
TSUKUBA J MATH.
Vol. 28 No. 2 (2004), 455-471

ON UNIVERSALITY OF FINITE PRODUCTS OF
POLISH SPACES

By

T. BANAKH, R. CAUTY, K. TRUSHCHAK, and L. $ZDOMSKY\check{I}$

Abstract. We introduce and study the n-Dimensional Perfect
Homotopy Approximation Property (briefly n-PHAP) equivalent to
the discrete n-cells property in the realm of $LC^{n}$-spaces. It is shown
that the product $X\times Y$ of a space $X$ with n-PHAP and a space $Y$

with m-PHAP has $(n+m+1)$ -PHAP. We derive from this that for a
(nowhere locally compact) locally connected Polish space $X$ without
free arcs and for each $n\geq 0$ the power $X^{n+1}$ contains a closed
topological copy of each at most n-dimensional compact (resp.
Polish) space.

A topological space $X$ is called $\mathscr{C}$-universal, where $\mathscr{C}$ is a class of spaces, if
$X$ contains a closed topological copy of each space $C\in \mathscr{C}$ . By $\mathscr{M}_{0}$ and $\mathscr{M}_{1}$ we
denote the classes of metrizable compacta and Polish ($=separable$ complete-
metrizable) spaces, respectively. For a class $\mathscr{C}$ of spaces by $\mathscr{C}[n]$ we denote the
subclass of $\mathscr{C}$ consisting of all spaces $C\in \mathscr{C}$ with $\dim C\leq n$ . All topological
spaces considered in the paper are metrizable and separable, all maps are con-
tinuous.

In terms of the universality, the classical Menger-Nobeling-Pontrjagin-
Lefschetz Theorem states that the cube $[0,1]^{2n+1}$ is $\mathscr{M}_{0}[n]$ -universal for every
$n\geq 0$ . It is well known that the exponent $2n+1$ in this theorem is the best
possible: the Menger universal compactum $\mu_{n}$ cannot be embedded into $[0,1]^{2n}$ .
Nonetheless, P. Bowers $[Bo_{1}]$ has proved that the $(n+1)$ -th power $D^{n+1}$ of any
dendrite $D$ with dense set of end-points does be $\mathscr{M}_{0}[n]$ -universal for every non-
negative integer $n$ . Moreover, any such a dendrite $D$ contains a locally connected
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$G_{\delta}$ -subspace $G$ whose $(n+1)$ -th power $G^{n+1}$ is $\mathscr{M}_{1}$ [n]-universal for every $n$ , see
$[Bo_{1}]$ . Generalizing this Bowers’ result we shall prove that the power $X^{n+1}$ of
any locally connected Polish space $X$ without free arcs is $\mathscr{M}_{0}[n]$ -universal for all
$n\geq 0$ ; moreover the power $X^{n+1}$ is $\mathscr{M}_{1}$ [n]-universal provided $X$ is nowhere locally
compact.

The standard way to prove the $\mathscr{M}_{1}$ [n]-universality of a Polish space $X$ with
nice local structure is to verify the discrete n-cells property for $X$ , see $[Bo_{1}]$ .
We remind that a space $X$ has the discrete n-cells property if for any map
$f$ : $N\times[0,1]^{n}\rightarrow X$ and any open cover $\mathscr{U}$ of $X$ there is a map $ g:N\times[0,1]^{n}\rightarrow$

$X$ such that $g$ is $\mathscr{U}$-near to $f$ and the collection $\{g(\{i\}\times[0,1]^{n})\}_{i\in N}$ is discrete in
X.

Let us recall that two maps $f,$ $g:Z\rightarrow X$ are called $\mathscr{U}$-near with respect to a
cover $\mathscr{U}$ of $X$ (this is denoted by $(f,$ $g)\prec \mathscr{U}$ ) if for any point $z\in Z$ there is an
element $U\in \mathscr{U}$ such that $\{f(z), g(z)\}\subset U$ . Two maps $f,$ $g:Z\rightarrow X$ are called $\mathscr{U}-$

homotopic if they can be linked by a homotopy $\{h_{t} : Z\rightarrow X\}_{t\in[0,1]}$ such that
$h_{0}=f,$ $h_{1}=g$ and for any $z\in Z$ there is $U\in \mathscr{U}$ with $\{h_{\iota}(z):t\in[0,1]\}\subset U$ . It is
clear that $\mathscr{U}$-homotopic maps are $\mathscr{U}$-near while the converse is not true in general.

Unfortunately, the discrete n-cells property is applicable only for spaces
having nice local structure. To overcome this obstacle we introduce a stronger
property, called n-PHAP, which is equivalent to the discrete n-cells property
in the realm of LC $n$ -spaces. We remind that a space $X$ is called an $LC^{n}$ -space,
$n\geq 0$ , if for any point $x\in X$ and any neighborhood $U\subset X$ of $x$ there is a
neighborhood $V\subset X$ of $x$ such that any map $f$ : $\partial I^{n}\rightarrow V$ from the boundary of
the n-dimensional cube $I^{n}=[0,1]^{n}$ can be extended to a map $\overline{f}:I^{n}\rightarrow U$ defined
on the whole n-cube $I^{n}$ .

All simplicial complexes considered in this paper are countable and locally

finite. We shall identify simplicial complexes with their geometric realizations.

