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ON UNIVERSALITY OF FINITE PRODUCTS OF
POLISH SPACES

By

T. BaNakH, R. Caury, K. TRUSHCHAK, and L. ZDOMSKY{

Abstract. We introduce and study the n-Dimensional Perfect
Homotopy Approximation Property (briefly n-PHAP) equivalent to
the discrete n-cells property in the realm of LC"-spaces. It is shown
that the product X x Y of a space X with n-PHAP and a space Y
with m-PHAP has (n + m + 1)-PHAP. We derive from this that for a
(nowhere locally compact) locally connected Polish space X without
free arcs and for each n >0 the power X"*! contains a closed
topological copy of each at most n-dimensional compact (resp.
Polish) space.

A topological space X is called %-universal, where € is a class of spaces, if
X contains a closed topological copy of each space C e . By #, and #; we
denote the classes of metrizable compacta and Polish (= separable complete-
metrizable) spaces, respectively. For a class € of spaces by €[n] we denote the
subclass of % consisting of all spaces Ce % with dim C <n. All topological
spaces considered in the paper are metrizable and separable, all maps are con-
tinuous.

In terms of the universality, the classical Menger-Nobeling-Pontrjagin-
Lefschetz Theorem states that the cube [0,1]*"*! is .#[n]-universal for every
n=0. It is well known that the exponent 2n+ 1 in this theorem is the best
possible: the Menger universal compactum u, cannot be embedded into [0, 1]2".
Nonetheless, P. Bowers [Bo;] has proved that the (1 + 1)-th power D"+ of any
dendrite D with dense set of end-points does be Mo[n]-universal for every non-
negative integer n. Moreover, any such a dendrite D contains a locally connected
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Gs-subspace G whose (n+ 1)-th power G"'! is .#/[n]-universal for every n, see
[Boi]. Generalizing this Bowers’ result we shall prove that the power X n+l of
any locally connected Polish space X without free arcs is .#,[n]-universal for all
n > 0; moreover the power X"*! is .#[n]-universal provided X is nowhere locally
compact.

The standard way to prove the .#)[n|-universality of a Polish space X with
nice local structure is to verify the discrete n-cells property for X, see [Bo].
We remind that a space X has the discrete n-cells property if for any map
f:N x[0,1]"— X and any open cover % of X there is a map g: N x [0,1]" —
X such that g is #-near to f and the collection {g({i} x [0,1]")},.n is discrete in
X.

Let us recall that two maps f,g: Z — X are called %-near with respect to a
cover % of X (this is denoted by (f,g) < %) if for any point z € Z there is an
element U € % such that {f(z),g(z)} =« U. Two maps f,g: Z — X are called %-
homotopic if they can be linked by a homotopy {h; :Z — X}, such that
hy = f, hy = g and for any z € Z there is U € % with {h,(z) : t€[0,1]} = U. It is
clear that -homotopic maps are %-near while the converse is not true in general.

Unfortunately, the discrete n-cells property is applicable only for spaces
having nice local structure. To overcome this obstacle we introduce a stronger
property, called n-PHAP, which is equivalent to the discrete n-cells property
in the realm of LC"-spaces. We remind that a space X is called an LC"-space,
n >0, if for any point x € X and any neighborhood U < X of x there is a
neighborhood ¥V < X of x such that any map f : 6" — V from the boundary of
the n-dimensional cube I” = [0,1]" can be extended to a map f : I" — U defined
on the whole n-cube I".

All simplicial complexes considered in this paper are countable and locally
finite. We shall identify simplicial complexes with their geometric realizations.

DErFINITION 1. A space X is defined to have the n-dimensional perfect
homotopy approximation property (briefly n-PHAP) if for any map f: K — X
from a simplicial complex K with dim K < »n and any open cover % of X there is
a perfect map ¢g: K — X, %-homotopic to f.

We remind that a map f : X — Y is perfect if f is closed and the preimage
f~Y») of any point ye Y is compact. According to [En, 3.7.18], a map
f: X — Y between metrizable spaces is perfect if and only if f is proper in the
sense that the preimage f~!(K) of any compact subset K = Y is compact.

A map f: X — Y is called simplicially approximable if for any open cover %
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of X there are a simplicial complex K and two maps p: X - Kand ¢: K —> Y
such that the composition g o p is %-homotopic to f. It follows from Corollary
6.6 [BP, p. 80] that each map into an absolute neighborhood retract is simplicially
approximable.

Some basic properties of spaces with n-PHAP are described by the following
theorem which is the main result of this paper.

THEOREM 1. Let n,m be non-negative integers.

(1) If a space X has'n-PHAP, then each open subspace of X has that property
too.

(2) A space X has n-PHAP provided X admits a cover by open subspaces with
n-PHAP.

(3) If a space X has n-PHAP, then X has the discrete n-cells property.

(4) An LC"-space X has n-PHAP if and only if X has the discrete n-cells
property.

