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A CONSTRUCTION OF COMPACT PSEUDO-KAHLER
SOLVMANIFOLDS WITH NO KAHLER STRUCTURES

By

Takumi YAMADA

Abstract. In this paper we investigate the Hard Lefschetz property
on certain compact symplectic solvmanifolds and construct compact
pseudo-Kahler solvmanifolds which do not have the Hard Lefschetz
property. We also construct holomorphic symplectic structures,
hypercomplex structures and pseudo-hyperkéhler structures on cer-
tain compact solvmanifolds.

Introduction

Let (M?",w) be a compact symplectic manifold. We say that (M?", w)
has the Hard Lefschetz property, if the Lefschetz mapping L* : HFZ*(M) —
HTK(M) defined by L*¥([o]) = [x A @] is an isomorphism for any k < m. It is
well known that the Hard Lefschetz property is a necessary condition for the
existence of a Kihler structure. Benson and Gordon proved that non-toral
compact nilmanifolds do not have the Hard Lefschetz property. They also con-
jecture the following:

BENSON-GORDON CONJECTURE [3]. Let G be a simply-connected completely
solvable Lie group and T a lattice of G. Then G/T" has a Kdhler structure if and
only if it is a torus.

Moreover, since a hyperelliptic surface has a Kdhler structure and a structure
of solvmanifold (not completely solvable solvmanifold), there exists the following
generalized conjecture (see [6] or [12]): A compact solvmanifold admits a Kahler
structure if and only if it is a finite quotient of a complex torus, which has also a
structure of complex torus bundle over a complex torus. A solvable Lie algebra g

2000 Mathematics Subject Classification. 53D05 (53C55).

Key words: symplectic solvmanifold, pseudo-Kihler structure, holomorphic symplectic structure.
Received June 19, 2003.

Revised November 20, 2003.



80 Takumi YAaMADA

is called completely solvable if ad(X) : g — g has only real eigenvalues for each
X € g. By investigating the properties of the Lefschetz mapping, Benson and
Gordon have several necessary conditions for the existence of a Kaihler
structure. On the other hand, de Andrés, Fernandez, de Ledén and Mencia m
have constructed examples of 6-dimensional non-toral compact pseudo-Kihler
solvmanifolds which have the Hard Lefschetz property (See Example 5.1). We do
not know whether any of these solvmanifolds admit Kéhler structures. Ibafiez [14]
has constructed 6-dimensional pseudo-Kidhler nilmanifolds. Kodaira-Thurston
manifold, which is a compact 4-dimensional nilmanifold, also admits a pseudo-
Kihler structure (see [5]).

In the previous paper [21], we constructed completely solvable Lie groups
which have a lattice. Let A4;, B; be the matrices given by

A; a¥(Ex—1k-1 — Eneox) i=1,...,1,

Il
1M

B; bfh(Ezk-l,zh—l + Exon) j=1,...,n,

=
>

<

where af,b¥ € Q and E;; is a matrix unit. We assume that [4;, Bj] = [B;, B;] = 0.

i

We define a map
o, : R — End(R™)
by

l n
0oty I X1y Xn) = ) Lidi+ > XiB;.
i=1 i=1

Let ¢(t,x) = exp(e,(t,x)) and we define a group structure of R" x R?" by

(t1,X1,¥1) * (t2,X2,¥,) = (t1 + &, X1 + X2,¥; + 9(t1,X1)y;)
for ;e R/, x; e R” and y, e R?". We denote the Lie group (R™* x R¥™ x) by
!
G = R"" x,R*™, |
In the previous paper [2I], we proved the following:

PROPOSITION 1. A Lie group G = R™/ I><¢R2'" is a completely solvable Lie
group which has a lattice T.

The main purpose of this paper is to investigate the properties of the
Lefschetz mapping on the compact symplectic solvmanifolds constructed in
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and to construct examples of compact pseudo-Kéhler solvmanifolds
without the Hard Lefschetz property.

In section 2, 3 and 4 we always assume that for each k, there exists an i such
that af # 0 and / + n are even numbers. A solvable Lie group G = R x ,R>"
constructed above is called A-type if B; = 0 for each j. In section 4 we prove the
following:

THEOREM 2. Let M = G/I" be a compact solvmanifold constructed in Propo-
sition 1 and assume that M has a symplectic structure. Then M has the Hard
Lefschetz property if and only if M is a compact A-type solvmanifold.

PROPOSITION 3. The minimal model of a compact A-type solvmanifold
M = G/T is formal.

It is known that formality is also a necessary condition for the existence of a
Kahler structure and it is conjectured that if a closed symplectic manifold has the
Hard Lefschetz property, then its minimal model is formal (see Tralle [19]). In the
paper [1], de Andrés, Fernindez, de Leén and Mencia proved that the minimal
models of 6-dimensional compact A-type solvmanifolds are formal.

Next, let ¢(t,x) (teR/,x€R") be an automorphism of R?*" constructed
above. We consider a solvable Lie group G =R+ x;R*" where @(t,x) =
o(t,x) @ ¢(t,x), that is, the group structure of G is defined by

(Sl,tl,xl,l‘x,yl,zl) * (Sz, t2,X2,12,Y,, Zz)

= (81 + 82,41 + 12, X1 + X2,11 + 12, ¥; + 0(t1, X1)Y2, Z1 + ¢(t1,X1)2Z2)

for s;, t; e R', x;,r; e R" and Y, Zi € R?”". Then the matrix form of G is given by

\

)
((p(t,x) 0 0 0 0 0 y)
0 pt,x) 0 0 0 O z
0 0 100 0 x

G:ﬁ 0 0 01 0 0 t||s,teR/ r,xeR"y,zeR>}.
0 0 0010 r
0 0 000 1 s

[\ o 0 0000 1) J

Note that G is a completely solvable Lie group which has a lattice.
In section 6 we prove the following:
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PROPOSITION 4. A solvable Lie group G = R¥"+% x é R*" has a left invariant
complex structure.

PROPOSITION 5. If a solvable Lie group G = R"" x,R*" has a symplectic
structure, then G = R*"*? < ;R*" has a pseudo-Kihler structure.

Using Theorem 2 and [Proposition 5, we can construct compact pseudo-
Kihler solvmanifolds which do not have the Hard Lefschetz property.

Consider the direct product G’ = G x C"*'. Note that G’ also has a lattice
and a complex structure. Let M?" be a 2n-dimensional complex manifold. A
holomorphic 2-form Q e Q%>°(M) is called a holomorphic symplectic structure
on M if it satisfies dQ = 0 and Q" # 0 at each point of M. Todorov conjectured
that any holomorphic symplectic manifold admits a Kahler structure (See [4], [8]).
However, Guan has constructed non-simply-connected holomorphic symplectic
non-Kdhler manifolds and simply-connected holomorphic symplectic non-Kéahler
manifolds ([8], [9], [10]). He also consider a deformation of holomorphic sym-
plectic manifolds. However the examples of compact holomorphic symplectic
non-Kdhler manifolds are not so much (In the non-compact case, many examples
are known, say, complex cotangent bundle M = /\I‘ON of a complex manifold
N). We prove the following:

PROPOSITION 6. If a solvable Lie group G =R"* D<¢,R2’" has a left G-
invariant symplectic form, then G'/T" = G/T x C"*'/T" has a holomorphic sym-
plectic structure.

