $(i)_{j},$ $(ii)_{j},$ $(iii)_{j}$ and
$(iv)_{j}$ on a map $\Psi_{j}$ : $\mathscr{F}_{j}\rightarrow C(Z_{j}, Y),$ $\mathscr{F}_{j}\subset C(X_{j}, Y)$ and spaces $X_{j}$ and $Z_{j}$ , where
$j=1,2,3,4$ .

$(i)_{j}\Psi_{j}(f)(Z_{j})$ is contained in the closed convex hull of $f(X_{j})$ for every
$f\in \mathscr{F}_{j}$ ;

$(ii)_{j}\Psi_{j}(\mathscr{F}_{j})$ is pointwise bounded equicontinuous;
$(iii)_{j}\Psi_{j}$ is continuous when $C(X_{j}, Y)$ and $C(Z_{j}, Y)$ carry either one of the

compact-open topology, the topology of pointwise convergenoe and the topology
of uniform convergence, where $\mathscr{F}_{j}$ has the subspaoe topology of $C(X_{j}, Y)$ ;

$(iv)_{j}$ If, in addition, $\mathscr{F}_{j}$ is pointwise totally bounded, then $\Psi_{j}(\mathscr{F}_{j})$ is also
pointwise totally bounded.

By Claim 2 and the formula $p(f_{\alpha}(a),f_{\alpha}(a^{\prime}))=p(f_{\alpha^{*}}([a]),f_{\alpha^{*}}([a^{\prime}]))(a, a^{\prime}\in A)$ ,
we can show that the map $\Psi_{1}$ : $\mathscr{F}\rightarrow C(A_{d}, Y)$ , putting $\mathscr{F}_{1}=\mathscr{F},$ $X_{1}=A$ and
$Z_{1}=A_{d}$ , satisfies the conditions $(i)_{1},$ $(ii)_{1},$ $(iii)_{1}$ and $(iv)1$ .
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Claim 2 shows that $f_{\alpha^{*}}$ : $A_{d}\rightarrow Y$ is uniformly continuous for every $\alpha\in\Omega$ .
Since $Y$ is complete, it follows from [6, Theorem 4.3.17] that $f_{\alpha^{*}}$ can be extended
to a uniformly continuous function $\hat{f_{\alpha^{*}}}$ : $A_{d}^{-x/d}\rightarrow Y$ for every $\alpha\in\Omega$ .

Now we have the following Claim 3 by Claim 2.

CLAIM 3. For every $\epsilon>0$ with $\epsilon<1$ , every $[x],$ $[x^{\prime}]\in A_{d}^{-x/d}$ and every $\alpha\in\Omega$ ,

$ d^{*}([x], [x^{\prime}])<\epsilon\Rightarrow p(\hat{f_{\alpha^{*}}}([x]),\hat{f_{\alpha^{*}}}([x^{\prime}]))<\epsilon$ .

Consider a map $\Psi_{2}$ : $\Psi_{1}(\mathscr{F})\rightarrow C(A_{d^{X/d}}^{-}, Y)$ defined by $\Psi_{2}(f_{\alpha^{*}})=\hat{f_{\alpha^{*}}},$ $\alpha\in\Omega$ .
Then, we can show that the map $\Psi_{2}$ , putting $\mathscr{F}_{2}=\Psi_{1}(\mathscr{F}),$ $X_{2}=A_{d}$ and
$Z_{2}=A_{d}^{-x/d}$ , satisfies the conditions $(i)_{2},$ $(ii)_{2},$ $(iii)_{2}$ and $(iv)_{2}$ . Indeed, $(i)_{2}$ holds
because of its construction. The statements $(ii)_{2}$ and $(iii)_{2}$ seem to be well-known
and it is not difficult to prove, and $(iv)_{2}$ is also easy.