(5) If X is a space with n-PHAP and Y is a space with m-PHAP, then their
product X x Y has (n+m+1)-PHAP.

(6) If a Polish space X has n-PHAP, then for any open cover U of X and
any simplicially approximable map f : P — X from a Polish space P with
dim P < n there is a perfect map g: P — X, %U-homotopic to f.

(7) If a Polish space X has n-PHAP, then for any open cover U of X and
any simplicially approximable map f : P — X from a Polish space P with
dim P < n there is a closed embedding g: P — X, U-near to f. ”

(8) If a Polish space X has n-PHAP, then X is M [n]-universal.

Statements 4, 5, and 8 of imply

COROLLARY 1. If X is a Polish LC"-space with the discrete n-cells property,
then for every k >0 the power X**' is .l1[nk + n + k]-universal.

In its turn, the last corollary implies another two corollaries generalizing the
mentioned Bowers’ results on the universality of finite powers of dendrites.

COROLLARY 2. If X is a locally connected Polish nowhere locally compact
space, then for every k >0 the power X**! is . [k]|-universal.

Proor. The Polish space X, being locally connected, is locally path-
connected and hence LC? according to the classical Mazurkiewicz-Moore-Menger
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Theorem, see [Ku]. It is well-known (and easy) that the discrete 0-cells property is
equivalent to the nowhere local compactness. In this situation it is legal to apply
Corollary 1 to conclude that the power X**! is .#[k]-universal for every k > 0.

]

We say that a topological space X has no free arcs if no open subset of X is
homeomorphic to the open interval (0,1).

CoOROLLARY 3. If X is a locally connected Polish space without free arcs, then
for every k >0 the power X**' is M |k)-universal.

PROOF. will follow from as soon as we prove that

each locally connected Polish space X without free arcs contains a locally
connected nowhere locally compact Polish subspace Y.

Replacing X by any of its connected component, we can assume that X is
connected. Then by [Wy, Ch. VIII, §9] the space X admits a compatible metric d
such that any points x, y € X can be linked by an arc whose diameter does not
exceed 2d(x, y). Fix a countable dense subset D = X and for any points x, y € D
fix an arc J(x, y) ¢ X with diam J(x, y) < 2d(x, y). It is easy to see that any

subspace ¥ — X containing the set 4 = () J(x, y) is locally path-connected.

x,yeD
Since the Polish space X has no free arcs, the Baire Theorem implies that the
complement X\A4 is dense in X. Let C = X\A4 be a countable dense set. Then
Y = X\C is a locally connected nowhere locally compact Polish subspace of X.

O

1. Proof of

Our notations are standard. In particular, by A or cly(4) we denote the
closure of a set A in a topological space X; cov(X) stands for the family of
all open covers of a space X. For a cover  of X and a subset 4 — X, let
SHAU) =V{UeU:UNA# P}, StNU) =S U ={L(U,U):Uea)},
and L1"Y(U) = S1(Lt"(U)) for n > 1. Given two families %, 7" of subsets of
a space X we write < v ifany U € % lies in some V€ ¥". Foramap f: Z —
X and a family # of subsets of X we put f~ (%) = {f~'(U): Ueu}.

For a metric space (X,d) and a point xpeX by B(xg,¢)=
{xe X :d(x,x) < ¢} we denote the open ¢-ball centered at xy. Also we put
mesh % = supy .4 diam U for a cover % of X. A homotopy h:Z x [0,1] — X is
called an e-homotopy if diam h({z} x [0,1]) < ¢ for all ze Z.
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For a simplicial complex K, denote by K the n-dimensional skeleton of K
and let 1K) = {Z1(v,K) : ve KO} where #t(v,K) stands for the open star of
a vertex v in K. Several times we shall use the following homotopy extension
property of simplicial pairs (see Corollary 5 of [Spa, p. 112]): If L is a subcomplex
of a simplicial complex K, f: K — X is a continuous map into a space X, and
h:Lx[0,1] = X is a homotopy with h(z,0) = f(z) for all z € L, then there is a
homotopy H : K x [0,1] — X such that H|L x [0,1] = h and H(z,0) = f(z) for all
ze K. If h is a U-homotopy for some open cover U of X, then H can be chosen to
be a WU-homotopy. If diam h({x} x [0,1]) < eo f(x), x € L, for some continuous
map ¢: X — (0,00), then H can be chosen so that diam H({x} x [0,1]) < g0 f(x)
for all x e K.

In the proof of we shall exploit some known facts about proper
maps.

LemMMA 1. For a perfect map f:K — X from a locally compact space K
there is an open cover U of X such that each map g: K — X with (f,g) < ¥ is

perfect.