In section 6, we also construct hypercomplex structures on certain compact
solvmanifolds. We give some examples in section 5 and 7. In section 8 and 9,
we construct solvable Lie groups with parameterized lattices and holomorphic
symplectic structures. As a consequence, we get families of compact holomorphic
symplectic non-Kéhler solvmanifolds.

The author would like to express his deep appreciation to Professor Yusuke
Sakane for his thoughtful guidance and encouragement given during the com-
pletion of this paper. The author also thanks Professor Ryushi Goto for several
advice.

1. Definitions and Nomizu-Hattori Theorem

Let (M,w) be a compact symplectic manifold and Q¥(M) the space of
all differential k-forms. We define a linear mapping L : Q*(M) — Q*+2(M) by
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L(x) = « Aw. Since w is closed, we have Ld = dL. Hence, the mapping L induces
a linear mapping L : Hfx(M) — HER2(M) by L([o]) = [L(a)].

DerFINITION 1.1, Let (M?" ) be a compact symplectic manifold.

(1) If the Lefschetz mapping L™ ! : H) (M) — HZ2 '(M) is an isomor-
phism, then (M?",w) is called a Lefschetz manifold.

(2) If the Lefschetz mapping L* : Hs*(M) — HEE%(M) is an isomorphism
for any k <m, then we say that (M?" w) has the Hard Lefschetz
property.

Note that compact Kédhler manifolds have the Hard Lefschetz property.

Let g be a Lie algebra and put g, =g and g;,; = [g;,9;]. A Lie algebra g
is called solvable if g, +1 = (0) for some r. A Lie group G is called solvable if its
Lie algebra g is solvable.

DerINITION 1.2. A solvable Lie algebra g is called completely solvable if
ad(X) : g — g has only real eigenvalues for each X € g. A solvable Lie group G
is called completely solvable if its Lie algebra is completely solvable.

By a compact solvmanifold G/I", we mean a right coset space of G modulo
I', where G is a simply-connected completely solvable Lie group and I" a lattice,
that is, a discrete co-compact subgroup of G.

We denote the Lie algebra of G by g. We identify /\* g* with the space of all
left G-invariant forms on G/T". Then Hattori proved the following:

NoMizu-HATTORI THEOREM. The inclusion map i : /\k g* — Q%(G/T) induces
an isomorphism H*(g) — HEo(G/T) for each k.

Let (G/T,w) be a compact symplectic solvmanifold. By Nomizu-Hattori
Theorem, there exists a left G-invariant closed 2-form wy on G/T such that
w — wo = dy. Note that wy is also a symplectic structure. Therefore we may
assume that a symplectic structure on M = G/T is left G-invariant to investigate
the Hard Lefschetz property.

2. Closed Forms on Certain Solvable Lie Algebras

In this section we consider left G-invariant closed forms on G constructed in
IProposition 1.
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The Lie algebra g of G constructed in [Proposition 1 can be written as
follows.

g=span{Al,...,A1,B1,...,B,,, Yi,..., Yzm}

with
[y, Yox—1] = af Y-y, [4;, Y] = —ak Y,
2.1
(B, Yon1] = 3 b} Yoeo1, [Bj, You] =Y bF' Yy @D
ke<h ke<h

for i=1,...,], j=1,...,n and 1 <k <h <m. We assume that for each k,
there exists an i such that af‘;éO. Let {a1,...,0,B81,...,fp®01,...,02,} be
the dual basis corresponding to {A4;,...,4;,By,...,Bp, Y1,..., Y2,}. We write
Wi, A -+ Ay, simply as wg and set #K = p for K = (ky,...,k;,). Note that dwg
can be written as follows:

! n
dog = — E ako; nowg — E E ij”ﬂjAa)H.
pm ==

Lemma 2.1 ([21])). Let y=>_;x cukou APy Awk be a closed form such that
#I + #J and #K are constant. If for each K, there exists an i such that aX # 0,
then y is an exact form.

PrOOF. See [21]. O

We set
a = span{4,,..., A},
b = span{Bi,...,B,},

m = span{Yi,..., Y, }.

For simplicity, we denote /A\'(a x b)* A N m* by N

LemMMA 2.2 ([21]).
(1) If a=ap0+o,1+00,2€Z%(g), where a;;¢
dozo,z =0.

) A"'NZ%(g) = BX(g).

ij
, then dayo=du; =
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Proor. Since

n
k K
dwy_1 = — E a;o; A Wy—1 — E E bi"B; A wap-1,
7

k<h j=}
n
k kh
dwzkzz a,-a,-/\wzk—g E bi"B; A wan,
i k<h j=1
we have
0,2 d Al,2
N"= N7
2,0 d
N =0,

/\],1 i /\2,1.
Since we assume that for each k, there exists an i such that a¥ # 0, we have

using Lemma 2.1. O

3. Closed Forms on Nilpotent Lie Algebras

We use the same notations as in section 2.

By Lemma 2.7, we may assume that a symplectic structure w on a solv-
able Lie group G constructed above is an element of /\2’0 + /\0’2 to study
the Hard Lefschetz property. Thus we write w = w3 ¢ + wp,2, where w;,o € /\2’0,
wo,2 € /\0’2. Note that w;¢ and wp; are symplectic structures on a x b, m
respectively. .

Let n be a Lie algebra. Put n® =n and n(*) = [n,n®] for i > 0. We say
that the Lie algebra n is (r + 1)-step nilpotent if n) # (0) and n+1) = (0). A
Lie group N is called (r + 1)-step nilpotent if its Lie algebra n is (r+ 1)-step
nilpotent.

Note that n = b X m is a nilpotent Lie algebra and wp > can be considered as
a closed form on the simply-connected nilpdtent Lie group N corresponding to
n. Thus we consider left N-invariant closed forms on a nilpotent Lie group N.

Let n be an (r+ 1)-step nilpotent Lie algebra. Consider the descending
central series {n} of n. Let u) be a vector subspace of n') such that

n(l) — n(H'l) + u(')

for i=0,1,...,r—1 and define n; = dim u®. For simplicity, let AN u®" A A
N u®” = A" Then
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/\s n* — Z /\io ..... i .
io+--+i,=s

For an (r + 1)-step nilpotent Lie algebra n, we have the following:

LemMa 3.1 ([2]). Any closed 2-form ae/\zn* belongs to /\1’0""'0’1+
E/\io,...,i,_l,o.