Let $\Psi_{3}$ : $C(A_{d^{X/d}}^{-}, Y)\rightarrow C(X/d, Y)$ be Dugundji’s extender. Then, we have
that the map $\Psi_{3}$ , putting $\mathscr{F}_{3}=C(A_{d}^{-x/d}, Y),$ $X_{3}=A_{d}^{-x/d}$ and $Z_{3}=X/d$ , satisfies
the conditions $(i)_{3},$ $(ii)_{3},$ $(iii)_{3}$ and $(iv)_{3}$ . Indeed, by the facts in Section 2, we have
$(ii)_{3}$ and $(iv)_{3}$ . Other conditions are obtained from the constmction of Dugundji’s
extender [5].

Finally consider a map $\Psi_{4}$ : $C(X/d, Y)\rightarrow C(X, Y)$ defined by $\Psi_{4}(f)=f\circ q$ .
Then, the map $\Psi_{4}$ , putting $\mathscr{F}_{4}=C(X/d, Y),$ $X_{4}=X/d$ and $Z_{4}=X$ , satisfies the
conditions $(i)_{4},$ $(ii)_{4},$ $(iii)_{4}$ and $(iv)_{4}$ .

Now, define a map $\Phi$ : $\mathscr{F}\rightarrow C(X, Y)$ by $\Phi=\Psi_{4}\circ\Psi_{3}\circ\Psi_{2}\circ\Psi_{1}$ . Observe
that $\Phi$ is an extender. By using $(i)_{j},$ $(ii)_{j},$ $(iii)_{j}$ and $(iv)_{j}(j=1, \ldots,4),$ $\Phi$ satisfies
the required conditions (i), (ii), (iii) and the additional condition in Lemma 3.5.
This completes the proof. $\square $

For collections $\mathscr{U}$ and $\gamma$ of subsets of a spaoe $X,$ $\mathscr{V}$ is said to be a partial
refinement of $\mathscr{U}$ if every element $V$ of $\gamma$ is contained in some element $U$ of $\mathscr{U}$ .

LEMMA 3.6. Let $\{f_{\alpha} : \alpha\in\Omega\}$ be a pointwise bounded equicontinuous subset
of $C(X)$ . Then, there exists a $\sigma$-discrete cozero-set collection $\mathscr{V}$ of $X$ such that $\gamma$

is a partial refinement of $\{f_{\alpha}^{-1}((0, +\infty)) : \alpha\in\Omega\}$ and $U^{\gamma}=\cup\{f_{\alpha}^{-1}((0, +\infty))$ :
$\alpha\in\Omega\}$ .

PROOF. Denote $\{f_{\alpha} : \alpha\in\Omega\}$ by $\{f_{\alpha} : \alpha<\gamma\}$ with some ordinal $\gamma$ . For every
$n\in N$ and every $\alpha<\gamma$ , put

$U_{\alpha}^{n}=f_{\alpha}^{-1}((3/n, +\infty))-(\sup_{\beta<\alpha}f_{\beta})^{-1}([1/n, +\infty))$ .
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Sinoe $\sup_{\beta<\alpha}f_{\beta}$ is continuous, $U_{\alpha}^{n}$ is a cozero-set of $X$ for every $n\in N$ and every
$\alpha<\gamma$ . Fix $n\in N$ . To prove $\{U_{\alpha}^{n} : \alpha<\gamma\}$ is discrete in $X$ , let $x\in X$ . Since
$\{f_{\alpha} : \alpha<\gamma\}$ is equicontinuous, there exists a neighborhood $O$ of $x$ in $X$ such that
$|f_{\alpha}(x)-f_{\alpha}(y)|<1/n$ for every $y\in O$ and every $\alpha<\gamma$ . Assume that $0\cap U_{\alpha^{n}}\neq\emptyset$ ,
$ O\cap U_{\beta^{n}}\neq\emptyset$ and $\beta<\alpha$ . Let $a\in O\cap U_{\alpha^{n}}$ and $b\in O\cap U_{\beta^{n}}$ . Then, it follows from
$b\in U_{\beta^{n}}$ that $3/n<f_{\beta}(b)$ . Moreover, it follows from $a\in U_{\alpha^{n}}$ that $f_{\beta}(a)<1/n$ .
Hence, we have $2/n<|f_{\beta}(a)-f_{\beta}(b)|\leq|f_{\beta}(a)-f_{\beta}(x)|+|f_{\beta}(x)-f_{\beta}(b)|<1/n+$