ProOF. Let X be any metrizable compactification of X. It follows from
[En, 3.7.21] that the image f(K) of the locally compact space K under the perfect
map f: K — X is a closed locally compact subspace of X. Consequently, f(K),
being locally compact, is open in its closure clz(f(K)) in X and hence the
complement F = clz(f(K))\f(K) is closed in X. It follows that X = X\F is a
locally compact space containing X so that the map f: K — X < X still is
perfect. Now it is legal to apply Theorem 4.1 of to find an open cover % of
X such that each map g : K — X with (f, g) < % is perfect. Then the open cover
% ={UNX :Ue U} satisfies our requirements. O

LemMa 2. If f: K — X is a map from a locally compact space K and the
restriction f|L: L — X of f onto a closed subset L = K is perfect, then f|W is
perfect for some closed neighborhood W of L in K.

Proor. Fix any metric d generating the topology of X and write K =
U0 Ki as the countable union of an increasing sequence (Ki);so of compact
subsets such that Ky = & and each K, lies in the interior of K, ;. For each i > 1
and ze K;\K;—; find a neighborhood O(z) = K such that O(z) = K, 1\Ki_,
and f(O(z)) € B(f(z),1/i) ={xe X : d(x, f(z)) < 1/i}. Let W be any closed
neighborhood of L in K with W < _; O(2).
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Let us show that the restriction f|W is perfect. Assuming the converse we
could find a sequence (x;);., = W that has no cluster point in W but (f(x;));5,
converges to some point ¢ in X. Passing to a subsequence, if necessary, we can
assume that x; ¢ K;. For every i > 1 find a point z; € L with x; € O(z;). Taking
into account that x; ¢ K; and O(z) < K; for all ze€ K;_;, we conclude that
z; ¢ Ky for all i > 1. Then d(f(x;), f(z;)) < 1/i for i > 1 and thus the sequence
(f(z:)) converges to a = lim f(x;) which is not possible since f|L is perfect and
the sequence (z;) has no cluster point in L. O

Applying n-PHAP it will be convenient to work with its stronger version.

LEMMA 3. If a space X has n-PHAP, then for any open cover U of X, any
simplicial complex K with dim K < n, any closed subspace F — K, and any map
f: K — X whose restriction f|F:F — X is perfect, there is a perfect map
g: K — X, U-homotopic to f via a U-homotopy h:K x [0,1] —» X such that
h(x,1) = g(x) for all x € K and h(x,t) = f(x) for all (x,t)e K x {0}UF x [0,1].

Proor. By [Lemma 2, the restriction f|W is perfect for some closed
neighborhood W of F in K. By [Lemma 1, there is a cover ¥ € cov(X), ¥ < %,
such that a map g: W — X is perfect, whenever it is ¥ -near to f|W. Using n-
PHAP of X, find a perfect map f : K — X, ¥ -homotopic to f via a homotopy
h:K x[0,1] — X such that i(x,0) = f(x) and h(x,1) = f(x) for all x e K. Fix
any continuous map A:K — [0,1] with A(F) < {0} and A(K\W) c {1} and
consider the homotopy h:K x [0,1] — X defined by h(x,?) = h(x, A(x)t) for
(x,2) € K x [0,1]. It is easy to see that the map g: K — X, g:x— h(x,1), and
the %-homotopy & satisfy the requirements of the lemma. O

The following lemma gives a proof of [Theorem 1(1).

LEMMA 4. If X is a space with n-PHAP, then each open subspace of X has n-
PHAP.

PrOOF. Let U be an open subspace of X, % be an open cover of U and
fo: K — U be a map of a simplicial complex K with dim K < n. We have to
construct a perfect map f, : K — U which is %-homotopic to fy.

Fix any metric p < 1 generating the topology of X. For every n >0 let
K, ={xeK:p(fo(x),X\U) =27"}. It is clear that each set K, is closed in K
and lies in the interior of K,;. Since p < 1, Ko = (J.
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Let (%,),-o be a sequence of open covers of X such that mesh %, < 2-(*+}
and L1, 1 < U, for any n = 0. We can additionally assume that the covers %,
are so fine that {Ft(x,%,) : p(x,X\U) > 27"} <% for every n> 0.

By induction, we shall construct a function sequence {f,: K — X}
satisfying the following conditions for every ne N:

(1n) fu(x) = fu1(x) for any x € Ky U (K\Knt1);

(2,) the map f,|K,: K, — X is perfect;

(3,) the map f, is U,.p-homotopic to f,_; via a %,,,-homotopy

hy: K x [0,1] = X such that h,(x,t) = f(x) for (x,t)e K x {1} and
ha(x,t) = fu_1(x) for all (x,¢) € K x {0} U (K,—1 U(K\Ku41)) % [0, 1].

Assume that for some n € N the function f,_; has been constructed. Using
find a perfect map g: K — X and a %,,-homotopy #: K x [0,1] — X
such that A(x,1) =g(x) for any xe K and h(x,?) = f,-1(x) for any (x,?)e
K x{0}UK,_; x[0,1]. Let A: K — [0,1] be a continuous function such that
A71(0) > K\K,41 and A7!(1) > K,. Finally, consider the function f,:K — X
defined by f,(x) = h(x,A(x)) for xe€ K and the homotopy 4,: K x [0,1] - X
defined by h,(x,t) = h(x, A(x) - t) for (x,¢) € K x [0,1]. The construction of f, and
h, imply that the conditions (1,)—(3,) are satisfied.