Let {y,...,{, be a basis of /\0""’0’1. By Lemma 3.1, a left N-invariant
symplectic form @ on a nilpotent Lie group N can be written as

=y Ali+ -+, Al modulo Y AP

1,0,.,0 & .
where yy,...,y, are elements of /\ . Since w is non-degenerate, y,,...,7,

are linearly independent and we extend these to a basis
yl,---’}"n,"--ayno
of /\1,0,...,0‘

LeMMA 3.2 ([2]). Let n be an (r + 1)-step nilpotent Lie algebra of dimension
2m. Then we have

(1) A" (n*) =z (),
(2) S A\ = Bl ().

4. The Lefschetz Mapping on Certain Compact Symplectic Solvmanifolds

In this section we prove [Theorem 2| and [Proposition 3. We assume that a
symplectic structure « is left G-invariant. We use the same notations as in

sections 2 and 3.
Put

my =span{Y,, Ys,..., You,1},
my = span{ Yz, Y4, ceey Yzm},
m =span{Yy, Ys,..., You}.
Then Lie algebras ny =bXm;, n=bXm; and n=bx m are (r+ 1)-step

nilpotent.
Since n; is a nilpotent Lie algebra, there exists a basis
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« 0
nf =span{f;,..., 8, 0, ..., ¢9, 0,0y,
which satisfies for each p=0,...,r — 1,
0
dnlc(p-H) € /\{ﬂl, s 7ﬁnaC§ )7 ey ;(1(;): v ,Cgp), v )Cﬁf)}a
dnlﬁj = dnl ](¢0) = O,

where dy, is the exterior differential on /A" n; (cf. [2, the proof of Lemma 2.1)).
Put

gp) - span{C(”),.. (p)}
Then we have nj =b* @ u(o) DD u(') For simplicity, let
/\J b* A Iou /\ /\lr (ry" /\(1',1'0),1‘1,---1'r n{‘.
Since {B;,...,0,, 01,®3,...,wam_1} is also a basis of nj, we can write
=Y w1
A

Then we define 1-forms 77 by ;7 =, c,(c’,’l)wz;,.\ It is obvious from (2.1) that

1
d“2”§p+ ) e/\{ﬁl""’ﬁrﬂ”l . ,;75:3), '7( ... (P)}

Now consider {,((” ), ;7,((” as left G-invariant 1-forms on G. Then we see

C(P)

n not-tn, g
dc]((l’) Z al(lf)a, A k + Z Z b,(;z,g] Ay,
4.1)

n hot-+np

Za(p)cx A”(p)+z Z b;(cj’;fﬁ,-/\nh,

where
STRPN A E S (SN PN (RN < B
Similarly, we write
/\jb* AN ugo)‘ Aeee A/\i’ ug')' = /\(j’i°)’i”"'i’ ny,
N b* A O .. ..,\/\ir u® = /\(f"b)’ilv--"rn

where ul?)" = u(” ) +u(” )"
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THEOREM 4.1. Let M = G/T" be a compact solvmanifold constructed in
Proposition 1 and assume that M has a symplectic structure. Then M has the
Hard Lefschetz property if and only if M is a compact A-type solvmanifold.

ProoF. By [Lemma 2.2l and Lemma 3.1, wo, can be written as
@o,2 =y1Acﬁ’)+~--+y,,,/\c£,?+11m;§’)+---+,1,,,m;,(,?+z,

where yk,lke/\(o’l)’o""o n* and re/\(o’i")’i"""i"" n*. It is obvious from (4.1)
that y, A4 is a non-exact closed 2-form for each k=1,...,n, (Note that
dy N&D%%n* = 0). Then

0

v A A B2 L N DN NN DN
A ATO A AGD A Ag®
=a2-a1A~--Aa1AC(10)/\ g’),\.../\f’(c') C(r)
ABy A Aﬂnl\ﬂ(lo) A”§0) /\;75(’) ”(r)

=ay- o A- AO‘IAC(O) (0),\.../\”}cr),\...,\cf':)/\dnzg
=ay- oA AaIAC(O)Ac(O) "\y)/\"'/\Cf.?/\dG

= (=1)™""a, . d(« A---Aa,ACEO) /\---/\5;:) A---/\CS‘:) nG),

where a;,a; € R, 8 € /\ nj and d,, is the exterior differential on /\ n}. The second
equality holds by [Lemma 3.2. The third and fourth equalities hold by the
following fact:

(r) _ Zazk o ’\Cfcr) + E/\(l,io),il,...i,_l,onr,

n . . .
d”ir) — Zaf]:)“l A ,7;:) + Z /\(L“))y“r--’r—lyo n;‘
i=1

Then
L(1/2)(n+1)+m—2 . HZ(g) — Hn+1+2m—2(g)

is not an isomorphism if M is not a compact A-type solvmanifold.
Conversely, let M be a compact A-type solvmanifold. Since dwg =

—Z,Ll afo; nwg, if D #l+#K=prq=r CIKU AWK is a closed form, then

Z#]:,) cixor A wg 1s also a closed form. Moreover, it is obvious that if dwg =0,
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then 3, cikar Awg is a non-exact closed form. By [Lemma 2.1, if dwk # 0,
then a closed form ) #1=p CIKOI A QK is exact. Then for each de Rham coho-
mology class, we can choose a representation o = Z,, x Cikoy Awg such that
dCOK = 0.

On the other hand, we can assume that a symplectic form @ on M can be
written as

w=awzo+ E Prpox A cop,
k,h

. 2,0 .
where ;o is a non-degenerate closed form on A”". Since dwg =

— L aXa; Awk, wr Awy is closed for each k, h such that Py, # 0. Then we
have

LkOC = E Crrgropr NQgr dwK/ = 0,
I'K'

which implies L*a is not exact by the above argument. Then A4-type has the Hard
Lefschetz property. O

REMARK. In the paper [21], we showed that a compact symplectic solv-
manifold constructed in [Proposition 1 is a compact Lefschetz manifold.

Using the notion of differential graded algebra (or, briefly, D.G.A.), we
define the minimal model of M. o/ = (o, d) is called a D.G.A. if .« is a graded
algebra of = (@),,,«/' with the commutativity a-b=(-1)"b-a for ac o7,
be o7 and d an antiderivation of degree 1 as follows:

d* =0,
da-b)=da-b+(—1)a-db
for ae o7, be A9,

DerINITION 4.2. Let o/, 4 be D.G.A., # is a Hirsch extension of degree n
of o/, if # is of the following form:

g‘—"ﬂ@/\n<X1,...,Xk>
degxi=n, dxiesf fori=1,...,k,

where A\ (x1,...,xx) is the free graded commutative algebra with unit generated
by {x1,...,%xx}.
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DerINITION 4.3. A D.G.A. o/ is said to be minimal if .o/ satisfies the
following:
i) o= Uizo of;, where o7y = R and «/;; is a Hirsch extension of .«/; for
i>0.
(ii) dxe o, - o/, where xe &/ and o, =P

i
izld'

DErFINITION 4.4. Let (M#,dy), (#,dy) be D.GA.. (#,d,) is called a
model for (o/,dy) if there exists a D.G.A.-morphism
p:(Mdy)— (#,dy)

which induces an isomorphism on cohomology. Moreover, if (.#,d ) is minimal,
then (.#,d4) is called a minimal model for (o/,dy).