$1/n=2/n$ , a contradiction. Henoe, $\{U_{\alpha^{n}} : \alpha<\gamma\}$ is discrete.
It is clear that $U_{\alpha^{n}}\subset f_{\alpha}^{-1}((0, \infty))$ for every $\alpha<\gamma$ and every $n\in N$ . We also

have that $\cup\{f_{\alpha}^{-1}((0, +\infty)):\alpha<\gamma\}=\cup\{U_{\alpha}^{n} : \alpha<\gamma,n\in N\}$ . This completes the
proof. $\square $

$PR\infty F$ OF THEOREM 3.1. (1) $\Rightarrow(2)$ : Obvious.
(2) $\Rightarrow(3)$ : Let $\mathscr{U}$ be a normal open cover of $A$ . There exists a locally finite

partition of unity $\{f_{a} : \alpha\in\Omega\}$ on $A$ subordinated to $\mathscr{U}$ . Since $\{f_{\alpha} : \alpha\in\Omega\}$ is
pointwise bounded equicontinuous, there exists a pointwise bounded equi-
continuous subset $\{g_{\alpha} : \alpha\in\Omega\}$ of $C(X)$ such that $g_{\alpha}|A=f_{\alpha}$ for every $\alpha\in\Omega$ . By
Lemma 3.6, there exists a $\sigma$-discrete cozero-set collection $\gamma$ of $X$ such that $\gamma$ is
a partial refinement of $\{g_{\alpha}^{-1}((0, +\infty)):\alpha\in\Omega\}$ and

$A=\cup\{f_{\alpha}^{-1}((0,1]) : \alpha\in\Omega\}\subset\cup\{g_{\alpha}^{-1}((0, +\infty)) : \alpha\in\Omega\}=\cup^{\gamma}$ .

Sinoe $A$ is C-embedded in $X$ , there exists a cozero-set $W$ of $X$ such that
$(\cup\gamma)\cup W=X$ and $ W\cap A=\emptyset$ . Hence, $\gamma\cup\{W\}$ is a normal open cover of $X$

and $(\gamma\cup\{W\})\wedge A$ refines $\mathscr{U}$ , this proves that $A$ is P-embedded in $X$ .
(3) $\Rightarrow(1)$ and (3) $\Rightarrow(4)$ : These follow from Lemma 3.5.
(4) $\Rightarrow(3)$ : Obvious. This completes the proof. $\square $

COROLLARY 3.7. A space $X$ is collectionwise normal $\iota f$ and only if for any
closed subspace $A$ of $X$, every pointwise bounded equicontinuous subset of $C^{*}(A)$

can be extended to a pointwise bounded equicontinuous subset of $C^{*}(X)$ .

PROOF. To prove the “if” part, assume that for any closed subspaoe $A$ of $X$ ,
every pointwise bounded equicontinuous subset of $C^{*}(A)$ can be extended to a
pointwise bounded equicontinuous subset of $C^{*}(X)$ . Sinoe every closed subspace
of $X$ is $C^{*}$ -embedded in $X$ , it follows that $X$ is normal. A similar proof to that of
$‘‘(2)\Rightarrow(3)$ of Theorem 3.1 shows that $A$ is P-embedded in $X$ for every closed
subspace $A$ of $X$ . Hence, $X$ is collectionwise normal.
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To prove the “only if” part, use (i) and (ii) in Lemma 3.5. This completes the
proof. $\square $