The conditions (1,) imply that for each x € K the sequence (f,(x)) eventually
stabilizes and thus the limit map f, =lim,_, f,: K — X is well-defined. Ob-
serve that f,, is homotopic to the map f; via the homotopy 4. : K x [0, 0] — X
defined by Ay (x, 0) = fo(x) for x € K and hy(x,t) = hy(x,t —n+1) for xe K
and ten—1,n, n>1.

Since p(fo(X),X\U) = 27", for x e K,\K,—1, we get

neEwW

1
(1) ho({x} x [0,00]) = () hnsi({x} x [0,1]) = L1(fo(x), Un) = L1(fo(x), ).
This means that A, is a %-homotopy, which yields 4. (K x [0,0]) = U and
fo(K) = U. Also (1) implies that p(fi,(x), fo(x)) < mesh %, < 2"+ for any
X € Kn\Kn—l .

Let us show finally that the map f, : K — U is perfect. Take any com-
pact subset C = U and find » > 0 such that p(C,X\U) > 27". We claim that
f:Y(C) = K,y1. Fix any xe K\K,;; and find a unique number m such that
x € Ky\Kp,_1. It follows that m > n+2 and p(fio(x), fo(x)) < 270D < 2-(n+3),
By the definition of the set K,,_1, we get p(fo(x), X\U) < 2=m1) < 2-(+1) and
thus

p(fo(x),C) = p(C, X\U) — p(fo(x), X\U) > 27" — 2~ (r+1) = p=(n+D),
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Then p(f(x), C) = p(fo(x), C) — p(fu(x), fo(x)) > 2=+ —2-01+3) ~ 0 and thus
fu(x) ¢ C. Therefore f '(C) = K,y1. Since the map foo|Kni1 = fur2|Knr1 is
perfect we conclude that the preimage f2!(C) = ( fOO|K,,+1)"l (C) is compact. This
means that the map f,, : K — U is perfect. O

LemMMA 5. A space X has n-PHAP provided X is a union of two open
subspaces with n-PHAP.

ProoF. Suppose X = Uy U U; where Uy, U; are open subspaces of X having
n-PHAP. Find two open subsets Vy, ¥ = X such that VUV, =X and V,; c U;
for i =0,1.

To show that X has n-PHAP, fix an open cover  of X and a map
f K — X of a simplicial complex K with dim K < n. Pick an open cover ¥~ of
X such that #1¥" < ¥ and cly(Lt(V;,St¥")) < U; for i =0, 1.

Let W; = f~1(V;) and W/ = f~1(U;) for i =0,1. Taking a sufficiently fine
triangulation of K, we can assume that each simplex of K lies in Wy or W;. Then
the union K; of simplexes lying in W; is a subcomplex of K and KoUK, = K.

Since the space W;; — K is triangulable, the n-PHAP of Uy allows us to find a
proper map fy: Wy — Uy which is #"-homotopic to f|W; via a ¥ "-homotopy
ho : Wy x [0,1] — Up such that hg(x,0) = f(x) and ho(x,1) = fo(x) for x e Wj.
Note that fy(Ko) = Lt f(Ko), V) = Lt(Vo, V") < cly(Lt(Vy,?")) = Uy which
implies that the map fy|Ko: Ko — X is perfect.

Let A: K — [0,1] be a continuous map such that 17'(1) > Ky and 17'(0) o
K\W,. Since Wy = W/, we can define a homotopy ho: K x [0,1] — X letting
ho(x, 1) = ho(x, A(x) - £) for (x,1) e W{ x [0,1] and ho(x,t) = f(x) for x ¢ W, and
te0,1]. Let fy(x) = ho(x,1). Since fy|Ko = fo|Ko the map f)|Ko: Ko — X is
perfect.

Observe that fy(K)) = LH(f(K1),?) < F1(V1,#) < Uy and applying
Lemma 3, find a perfect map f;: K; — U; which is ¥ -homotopic to the re-
striction f|K; via a ¥"-homotopy h; : K; x [0,1] — U, such that &(x,1) = fi(x)
and hy(x, 1) = fo(x) for (x,1)e K x {0}U(KoNK;)x[0,1]. Then fi(K))<
L1 fo(K)), V) c LU LK), V), V) ccly LV, S1¥) = Up and hence the
map f1|K; : K} — X is perfect.