By the minimal model of M, we mean the minimal model of de Rham
cohomology complex (Q*(M),d) of M.

DEFINITION 4.5. A manifold M is called formal if (Q*(M),d) and
(Hjr(M),d = 0) have the same minimal model.

PROPOSITION 4.6. The minimal model of a compact A-type solvmanifold is
formal.

Proor. We define a mapping of cochain complex f:(H*(g),d =0)—
(N\'(g*),d) by

S
CIKA AWK | — E CIKO A WK,
#I+#K=p+q=r #I+#K=p+q=r

where each wg is closed. It is obvious from the proof of Theorem 4.1 that the
mapping is multiplicative, that is, f satisfies f([a] A [b]) = f([a]) A £([b]). Then
the minimal model of A-type is formal (See [7], p. 158 and [I]). O

5. Examples Related to the Hard Lefschetz Property

ExampLE 5.1 ((I]). We consider the following matrices:

m

A= ZG(EZk—l,Zk—l — Edp,2k)
k=1

B=0.
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We denote by g the Lie algebra constructed by using 4 and B in [Proposition 1.
By the proof of Theorem 4.1, it is easy to verify that

H* Y (g) = span{[a A ls Ayl [BAL Ay (#] = #T = q— 1)},
H*(g) = span{[a A BAC Ay #I=#J=q—1),[{iAn;] (#] =#J=4q)},

where {; = wa;—1 A+ Awa—1 for I=(i1,...,i) and 7n; = wy, A--- Awy;, for
J=(j,.-.,jr). In particular, we see that the odd betti numbers by;_1(M) are
even and b;(M) > b;_r(M) (i<m+1). M(a) =R?*x R*/T" has a symplectic
structure. For example,

W=0AB+W AW+ -+ Wp—1 A W2p.

By Theorem 4.1, M(a) has the Hard Lefschetz property for any symplectic
structure. Moreover, if M =R?> X< R*/T", then M admits a pseudo-Kihler
structure (See Section 6 and Example 7.1).

ExAMPLE 5.2. We consider the following automorphism:

Py 0
¢(t1,t2,x1,x2)=(0 Pz)’

where
e 0 xel 0
0 et 0 xet

0 0 eli 0
0 0 0 el

Pi=

for i=1,2. Then G=R* X R® has a symplectic structure. For example,
w=0a A0+ P AP+ 01 Aws — @03 AW2 + W5 Awg — W7 AWe.

Now w3 A ws, w7 Awg are non-exact closed 2-forms. As in [Theorem 4.1, we
see

L4
W3AWg — a0 Adg A By APy A3 AWs A5 AW AW AW

=ta-d(ag Aox APy Awr A3 AWs AW A W7 A©g),

L4
W AWg = b o Ao AP APy AW AW A3 A D4 ADT AW

=+b-d(ay Ao AP AWy A3 AWs AW AWT AQR).
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Similarly, G/T" does not have the Hard Lefschetz property for any symplectic
structure.
6. A Construction of Compact Holomorphic Symplectic Solvmanifolds

In this section we construct pseudo-Kihler Lie groups and holomorphic
symplectic Lie groups from certain Lie groups. As an application, we have
Propositions 4, 5 and 6. We also construct a compact solvmanifold which have a
hypercomplex structure and a pseudo-hyperkahler structure.

DEFINITION 6.1. Let M be a complex manifold of dimension 2m. A holo-
morphic symplectic structure is a closed holomorphic 2-form Q on M of maximal
rank, i.e. Q™ # 0 at each point of M.

DEFINITION 6.2. Let M be a manifold. A set of complex structures {I,J,K}
which satisfies IJ = —JI = K is called a hypercomplex structure. Let (M,g) be a
pseudo-Riemannian manifold which carries a hypercomplex structure {I,J,K}.
Then M is called a pseudo-hyperkdhler manifold if wy, wy and wgk are pseudo-
Kaihler forms with respect to I, J and K respectively, where wy(X, Y) = g(1X, Y),
w3(X,Y)=9g(JX,Y) and wk(X,Y) =g(KX, Y).

We consider the following Lie algebra over R:

g=akXb,
where a is abelian and b is an ideal. Assume that
a = spang{U/},..., U},
b =spang{V},...,V, }.

Consider the complexification g€. Since g€ = g + v/—1g, r(g€) has the following
basis:

r(g€) = spang {U},..., U}, V-1U},... ,.v=1U},V],... .V}, V},...,V}},
where V? =+v—1V}. Let h be the following Lie subalgebra of g:
b=a+b+\/_—_1b=spanR{Ullv,...,Up1,Vll,...,Vql,V12,...,qu}.
Consider a direct product

b x R? =spang{U},...,U,, UE,..., U}, V|,...,V,, Vi,...,V2}.
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We define a complex structure on h x R? by the following:

Fquﬂﬁawz—W)izk“m
1 _ 12 2 __ 1 ;—
W, =v:Wr=-V;) j=1,...,q

Note that b x R? is a Lie algebra. We use the notation ¥i(g) = (h x R?,I) and
let ¥1(G) be the simply-connected Lie group corresponding to Wi(g). Then we
have the following:

ProrposiTiON 6.3. 1 is integrable on ¥y{(G).

PrOOF. We show that the Nijenhuis tensor Nj(X, Y) vanishes. By definition
of the almost complex structure I and [a,a] = 0, it is obvious that the Nijenhuis
tensor Ni(X, Y) vanishes except for the case when X = U2, Y = V! or V7. Let
X =U?, Y=V]. Then

M(U7,V)) =MLUE, V)] = (107, 1V

1 1 1 1

= -1/, V] + UL, 1]
=—vV-1[U}, V]1+ U}, V-1¥j] = 0.

Note that I[U}, V'] and [U},1V}}] can be considered as elements of g€. The other

case is similar and hence omitted. O

Let {éll,...,é;,élz,...,fg,wll,...,co;,cof,...,wg} be the dual basis of
{vl,....,0,,U¢,..., ULV}, VL, VE ..., V2}. Thus as a basis for (1,0)-type
we can take

w=E+vV=1& i=1,...,p
=l +V-10? j=1,...,q

THEOREM 6.4. If b has a non-degenerate 2-form which is closed on g, then
Y1(G) x C? has a holomorphic symplectic structure. Moreover, if [b,b] =0, then
the solvable Lie group Wy(G) has a pseudo-Kdhler structure.