By using the Ascoli’s technique (see [14]), we have the following:

THEOREM 3.8. Let $X$ be a space and $A$ a subspace of X Assume $X$ and $A$ are
Hausdorff k-spaces. Then, the following statements are equivalent:

(1) every compact subspace $\mathscr{F}$ of $C_{k}(A)$ can be extended to a compact
subspace $\mathscr{G}$ of $C_{k}(X)$ ;

(2) for any Fr\’echet space $Y$, every compact subspace $\mathscr{F}$ of $C_{k}(A, Y)$ can be
extended to a compact subspace $\mathscr{G}$ of $C_{k}(X, Y)$ ;

(3) $A$ is P-embedded in $X$.

PROOF. (1) $\Rightarrow(3)$ : Assume (1). By Theorem 3.1, it suffices to show that
every pointwise bounded equicontinuous subset of $C(A)$ can be extended to a
pointwise bounded equicontinuous subset of $C(X)$ . To prove this, let $\mathscr{F}$ be a
pointwise bounded equicontinuous subset of $C(A)$ . Sinoe $\overline{\mathscr{F}}^{C_{k}(A)}$ is compact
subspace of $C_{k}(A)$ , by the assumption, this can be extended to a compact
subspace $\mathscr{G}$ of $C_{k}(X)$ . Sinoe $X$ is Hausdorff $k,$ $\mathscr{G}$ is pointwise bounded equi-
continuous. Hence, $\{g\in \mathscr{G} : g|A\in \mathscr{F}\}$ is also pointwise bounded equicontinuous.
So, (3) holds.

(3) $\Rightarrow(2)$ : Use (iii) in Lemma 3.5.
(2) $\Rightarrow(1)$ : Obvious. This completes the proof. $\square $

COROLLARY 3.9. For a Hausdorff k-space $X,$ $X$ is collectionwise normal if and
only iffor any closed subspace $A$ of $X$, every compact subspace $\mathscr{F}$ of $C_{k^{*}}(A)$ can be
extended to a compact subspace $\mathscr{G}$ of $C_{k^{*}}(X)$ .

PROOF. Let $X$ be a Hausdorff k-space. To prove the “if” part, the similar
proof of Theorem 3.8 works by applying Corollary 3.7.

To prove the “only if” part, use (i) and (ii) in Lemma 3.5. This completes the
proof. $\square $

In particular, from Corollary 3.9, we have the following:

THEOREM 3.10 (Heath-Lutzer-Zenor [10]). Let $X$ be a Hausdorff k-space.
Assume that for every closed subspace $A$ of $X$, there exists a continuous extender
$e:C_{k^{*}}(A)\rightarrow C_{k^{*}}(X)$ . Then, $X$ is collectionwise normal.
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Finally, we give an application of Lemma 3.3. A Dieudonn\’e complete space
is a spaoe having a complete uniformity. For a Tychonoff spaoe $X,$ $\gamma X$ is the
Dieudonn\’e completion of $X$ (see [6]). We have:

THEOREM 3.11. Let $X$ be a Tychonoff space and $Y$ a Dieudonn\’e complete TV-
space. Then, every equicontinuous subset $\{f_{\alpha} : \alpha\in\Omega\}$ of $C(X, Y)$ can be extended
to an equicontinuous subset $\{g_{\alpha} : \alpha\in\Omega\}$ of $C(\gamma X, Y)$ . If in addition $\{f_{\alpha} : \alpha\in\Omega\}$ is
assumed to be pointwise bounded (resp. pointwise totally bounded), then $\{g_{\alpha} : \alpha\in\Omega\}$

is also pointwise bounded (resp. pointwise totally bounded).

Theorem 3.11 slightly improves the theorem of Sanchis [15] that: Let $X$ be
a Tychonoff space and $Y$ a Dieudonn\’e complete TV-space. Then, every pointwise
totally bounded equicontinuous subset of $C(X, Y)$ can be extended to a pointwise
totally bounded equicontinuous subset of $C(\gamma X, Y)$ .