Finally, consider the map ¢ : K — X defined by g|Ko = fy|Ko and g|K; = fi.
The map g is perfect because so are its restrictions onto the closed sets Ky, and
K;. It is easy to show that g is ¥ "-homotopic to fo and hence is &t¥"-homotopic
to f. O
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Now we can prove the second item of [Theorem 1. We shall exploit the
classical Michael result on local properties. Following E. Michael we call
a property Z of topological spaces to be local if a space X has 2 if and only if
each point of X has an open neighborhood with the property 2. According to
(see also Proposition 4.1 of [BP, Ch. II]) a property 2 is local if and only if
2P is open-hereditary (open subspaces of a space with the property 2 have that
property), open-additive (a space has the property 2 if it is a union of two open
subspaces with that property), and discrete additive (a space has 2 provided it is
the union of a discrete family of open subspaces with the property 2).

Lemmas 4 and 5 imply that the #»-PHAP is an open-hereditary and open-
additive property. It is trivial to check that the discrete union of spaces with »-
PHAP has n-PHAP. Applying the Michael Theorem, we conclude that n-PHAP is
a local property. In other words the following lemma implying Theorem 1(2) is
true.

LEMMA 6. A space X has n-PHAP provided X admits an open cover by
subspaces with n-PHAP.

The third statement of Theorem 1 follows from
LemMMA 7. If a space X has n-PHAP, then X has the discrete n-cells property.

Proor. This lemma trivially follows from a result of [Cu] asserting that a
space X has the discrete n-cells property if and only if each map f: I" xw — X
can be approximated by a map g sending {/” x {i}},., onto a locally finite
collection in X. O

To reverse the preceding lemma we will need one classical result concerning
LC"-spaces.

LemMa 8 ([Hu, V.5.1]). For any cover U € cov(X) of an LC"-space X there
is a cover ¥~ € cov(X) such that any two ¥ -near maps f,g: K — X from a space
K with dim K < n are U-homotopic.

Now we are able to prove the item 4 of Theorem 1.

LEMMA 9. An LC"-space has n-PHAP if and only if it has the discrete n-cells
property.
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Proor. The “only if” part follows from Lemma 7. The “if” part will be
proven by induction. Fix any finite n» > 0 and assume that has been
proved for all k < n. To show that an LC”"-space X with the discrete n-cells
property has n-PHAP, fix a cover % € cov(X) and a map f : K — X from an n-
dimensional simplicial complex K.

Let %, € cov(X) be an open cover with £, < %. Let K"~! denote the
(n — 1)-dimensional skeleton of K. By the inductive hypothesis, the space X has
(n — 1)-PHAP which allows us to find a perfect map g : K"~1 — X which is %;-
homotopic to f|K®~1). Since the pair (K,K"~V) has the homotopy extension
property, the map g admits a continuous extension §: K — X, %;-homotopic to
f.

By [Cemma 2, the restriction g|## is perfect for some closed neighborhood W
of KV in K. By [Lemma 1, there is a cover %; € cov(X) such that %, < %,
and any map p: W — X, %,-near to §|/W is perfect. By there is a
cover %3 ecov(X) such that any two %3-near maps from a space D with
dim D < n into X are %;-homotopic.

Write the complement K\K"~V) = )._, 0; as the disjoint union of open n-
dimensional simplexes of K and consider the discrete topological sum D =
|J;c; 8 of their closures in K. Denote by i:K\K" ! — D the natural
embedding. There is a natural surjective perfect map n: D — K such that
n(|J,., 06:) = K"V,

Since X has the discrete n-cells property, there is a perfect map g: D — X
such that (¢, o n) < %;. By the choice of the cover %3, there is a %,-homotopy
h:D x [0,1] — X connecting the maps gon and ¢ in the sense that h(x,0) =
gon(x) and h(x,1) = g(x) for xe D. Let A: K — [0, 1] be a continuous map such
that 271(0) is a neighborhood of K("~1) and K\W < 47'(1). Finally, consider the
map p: K — X defined by

~ fg(x) if xe K1),
px) = {h(i(x),l(x)) otherwise.

It is easy to see that the map p is continuous and #%,-homotopic to g. Taking into
account that %, < U,, Lt < %, and g is %,-homotopic to f, we conclude that
the map p i1s %-homotopic to f.

Finally, let us show that the map p is perfect. For this observe that the
restriction p|W, being %,-homotopic to g, is perfect while the restriction
p| K\W, being equal to qoi|K\W is perfect too. O

For the proof of [Theorem 1(5) we shall need
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LemMa 10. Let K be a simplicial complex and J = Ly < Ly < - -- be a tower
of subcomplexes of K such that K =\),_ L; and each L; lies in the interior of
Lii1. Then for any map [ :K — X into a metric space (X,d) with n-PHAP
and any sequence (&;);.,, in (0,1] there exists a map f: K — X and a homotopy
H : K x [0,1] — X satisfying the following conditions:

(a) H(z,0) = f(z), H(z,1) = f(z) for all z€K;

(b) diam H({z} x [0,1]) < & for all ze Ly\Ly_1 and k € w;

(c) f|L is perfect for every k € w.