PROOF. Let wp =3, , Prawj Aw} be a non-degenerate 2-form which
is closed on g. It is obvious that if 7=>, , Pu(AeAir+ A AI;,) =
23 ich Pan(w} A} — @ Aw?) is a closed 2-form, then >, _, Prndi A Ay is also
closed. Since dwp =0 and 7(X,IY)=0 for X, Yegch, it is easy to check
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that dt(X,Y,Z) =dt(IX,1Y,1Z) =dt(1X,Y,Z)=0 for X,Y,Zeg. Since
7(X,Y) = —t(IX,IY) = wp(X, Y) for X,Y eg, we see

dt(1x,1Y,Z) = —t((1X,1Y], Z) + «([IX, Z],1Y) — z([1Y, Z],1X)
=+1([X,Y),2) —7([X,Z],Y) + «([Y, Z], X)
= +wy([X, Y], Z) — wp([X, Z], Y) + 0u([Y, Z], X)
= —dwp(X,Y,Z) =0,
where X,Yebclh Zeg. If Xea or Yea, then it is obvious that
dt(I1X,1Y,Z) = 0. Thus >_,_, PnAx A An is closed. Hence

Q= u,-/\u,f+Zth/1k/\lh,

P
i=1 k<h

where {4},_; , is a basis of Q!%(C?), is a holomorphic symplectic structure on
Pi(G) x CP.

Next assume that [b,b] =0 and consider 8 = 3", _, Pin(Ak A dn + Ak A Ap) =
2> i ch Prn(ow} A} + 0 Aw?). Note that 8(X,Y) = 0(1X,1Y) = wp(X,Y) and
0(1X,Y) =0 for X,Y egcb. Since 0([X,Y],Z) = wp([X, Y],Z) =0 for X,Y €

bch, Zeg, we have
do(1x,1Y,Z) = —0([1X,1Y], Z) + 6([IX, Z],1Y) — 6([1Y, Z],1X)

.....

= —wb([X, Y],Z) + wb([X, Z]’ Y) - CO[,([Y, Z]’X)
= dCOb(X, Ya Z) = 0’

where X,Yebclh, Zeg If Xea or Yea, then it is obvious that
dO(1X,1Y,Z) = 0. The other cases are similar to the case of a holomorphic
symplectic structure. Thus 6 is closed. Hence,

p —_— -—
W= V——lZ,uiAﬁ,--i-Zth(/lk/\ih-{-ik/\ih)
i=1 k<h

is a pseudo-Kihler form on (¥1(G),I). O

REMARK. The signature of the pseudo-Kihler metric constructed above is
(P+4,9).

Let [b,b] = 0 and consider Wy(¥1(g)). Then the solvable Lie group ¥;(¥i(g))
can be written as follows.
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Wy(¥1(9)) = spang{U},..., U),..., U},..., UL VI, .. V], Ve V0,

where the bracket products are
(U}, v = Z iV

fori=1,...,p, j=1,...,q, h=1,2,3,4.
Then we have the following:

PROPOSITION 6.5. The simply-connected solvable Lie group ¥y(¥i(G)) cor-
responding to Yy(Wi(g)) has a hypercomplex structure.

Proor. Let {W{,..., Wi Y={U},...,ULV],...,V}} for each h=
1,2,3,4. We define almost complex structures I, J, K which satisfy IJ = —JI = K
by

IW}! = Jwl = W3 {KW4 W},
IW4 W3 JW2 W4 KWw? W3

It is easy to check that the Nijenhuis tensor N(X, Y) vanish for each I, J, K. By
the construction, J is integrable on Wj(¥1(G)). Thus we only check the case of 1
and X = Ul, Y=V} Let X =U}, Y =V} We see

7R A EIZRAES | AR AR (178 UAIES (| L/ ey

1Y

= [Uil’ Vj4] + I[Ui]a VJS]
-Zc Vk +IchVk
=Zc,§Vk Zc Vi =0.

The other cases are similar and hence omitted. Then {I,J,K} is a hypercomplex
structure on ¥;(¥i(G)). O

Let {&], !}, ;) be the dual basis of {U, V}},;,. Then we have the fol-
lowing:

THEOREM 6.6. If b has a non-degenerate 2-form which is closed on g, then the
solvable Lie group ¥Yy(¥1(G)) has a pseudo-hyperkdihler structure.
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PrROOF. Let wy = Z,Q » Pinwk A wp, where Py, = —Pp, be a non-degenerate
2-form which is closed on g. Consider the following pseudo-Riemannian metric
of signature (4p + 2q,2q):

4 p ]

9= > G+ Pu(w,® o} + 0 ® w}) — Y Pu(wh ® wp + wjf ® w})
i=1 k=1

Then wj, wy and wg are pseudo-Kéhler forms with respect to I, J and K. By a

straightforward computation, we see

P
col=2Z(f,£/\é,f—éiA{,‘:)—Zth(w,i/\w},+a),f/\co,f—co,3/\a)h o Aw}),

k=1

Sl e g2 s 1
COJ:ZZ(fk/\ék+ék/\ék)+2Zth(wk/\wh wk/\a)h)

k=1

4
ok = =23 (G A&~ EAG) +2) P} Ao} + of neo}).
k=1

d . .
J J
Moreover we see k. h Prn@ic A p — — > koh i, j(Pj;,c,.k + Pyjcy, )¢ A i A wy. Hence,

J JY : s t J J
25 j(Pjhcik + Pyicy) = 0. Since ) k. h Prn@j A oy — — > k,h,i,j(Pjhcik + Pijcy)Ei A
w; Aw;, we see that wy, wy and wg are closed. O

REMARK. Let (M,g,1,J,K) be a pseudo-hyperkidhler manifold. Then the
complex 2-form wj+ v —lwk is a holomorphic symplectic structure on (M,I).

In the above case, we have the following holomorphic symplectic structure on
(M, J):

p
Q=—or+V-Toxk =23’ Aupt +Y P’ ady® + 24 A0,
k=1 k.h

where ,u,';’j =&+ \/—lé,{, ).,';’j = w} + \/—lw,{. Note that (M,J) has other holo-
morphic symplectic structures the cohomology classes of which are different from
the cohomology class of Q. For example, by the proof of

—ZZyk /\,uk +ZPk;,/1,1’3A}.,§’4
k.h

is also a holomorphic symplectic structure on (M,J).
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Let ¢(t,x) (te R, x € R") be an automorphism of R*" constructed in Prop-
osition 1. Consider a solvable Lie group G =R x;R*" where §(t,x) =

p(t,xX) ® ¢(t,x), that is, the group structure of G is defined by

(tl,Xl,Sl,l'l,yhzl) * (t27 X2,82,I2, Y2,12)

= (t; +t,X] + X2,81 + 82,11 + 2,y + 0(t1,X1)¥2, 21 + ¢(t1, X1)Z2)

for s;,t; e R}, x;,r; e R" and y-,z,-eRz’”. The Lie algebra g of G is
]

g= {Ai’Bj’ Ui, Vj’ Yk’Zk}i=1,...,1j=l,...,n,k=1,...,2m’

where the bracket products are

[Ai, Yar_1] = a¥ You_y, [Ai, Zoi—1] = a¥Zy 1,

[Ai, Yor] = —a¥ Yo, [4i, Zox] = —a¥Zn,

B, Yono1] = Y _6F Yoy, [Bj, Zon-1) = ) b/*Zak-,
k<h

k<h
[Bj, Yo = > _ b} Y, [Bj, Zn) = > _ b} Zx,
k<h k<h
fori=1,...,], j=1,...,nand 1 <k < h <m and the other brackets are zero.