$PR\infty F$ OF THEOREM 3.11. Let $\{f_{\alpha} : \alpha\in\Omega\}$ be an equicontinuous subset of
$C(X, Y)$ . First, notioe that for every $\alpha\in\Omega,$ $f_{\alpha}$ can be extended to some
$g_{\alpha}\in C(\gamma X, Y)$ . We shall prove that the collection $\{g_{\alpha} : \alpha\in\Omega\}$ is the required
one. For every neighborhood $V$ of $0$ in $Y$ and every $x\in X$ , let $O_{\chi}(V)=$

$Int_{X}(\cap\{f_{\alpha}^{-1}(f_{\alpha}(x)+V):\alpha\in\Omega\})$ like as in Lemma 3.2. By Lemma 3.3, { $O_{x}(V)$ :
$x\in X\}$ is a normal open cover of $X$ . Hence, there exists a normal open cover
$\mathscr{U}_{V}$ of $\gamma X$ such that $\mathscr{U}_{V}\wedge X$ refines $\{O_{x}(V) : x\in X\}$ . We may assume that $\mathscr{U}_{V}=$

$\{U_{x}(V):x\in X\}$ and $U_{x}(V)\cap X\subset O_{x}(V)$ for every $x\in X$ .

CLAIM. $g_{\alpha}(U_{x}(V))\subset f_{\alpha}(x)+\overline{V}$ for every $\alpha\in\Omega$ and every $x\in X$ .

The proof of Claim is straightforward.
To prove $\{g_{\alpha} : \alpha\in\Omega\}$ is equicontinuous, let $x\in\gamma X$ and $W$ a neighborhood

of $0$ in $Y$ . Take a symmetric neighborhood $V$ of $0$ in $Y$ with $\overline{V}+\overline{V}\subset W$ . Since
$\mathscr{U}_{V}$ is an open cover of $\gamma X$ , there exists $x_{0}\in X$ such that $x\in U_{x_{0}}(V)$ . For every
$y\in U_{x_{0}}(V)$ and every $\alpha\in\Omega$ , it follows from Claim that

$g_{\alpha}(x)-g_{\alpha}(y)\in(f_{\alpha}(x_{0})+\overline{V})-(f_{\alpha}(x_{0})+\overline{V})=\overline{V}+\overline{V}\subset W$ .

Henoe, $\{g_{\alpha} : \alpha\in\Omega\}$ is equicontinuous.
Assume further that $\{f_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded. Let $x\in\gamma X$ and $W$ a

neighborhood of $0$ in $Y$ . Let $V$ be a circled neighborhood of $0$ in $Y$ with
$\overline{V}+\overline{V}\subset W$ . Sinoe $\mathscr{U}_{V}$ is an open cover of $\gamma X$ , there exists $x_{0}\in X$ such that
$x\in U_{x_{0}}(V)$ . From Claim, we have $g_{\alpha}(x)\in f_{\alpha}(x_{0})+\overline{V}$ for every $\alpha\in\Omega$ . Since
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$\{f_{\alpha}(x_{0}):\alpha\in\Omega\}$ is bounded, there exists $e>0$ such that $r\cdot\{f_{\alpha}(x_{0}):\alpha\in\Omega\}\subset V$

for every $r\in R$ with $|r|<e$ . Hence, for every $r\in R$ with $|r|<e\wedge 1$ , we have

$r\cdot\{g_{\alpha}(x) : \alpha\in\Omega\}\subset r\cdot\{f_{\alpha}(x)+\overline{V} : \alpha\in\Omega\}\subset V+\overline{V}\subset W$ .

This shows that $\{g_{\alpha} : \alpha\in\Omega\}$ is pointwise bounded.
The case of the pointwise total boundedness is left to the reader. This

completes the proof. $\square $
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