Proor. Without loss of generality, & < &/2 for all k € w. Put fy = f. By
induction, for every k € N we shall construct a map f; : K — X and a homotopy
Hi : K x [0,1] — X satisfying the following conditions:

(1x) Hi(z,0) = fx-1(z) and Hy(z,1) = fi(z) for all ze K;

(2k) Hk(z, I) = fk—l(z) for all ze Ly_; UK\Lk_H and te [0, 1];

(3x) diam Hy({z} x [0,1]) < &4 for all z € K;

(4) filL" is perfect.

Suppose that functions f; and homotopies H; have been constructed
for i<k. Take any open cover % of X with mesh % < g,,. Using
Cemma 3, find a perfect map g: K® — X, %- homotopic to fx via a homotopy
h: K™ x[0,1] — X such that A(z,1) = g(z) for ze K™ and h(z,t) = fi(z) for
(z,6) e K™ x {0}UL™ x [0,1]. Then M = LyULY" UK\Li;; is a simplicial
subcomplex of K and the homotopy extension property of the simplicial pair
(K,M) allows us to find a %-homotopy Hii1:K x[0,1] > X such that
Hi(z,0) = fil(z) if (z,6) e K x {0} U (Lg UK\ Lgs2) X [0,1] and Hyq(z,1) =
h(z,1) if (z,1) e L, x [0,1]. Letting fir1(z) = Hys1(z, 1) for z e K we finish the
inductive step.

The conditions (1;)—(3;) imply that the limit map f = lims_ fi is well-
defined and continuous. Using the homotopies Hj it is easy to compose a
homotopy H connecting the maps f and f and satisfying the conditions (a)—(c)
of the lemma. 0]

With in disposition we can prove the fifth item of Theorem 1. It
should be mentioned that a particular case of was proven by P.
Bowers in [Bo;, 4.6].

LemMmA 11. If X, is a space with ni-PHAP and X, is a space with ny-PHAP,
then the product X\ x X, has (n; +ny + 1)-PHAP.
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PROOF. Let n=n; +n,+1, K be a simplicial complex with dim K < n,
U ecov(Xy x Xp), and f = (f1,/2) : K — X1 x X» be a map. For every i € {1,2}
fix an admissible metric d; <1 on X;. On the product X; x X; consider the
metric d((x1, x2), (x{,x3)) = max{di(x1,x}),d2(x2,x3)}. Find a continuous map
e: X; x X, — (0, 1] such that {B(x, 6¢(x)) : x € X1 x X»} < %. Replacing K by its
sufficiently fine subdivision, we can assume that for any simplex o of K we have

(1) min{eo f(z) : ze o} > 1 max{eo f(z) : ze o} and

(2) diam f(¢) < min{eo f(z) : z € g}.

For every kew let Fy = (eo f)"'([27%,1]). It follows from (1) that any
simplex of K meeting Fy lies in the interior of Fj.;. Consequently, the simplicial
subcomplex L; of K, composed by simplexes meeting Fy lies in the interior of the
subcomplex Ly,;. Evidently, the subcomplexes Lk, k € w, cover the complex K.

Denote by K; the n;-dimensional skeleton of K and let K, be the full
subcomplex of the barycentric subdivision of K, generated by the barycenters
of simplexes of dimension > n;. Then K, is a subcomplex of dimension
dim K — (n; + 1) < np of the barycentric subdivision of K. Applying
with & =2"®+1 for every ie{1,2} we can find a map f;: K — X; and a
homotopy H/ : K x [0,1] — X; such that the following conditions hold

(3) H!(z,0) = fi(z) and H}(z,1) = fi(z) for z e K;

(4) diam H;({z} x [0,1]) < €0 f(z) for ze K;

(5) fi|lKiNLy is perfect for all k € w.

Observe that for points z,z’ of a simplex ¢ of K, the conditions (1), (2) and

(4) imply

di(f:(2), i(z")) < di(fi(2), fi(2)) + diam fi(0) + di(fi(2"), fi("))
< eo f(z) +diam fi(o) + ¢0 f(z') < 5 min e o fi(a),

which yields diam f;(¢) < 5 min ¢ o f(0).

Each point ze K can be written as z =sz; + (1 —5)z2 with z; € K; and
s €[0,1] and such a representation is unique if z ¢ K; UKj. The set C; (resp. ()
of points z for which s > 1/2 (resp. s < 1/2) is closed in K and K = C; U C;. For
every i€ {1,2} there is a homotopy ®;: K x [0,1] — K such that ®;(z,0) =z,
®;(C; x {1}) =« K; and ®;(6 x [0,1]) c o for each simplex ¢ of K (such a
homotopy ®; can be defined by ®;(z,1) = a;(s, #)z1 + (1 — (s, 2))z for z =521 +
(1 — 5)zz, where a(s, ) = min{1, (1 + #)s} and oy(s, ) = max{0,s+ #(s — 1)}).