We denote by {oc},ﬂjl,oc?,/)’jz,co,i,w,%} the dual basis of {4;, B;, U, V}, Yk, Zi}.
Let us consider the following Lie algebra and its decomposition:

DECOMPOSITION. 1:

g= span{Ai,Bj, Yk}a
a = span{4;, B;},

b =span{Yi,..., Yom}.

Then g = Wi(g).
MTheorem 6.4.

Thus we have [Proposition 4, 5 and 6 by Proposition 6.3 and

Indeed, we define an almost complex structure I by
IA,'ZU,' l=1,,l
IBij=V;, j=1,...,n
IYk=Zk k:l,...,2m

By [Proposition 6.3, we see that the Nijenhuis tensor Ni(X,Y) vanishes and a
basis for (1,0)-type forms is given by
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,uizoc}—i—\/—lociz i=1,...,1
vj=ﬁj'+\/—lﬁj2 j=1,...,n
Akzw,i%—\/—la),% k=1,...,2m

In particular, if g is not A-type, then M = ¥(G)/I'y,) has a pseudo-Kéahler
structure with respect to which M does not have the Hard Lefschetz property.

ReMArk. If G is A-type, then the Frolicher spectral sequence {E.(g)}
satisfies E1(3) ~ Ew(g). In particular, dim H'(§) = 3_,,,_, dimc H?(3°).
Indeed, by a straightforward computation, we see

Ak, A i) = D ai ™o A dk, A,
6(,1K, /\ZKZ) = ZaiK'Kzﬂi /\lxl /\ZKZ,

which implies that if Ak, A dx, is O-closed, then d-closed. Put u,; = p; Afi;. Let
Y= D 1 CuK KMy A Ak A Ak, be a 0-closed form such that for each Kj, K>, there
exists an i such that ¢f** # 0. Similarly to Lemma 2.1, we can check that y
is d-exact. Thus for each d-cohomology class, we can choose a representation
ECUKIKZ,u”—AAKIAIKZ such that 5(11(1/\11(2):0. Then we have Hg*"({;)z
Hg”’(@c) and 0: Hg’q(gc) — HgH’q(QC) is the zero-mapping by the above ar-
gument. Hence E;(§) ~ E.(§) (See [1]).

Let g = span{4;, B, Yx} be a solvable Lie algebra constructed in
1 and consider the following decomposition:
DECOMPOSITION.  2:
a = span{4y,... A},
b=span{B,...,By, Y1,..., Yom}.

Since a, b satisfy the condition in [Proposition 6.3, we can construct a solvable
Lie algebra Wj(g). Since span{Y), Y>,1Y,,1Y5, ..., 1Y5_;,IY%} is an ideal of
¥i(g), Wi(G) also has a lattice. We show that W¥{(G) has no left ¥;(G)-invariant
pseudo-Kihler structures with respect to I except the case of A-type. For sim-
plicity we use the following notation: '

dop = — ZA;';%' Ay — ZB'Jchﬂi AWy
i Joh
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i — i ak J2h—1 _ pj2h __ pkh :
Hence, Ay _, = -4y, =af, B); | = Bj; —bj . By a straightforward compu-

tation, we see

1 . .
diy = d(w} +V—-1w}) = —EZA;((#,. + ) A= > B A dy.
k,i J>h

ProposITION 6.7. If a compact solvmanifold W1(G)/T'w,g) constructed from
the decomposition 2 has a left W1(G)-invariant pseudo-Kdhler structure, then G is
A-type.

Proor. By Stokes’ theorem and the assumption of the coefficients A4}, if
there exists a left Wi(G)-invariant pseudo-Kédhler structure, then there exists a
o-closed 2-form Y Q) A 2, of maximal rank; i.e. the matrix Q = (Q*) is non-
degenerate. Thus

0=5§:Qkh/1kA/_1h

1 . . _ " - .
= =3l ADE A AT~ S QBN AT AT
k,h,i k7h7jai

Hence, Y., 0B} =0. By the non-degeneracy of Q= (Q¥) it implies that
B] =0 for each i, j, h. O

By this proposition, we can construct a compact holomorphic symplectic
solvmanifold ¥i(G)/I'y,g) with no left Wy(G)-invariant pseudo-Kahler structures
with respect to L

REMARK. Let (N/T',w) be a non-toral compact symplectic nilmanifold.
Then a compact complex nilmanifold (N/T,I), where N is the simply-connected
nilpotent Lie group corresponding to a complex nilpotent Lie algebra (g(n°),I),
has a holomorphic symplectic structure. However, (N/I",I) has no pseudo-Kihler
structures with respect to I (See [9] and [18, Theorem 1)).

7. Examples of Compact Holomorphic Symplectic Solvmanifolds

ExampLE 7.1 ([I]). We consider the following automorphism of R?:

o0 =( 2
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Note that
e’ 0 0 N
0 e 0
= R
0O 0 O

has a /\O’Z-type form w; Aw; with rank 2. As in [Proposition 4, we have the
following solvable Lie group which has a lattice:

'(e' 0 0 0 0 0 yl\ )
0 e 0 0 0 0 y
0 0 ¢ 0 0 0 z
G=R*x;R*={|0 0 0 e’ 0 0 z ||st,y,y,21,2€R}.
0 0 0 0 10 ¢
0 0 0 0 0 1 s
(\o 0o 0 0 00 1) J

By and G/T is a compact pseudo-Kihler manifold
which has the Hard Lefschetz property. By [Theorem 6.4 G/f‘ x C/T" has a
holomorphic symplectic structure.

ExamPLE 7.2. Let g be the following Lie algebra:
g =span{4, B, Y, Y», 13, Y4},
where the bracket products are
[4, V1] =11, [4,Y2]=-Y,,
[4,Y3] = Y3, [A,Ys]=—Ya,
[B,Y3] =Y, [B,Ys]=Y,.
Consider the following decomposition:
a = span{A4, B},
b =span{ Y}, Y5, Y3, Y4}.

By ¥1(G) has a holomorphic symplectic structure and a lattice.
Moreover, by [Theorem 6.6, M?* = ¥;(¥1(G))/T has a pseudo-hyperkihler
structure.