For ie{l1,2}, define a homotopy H?:K x[0,1] - X; by H(z1t) =
fio®i(z,t) and let gi(z) = H?(z,1). Let ze K and ¢ be a simplex of K, con-
taining the point z. Since ®;(o x [0,1]) co we get diam H?({z} x [0,1]) <
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diam f,(0) < 5z0 f(z). Since H}(z,1) = f,(z) = H3(z,0), we can glue H} and
H? together and define a homotopy H; linking f; and g, and such that
diam H;({z} x [0,1]) < 60 f(z) for all ze K. Then H = (H;, H,) is a homotopy
between f and g = (g1, 92) such that diam A({z} x [0,1]) < 6e0 f(z) for all z€ K.
The choice of ¢ guarantees that H is a %-homotopy.

Let us show that the map g is perfect. Assuming the converse we would find
a sequence {z,} without limit points in K and such that the sequence {g(z,)}
converges to some point x = (x1,x;) € X. Since C;UC, = K, we can suppose
that {z} = C; for some ie {1,2}. The inclusion @;(c x [0,1]) = o for any
simplex ¢ of K implies that the homotopy ®; is proper and ®;(L; x [0,1]) = L;
for all k. In particular, ®;((C;NL;) x {1}) = K;NL; and since the restriction
filK:NL; is proper, we get that the restriction of gi onto the closed subset
CiN Ly is proper. Then C;N L; contains only finitely many points z, which yields
o f(z) <27% for all sufficiently large » and thus lim,_. ¢o f(z,) = 0. Since
d(f(z),9(z,)) < 6e0 f(z,), we get that the sequence {f(z,)} converges to x and
thus &(x) =lim,_,, €0 f(z,) = 0, which is impossible. O

Let X be a topological space and % € cov(X). We define a subset B = X to
be %-bounded, if B < U# for some finite subcollection &# of %.

LeMMA 12. Let X be a space with n-PHAP and U € cov(X). Then for any
simplicially approximable map f : P — X from a space P with dim P < n and any
open cover ¥~ of P there exists an open cover W of X and a map g: P — X, U-
homotopic to f and such that g='(A) is ¥ -bounded in P for any W -bounded subset
AcX.

PrOOF. Given a cover % ecov(X) let %' ecov(X) be any cover with
Sr2U' < U. Since f is simplicially approximable, there are a simplicial complex
Ko and two maps py : P — Ky and ¢ : Ko — X such that the map goo po is U'-
homotopic to f. Replacing the triangulation of K, by a sufficiently fine sub-
division, if necessary, we can assume that $#(Ko) < g5 (%’).

Let ¥3 <¥  be an open star-finite cover of P, K; be the nerve of ¥}
and p;:P—K; be a canonical map such that p;!(##(K;)) <. Let
K =KoxKi, p=(po,p1):P— K and a=gqooprg, : K— X. Endow K with
a triangulation such that the projections of K onto K, and K| are sim-
plicial maps. Then F#(K) < (prg,)” (#1(Ko)) < o' (%') while p~!(£1(K)) <
PINSHK)) < 7.
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Since dim P < n, there is a continuous function ¢: P — K™ such that for
any x € P the point £(x) belongs to the minimal simplex containing p(x). Then ¢
is #1(K)-homotopic to p and hence a0 ¢ is %’-homotopic to a0 p = go © po. On
the other hand, for every vertex v of K, &1 (£t(v,K)) = p~!(#(v,K)) and thus
EN(PL1(K)) refines ¥

Using the n-PHAP of X, we can find a perfect map n: K" X, u'-
homotopic to a|/K™. Then g = no & is %'-homotopic to a0 and consequently,
& 1*(U")-homotopic to f.

Since 7 is perfect and ##(K) is locally finite, each point x € X has an open
neighborhood O(x) such that n~!(O(x)) is F#(K)-bounded. Then g1 (0(x))
is &71(&#1(K))-bounded and hence ¥ -bounded. Consequently, the cover # =
{O(x) : x € X} has the desired properties. O

Next, we prove the sixth item of Theorem 1.

Lemma 13.  For any simplicially approximable map f : P — X from a Polish
space P with dim P < n into a Polish space X with n-PHAP and any open cover
U € cov(X) there is a perfect map g: P — X, U-homotopic to f.

ProorF. We assume that the Polish spaces P and X are endowed with some
complete metrics generating their topology.

Let £y = f and %_; = %. Using we can construct by induction
two sequences of star-finite open covers (¥7),c,, < cov(P) and (%y),,, < cOV(X)
and a sequence (f,),., of continuous maps from P into X satisfying the fol-
lowing conditions:

(a) lim,_,o, mesh(73) =0;

(b) mesh(%,) < 1/n* for every n € w;

() S Un+1) < Uy for every ne w;

(d) f7Y(B) is ¥»-bounded in P for any %,-bounded subset B < X;

(e) fn» and f,_ are %,_1-homotopic for all n € w.