Next consider
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t=g®g=span{d4,B,Yy,...,Y4,4A" B, Y],..., Y}
Let {a,B,01,...,04,0',f  @],...,;} be the dual basis corresponding to
{4,B, 11,...,Y4,4", B’ Y{,..., Y/}. Consider the following decomposition:
a =span{4,A4'},
b=span{B,B, Y1,..., Y4, Y{,..., Y }.

By a straightforward computation, we see that b has the following non-degenerate
closed 2-form:

1
we =BAB + Z(—l)k(WZkH A W4k + Wy AWy_o).
k=0
By and [Proposition 6.7, Wi(K)/T'y,x) is a compact symplectic
solvmanifold with no left Wj(K)-invariant pseudo-Kéhler structures with respect
to L

REMARK. It is easy to check that Wi(K)/I'yk) is a total space which
has non-toral symplectic solvmanifolds as fiber and base space. Moreover,
¥1(K)/Ty,x) has a compatible symplectic structure. Indeed, consider the fol-
lowing Lie subalgebras:

ny = span{B, IB, Y], ey Y4,IY1, oo ,IY4},
n, = span{B',1B’, Y/,..., Y, 1Y ... . 1Y}},
t = span{4,14,4',14'}.
n; and t X n; have non-degenerate 2-forms which are closed on Wi(K)/I'y k).
Consider a symplectic fiber bundle 7;: (7 X N;)/(T'7 X I'y,) > T/T'r and a
mapping 7y : (T X N3)/(I'r X T'y,) = T/Tr, where T, N;, N, are simply-
connected Lie groups corresponding to t, n;, n; and I'z, I'y,, ', are its lattices.

Then the induced fiber bundle n;!((7 x N)/(I'r % T'y,)) = ¥1(K)/Twx) is
desired.

8. A Construction of Solvable Lie Group with a Parameterized Lattice

In this section we consider some complexification of a solvable Lie group
G = R"" x,R?" constructed in [Proposition 1, each of which has a parameterized
lattice. ~ : ; S
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Let (~?3,3 be the simply-connected solvable Lie group defined by

ez 0 0 w

-~ -z 0

G 3 = g eO i 2 wi,wa,z€C
0O 0 0 1

Note that (~;3,3 may be described as the semi-direct product C! X, C2?, where

93(z) = (e(: e?z)'

Let Be SL(2,Z) be a unimodular matrix with distinct real eigenvalues, say,
A, 1/4 (it’s not necessary that A is positive). Take #p = Log 4, i.e., e® = A. Then
there exists a matrix P e GL(2,R) such that

A0
_]_
PBP _(0 /1-‘)‘

i] = Z[to,v—ln] = {tok + V—~17Z~hlk,h€Z},

b= {o(*uve ).

and put '3 = L; %, L,. Since

e 0\ (e 0 eVl 0 \
0 e?/ \0 e~ 0 eV-U)

where z = x + v/—1y, T'; is a lattice of 63,3. Similarly, the following solvable Lie
groups have lattices:

Let

( _ 3
é 0 0 Wi
Gs4 = g e(; (1) u: wy, w2,z C 5,
\ 0 0 0 1 )
(/e 0 0 wi )
~ 0 % 0 w
G35 = 4 0 0 1 22 wi,wa,z2€C 5.
0O 0 o0 1
\ /

We define mappings ¢; , : C"*/ — End(C>") by the following;
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1 i " i
91,+(2,x) = ZE (zi + 2)A; + Zi(xj + X;)B;,
i=1 j=1

/ n
1 _
¢2,*(Z, X) = ;5 (zi +Zi)Ai + ]Z_l:ijj,
l n
(037*(2, X) = ZZiAi + ijBja
i=1 j=1

]—_—

i=
! n

04,4(2,X) = ZZiAi + ijBj’
i=1 j=1

J_

/ n
1 -
¢5,*(z7 X) = E (ziAiOdd - EiA?ven) + E :E(xj + xj)Bj,
i=1 =1

/ n
06.4(2,%) = > (A" — 247 + Y x;B;,
i=1 =1

where

m m
dd k k .
AL =E a; Epi_1,2k-1, A,-even=2 a;Ey o i=1,...,1L
=1 k=1

Let ¢,(z,x) = exp(y; ,(z,x)) and we define group structures on C"*' x C*"
by

(21, X1, W1) *; (22,X2, W) = (21 + 22, X1 + X2, W1 + 9;(Z1,X1)W))

for z; € C', x; € C" and w; e C*".

We denote the Lie group (C™*' x C*",%;) by G; = C"* x, C*". We call that
G; is the complexification of G = (R™ x,R>" ) of type i.

We denote by a;, f;, wi the left G-invariant 1-forms on G = R I><¢R2”'
such that

(ai)e = (dti)e’ (ﬁj)e = (dxj)e’ (wk)e = (dyk)e'

We denote /\i{ocl, ce s 0 By Put /\/\j{a)l, oo, W} by /\i’j. Moreover, for
eachn =1,...,6, we denote by & ,, Bj’,’, @,y the left G,,-invariant (1,0)-forms on
G, such that

(&i,ﬂ)e = (dZ,-)e, (Bj,ﬂ)e = (dxj)e’ (d)k,'l)e = (dwk)e'
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If there exists no possibility of confusion, we write a;, B]—, oy for & ,, ﬁm, Dk,
respectively. For simplicity, we put {4y,...,4,4} = {o1,...,0,8;,...,B8,} and
{1y ooy dnp} = {&1,...,B,}-

PROPOSITION 8.1. For each i, the solvable Lie group G; = C**! X, C?" has a
parameterized lattice.

ProoF. We construct a co-compact lattice of Gy;. Let 7 be a complex
number such that Im7 >0 and p;, ¢; (i=1,...,/,j=1,...,n) non-zero purely
imaginary numbers. Let Z[t] = {k + th|k,h e Z}. We put

Ly 4(p) = atoZ[p1] x --- x atyZ[p)],

Ly 5(q) = a™ ' (m — 1)!Z[q1] x --- x a"'(m — 1)!Z[g,),

L) = {PG]} )”‘“"‘ © Z[’]} T {P(l"t":)

where a is the least common multiple for denominators of af, . Then I =
(Ly,4(p) x Ly ) ¥y, Ly(7) is a lattice of G; which has some parameters. Simi-
larly, G; has a lattice which has some parameters. O

ium7 Vm € Z[T]})

REMARKS.

(i) The cases 1 and 2 correspond to the decompositions 1 and 2 respectively.

(i) More generally, if bp = spang{B,...,B,} is a nilpotent Lie algebra over
Q, then we have that C"* Xy, C?" admits a lattice (cf. Raghunathan
[17]; Theorem 2.12 of Chapter II).