It follows from (b), (c) and (e) that the limit map g =1lim, .o fo: P> X 1s a
well-defined continuous function, &#(%,)-homotopic to each f,.
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We claim that the map g is proper. Indeed, let C be a compact subset of X.
We have to show that g~!(C) is compact. Since g~!(C) is closed in the complete
metric space P, we may prove the total boundedness of g~!(C). Due to (a), it
suffices to verify that for every new the set g7!(C) is ¥;-bounded. Since
(9, fu) < LH(Uy), we get g~1(C) = f71(FHC, SH(U,))). Taking into account that
the cover %, is star-finite and the set C is compact, we conclude that the set
SHC, S Un)) is Un-bounded. Then (d) implies that £ 1 LHC, Lt(U,))) >
g~1(C) is ¥;-bounded. O

For the proof of two last items of we need to recall some
definitions from [BRZ]. Given two spaces X, Y denote by C(X, Y) the space of
all continuous functions from X to Y, endowed with the limitation topology
whose neighborhood base at an fe C(X,Y) consists of the sets B(f, %) =
{9e C(X,Y):(9,f) <}, where % runs over all open covers of Y, see [Bos]. If
the space Y is Polish, then the space C(X,Y) is Baire, see or [BRZ, 3.2.1].

By a multivalued map &% : Z = Y we understand a function assigning to
each point ze€ Z a (possibly empty) subset #(z) = Y. Such a multivalued map
F :Z =7 is called perfect if for any compact subsets 4 =« Z, B< Y the sets
FA)=,.,F(z) and F ' (B)y={ze Z: F(z)NB # J} are compact.

Following [BRZ, p. 124] we define a map f: X — Y to be F-injective
if [f~1(F(z))|<1forallze Z. Amap f: X — Y is called a (%, F)-map, where
% is an open cover of X, if there is an open cover ¥  of Y such that
[ USPUF (@), )}z < 2.

LEMMA 14. Let U = R® be an open subspace of the countable product of lines
and F : Z = U be a perfect multivalued map. For any Polish space P the set of all
perfect F-injective maps is dense in the function space C(P,U).

Proor. Fix a complete metric on the Polish space P and let (%,),., be a
sequence of open covers of P with mesh %, < 27" for all n e w.

By the set & of closed embeddings is dense G5 in C(P,U). By Lemma
3.2.14 of [BRZ] for every n € w the set #, of (%,, #)-maps is open and dense in
C(P, U). Since the function space C(P, U) is Baire (see [To, 1.1]), the intersection
F=EN(),c, #n is dense in C(P,U). It is clear that each function f e . is
perfect and Z -injective. O

Our final lemma proves the item (7) of and (8) follows from (7)

applied to a constant map.
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LemMA 15.  If a Polish space X has n-PHAP, then for any open cover U of X
and any simplicially approximable map f : P — X from a Polish space P with
dim P < n there is a closed embedding g: P — X, %U-near to f.

PrOOF. Let 7 ecov(X) be any cover with #(¥) <%. The map
f: P — X, being simplicially approximable, is ¥ -homotopic to the composition
pog of maps g: P — K, p: K — X, where K is a simplicial complex. Identify
the Polish space P with a closed subset of s = (—1,1)“, the pseudo-interior of the
Hilbert cube Q = [—1,1]“. Since K is an ANR, the map g admits a continuous
extension g : U — K onto some open neighborhood U of P in s.

According to a result of Dranishnikov (see also [BRZ, 2.3.5]), there is
an map u: N — Q from an n-dimensional compactum N onto @, which is »-
invertible in the sense that for any map «: 4 — Q from a space A4 with
dim A4 < n there is a map f: 4 — N such that « = uo f. It follows that g~ (U) is
a Polish space with dim x~'(U) < dim N < n.

N

U K

Consider the simplicially approximable map pogou:u'(U) — X. By
[Cemma 13, it is ¥ -near to a perfect map n: u~'(U) — X. It is easy to see that
for any te U we get n(u~'(¢)) = Lt(pog(t),¥"). Since the map u|u'(U) is
perfect, we can find an open cover ¥ of U such that z(u ' (Lt(t,#))) =
FLt(poq(t),?") for all te U.

Now consider the multivalued map &% : U= U defined by %(x)=
uonlomopul(x) for xe U and observe that it is perfect (in the sense that for
any compact set C < U the sets #(C) and % !(C) are compact in U). By
there is a perfect Z -injective map « : P — U which is # -near to the
inclusion P = U. By the choice of the map y, there is a map f: P — u~'(U) such
that o« = u o B. The perfectness of the maps « and z implies the perfectness of the
maps f and g =noff: P — X. Moreover, the % -injectivity of the map « implies
the injectivity of the map g. Thus g, being injective and perfect, is a closed
embedding.
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Observe that for each re P we get

9(1) = 7o f(t) e n(u (1)) < n(u (L2(t, W) = Se(po q(1),7"),

which means that the maps g and P oqare ¥ -near. Since f and p o q are ¥ -near

and 1Y < U we get that f and g are % -near. O
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