(i) We can apply the complexification of type 1 to other solvable Lie
groups. For example,

cos(z+2) cos(z+ 2)

0 wi
—sin(z+2) sin(z+2) 0 w;

1

0

()
Il

0 0 wl,W2,Z€C

0 0

has a lattice.
(iv) The author thinks it’s not trivial that the existence of a lattice of
complexificated solvable Lie group (See Guan [9, Example of Section 4]).
(v) If we assume that z,x,we H, then we have a complex solvmanifold
which admits an almost hypercomplex structure some of which are
integrable.
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9. Holomorphic Symplectic Structure on G

In this section we consider holomorphic symplectic structures and pseudo-
Kihler structures on G;. Let G = R™/ X R?" be a completely solvable Lie group
constructed in [Proposition 1. In this section we always assume that for each &
there exists an i such that a* # 0 and there exists a j such that B; # 0. Moreover,
when we consider ¢s,, ¢ ,, We always assume that for each i the signature of
ak is constant. For simplicity, we always assume that n+/ are even.

By and 2.2, we have the following:

i

LEMMA 9.1. Let G/T be a compact symplectic solvmanifold constructed in
Proposition 1. If G/T has a symplectic structure, then there exists a left G-invariant
symplectic structure w which is an element of /\2’0 + /\0’2.

ProOPOSITION 9.2. If G/T has a symplectic structure, then G;/T; (i=1,2,3,4)
has a holomorphic symplectic structure.

Proor. By [Lemma 9.1, there exists the following symplectic structure:
0= PudrAdn+ > " Qunwx A o,
where Py, Oxn € R. Then
Q= Z Pundic A + z OkhWx A

is a holomorphic symplectic structure on G;/T; for i=1,2,3,4. In the case of
¥y, ., Since

kh
dew- 1———2 afo; A wye- 1—_5_ E b B; A wap-1,

k<h j=1

dwyy = }:a o A Wk — Zzbkhﬁj A W2p,

k<h j=1

we have

ddy— 1———20 Ot,+ot)/\602k 1—-Zzbkh ﬁj-i-ﬂ,)/\wzh b

k<hj—

d vy -——Za &; +oc,)Aw2k——ZZbkh(/3] +ﬁj)/\a)2;,

k<hj
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By considering &; + &; and .3, +,5j as single terms, we see that )  Qu@ox A @y is
closed. The other cases are similar and hence omitted. O

PROPOSITION 9.3.  If G/T has a symplectic structure, then G;/T; (i =1,5) has
a pseudo-Kdhler structure.

Proor. Consider the case of g5 ,. By our assumption and [Lemma 9.1, there
exists the following symplectic structure on G:

® = Pk Adn+ Y Qunie—1 Ao,

where Py, Ows € R. Since

n
k kh
dwy-; = — E aio; Awxy-—1 — E E b;"B; A wan-1,
i

k<h j=1

dwyy = Za o A oy — ZZbk”ﬂj/\wzh,

k<h j=

we have

ddry_1 = ——Za o A D2p— ,——ZZbkh ﬂj+ﬂ)/\w2h 1y

k<h j=1

day, = Za &; A G ——ZZbkh(ﬂj +ﬂj)/\w2;,

k<h Jj=

Similarly to the proof of Proposition 9.2, >~ Quucok—1 A @2 is a closed (1,1)-
form. O

By the same argument in the proof of [Proposition 6.7 we see that
G;/T; (i =3,4,6) has no left Gi-invariant pseudo-Kihler structures. Moreover,
by a straightforward computation, we see that G;/I'; (i = 5,6) has no left G;-
invariant holomorphic symplectic structures.

Table 9.1. Left G;-invariant structure on Gi/T:

type | holomorphic symplectic | pseudo-Kahler

1 yes yes
2 yes no
3 yes no
4 yes no
5 no yes
6 no no
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10. An Application: A Simple Deformation of Holomorphic Symplectic
Manifolds

In this section we consider a simple deformation of compact holomorphic
symplectic solvmanifolds constructed in section 9. Consider the following solvable
Lie group:

G= 63’1 X T(I: ={(Z,P<WI>)
w2

Z, Wi, W GC} X T(I:,

where
e(1/2)(z+2) 0 0 w
- —(1/2)(z+2)
G = 0 ¢ 0w w1, w2, z€C ),
’ 0 0 1 z
0 0 0 1
Té = I xeC bow e Z[vV-1]
c=1\o 1 o 1)/* ‘

G has holomorphic symplectic structures, for example, Q = & AB + @) Add,. Put
B={teC|Imt>0}. Let w: G x B— B be the natural projection. Consider
the group of automorphisms of G x B defined as follows.

w
gkhm,mm;n; : (Z)P( 1>’x’ T)
w2
K, =
—»(z+pk+h,PBh(wl+m”+m>, 7)

Wy +maT+ ny

K, acts properly discontinuously without fix points. Therefore .4, = G x B/ K,
is a complex manifold. Since the projection w: G x B— B commutes with
Gkhmymmany» 1t induces a holomorphic map w of .# on B. By a straightforward
computation, we see w~!(t) = G31/T(p,7) x T&. Thus Gs1/T(p,7) x T¢ and
Gs1/T(p, ') x T¢ are diffeomorphic. Consider the natural projection g : G x
B — G and a left G-invariant holomorphic symplectic structure Q. Since nzQ 1S
Kp-invariant, i.€., g, mmpn, T&2 = 715Q, n5Q induces a form on #), = G x B/K,.

ReMARK. | J, . G31/T(p,7) x T¢ is a differentiable family.

Let (G*", 1) be a solvable Lie group with left G-invariant complex structure /
and Q a left G-invariant holomorphic structure on (G, I). Let I'; be a lattice of G
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which has parameter 7. Consider compact holomorphic symplectic solvmanifolds
(M, = G/T,,I,Q,), where I, Q. are complex structures and holomorphic struc-
tures induced from I and Q respectively. We define a volume form dVol, by
dVol, = QA AQAQ: A--- AQ;. Moreover we define Vol,(M;) = [,, dVol..
Note that Vol,(M;) can be considered as the volume of fundamental region on G.
Then we have the following:

LEMMA 10.1. If there exists a diffeomorphism f..: M, — M, such that
S Qe =, then

Vol,(M;) = Vol. (M) = Vol,(M,).
PrROOF. By our assumption, we have

Vol.(M,) = J

M,

dVol, = J S dVol, = J dVol,
M. M,

T

= J dVol, = Vol,(M,). O
M,

In the above case, since we have aAw; Awz = dt Ady; Adys, we consider
Vol.(M.) as the volume of a fundamental region on RS. Hence if Imzt #
Im 7/, then there exists no diffeomorphisms f;; : (63’1 /f‘(p, 7) X TCI,QT) —
(G31/T(p,7') x TL, Q) such that fQ, = Q..

By applying the above argument to the complexification of type i of a
symplectic solvable Lie group in [Proposition 1, we get families of compact holo-
morphic symplectic non-Kédhler solvmanifolds.

REMARK. We can apply the above argument to the case of pseudo-Kéihler
structures.
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