DEFINITION 1. A space $X$ is defined to have the n-dimensional perfect
homotopy approximation property (briefly n-PHAP) if for any map $f:K\rightarrow X$

from a simplicial complex $K$ with $\dim K\leq n$ and any open cover $\mathscr{U}$ of $X$ there is
a perfect map $g:K\rightarrow X,$ $\mathscr{U}$-homotopic to $f$ .

We remind that a map $f$ : $X\rightarrow Y$ is perfect if $f$ is closed and the preimage
$f^{-1}(y)$ of any point $y\in Y$ is compact. According to [En, 3.7.18], a map
$f$ : $X\rightarrow Y$ between metrizable spaces is perfect if and only if $f$ is proper in the
sense that the preimage $f^{-1}(K)$ of any compact subset $K\subset Y$ is compact.

A map $f$ : $X\rightarrow Y$ is called simplicially approximable if for any open cover $\mathscr{U}$
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of $X$ there are a simplicial complex $K$ and two maps $p:X\rightarrow K$ and $q:K\rightarrow Y$

such that the composition $q\circ p$ is $\mathscr{U}$-homotopic to $f$ . It follows from Corollary
6.6 [BP, p. 80] that each map into an absolute neighborhood retract is simplicially
approximable.

Some basic properties of spaces with n-PHAP are described by the following
theorem which is the main result of this paper.

THEOREM 1. Let $n,$ $m$ be non-negative integers.
(1) If a space $X$ has’n-PHAP, then each open subspace of $X$ has that property

too.
(2) A space $X$ has n-PHAP provided $X$ admits a cover by open subspaces with

n-PHAP.
(3) If a space $X$ has n-PHAP, then $X$ has the discrete n-cells property.
(4) An $LC^{n}$ -space $X$ has n-PHAP $lf$ and only if $X$ has the discrete n-cells

property.
(5) If $X$ is a space with n-PHAP and $Y$ is a space with m-PHAP, then their

product $X\times Y$ has $(n+m+1)$ -PHAP.
(6) If a Polish space $X$ has n-PHAP, then for any open cover $\mathscr{U}$ of $X$ and

any simplicially approximable map $f$ : $P\rightarrow X$ from a $Po$lish space $P$ with
$\dim P\leq n$ there is a perfect map $g:P\rightarrow X,$ $\mathscr{U}$-homotopic to $f$ .

(7) If a Polish space $X$ has n-PHAP, then for any open cover $\mathscr{U}$ of $X$ and
any simplicially approximable map $f:P\rightarrow X$ from a Polish space $P$ with
$\dim P\leq n$ there is a closed embedding $g:P\rightarrow X,$ $\mathscr{U}$-near to $f$ .

(8) If a Polish space $X$ has n-PHAP, then $X$ is $\mathscr{M}_{1}$ [n]-universal.

Statements 4, 5, and 8 of Theorem 1 imply

COROLLARY 1. If $X$ is a Polish $LC^{n}$ -space with the discrete n-cells property,
then for every $k\geq 0$ the power $X^{k+1}$ is $\mathscr{M}_{1}[nk+n+k]$ -universal.

In its tum, the last corollary implies another two corollaries generalizing the
mentioned Bowers’ results on the universality of finite powers of dendrites.

COROLLARY 2. If $X$ is a locally connected Polish nowhere locally compact
space, then for every $k\geq 0$ the power $X^{k+1}$ is $\mathscr{M}_{1}[k]$ -universal.

PROOF. The Polish space $X$ , being locally connected, is locally path-
connected and hence $LC^{0}$ according to the classical Mazurkiewicz-Moore-Menger
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Theorem, see [Ku]. It is well-known (and easy) that the discrete O-cells property is
equivalent to the nowhere local compactness. In this situation it is legal to apply
Corollary 1 to conclude that the power $X^{k+1}$ is $\mathscr{M}_{1}[k]$ -universal for every $k\geq 0$ .

$\square $

We say that a topological space $X$ has no free arcs if no open subset of $X$ is
homeomorphic to the open interval $(0,1)$ .

COROLLARY 3. If $X$ is a locally connected Polish space without free arcs, then
for every $k\geq 0$ the power $X^{k+1}$ is $\mathscr{M}_{0}[k]$ -universal.

PROOF. Corollary 3 will follow from Corollary 2 as soon as we prove that
each locally connected Polish space $X$ without free arcs contains a locally
connected nowhere locally compact Polish subspace Y.

Replacing $X$ by any of its connected component, we can assume that $X$ is
connected. Then by [Wy, Ch. VIII, \S 9] the space $X$ admits a compatible metric $d$

such that any points $x,$ $y\in X$ can be linked by an arc whose diameter does not
exceed $2d(x, y)$ . Fix a countable dense subset $D\subset X$ and for any points $x,$ $y\in D$

fix an arc $J(x, y)\subset X$ with diam $J(x, y)\leq 2d(x, y)$ . It is easy to see that any
subspace $Y\subset X$ containing the set $A=\bigcup_{x,y\in D}J(x, y)$ is locally path-connected.
Since the Polish space $X$ has no free arcs, the Baire Theorem implies that the
complement $X\backslash A$ is dense in $X$ . Let $C\subset X\backslash A$ be a countable dense set. Then
$Y=X\backslash C$ is a locally connected nowhere locally compact Polish subspace of $X$ .

$\square $

1. Proof of Theorem 1

Our notations are standard. In particular, by $A^{-}$ or $c1_{X}(A)$ we denote the
closure of a set $A$ in a topological space $X;cov(X)$ stands for the family of
all open covers of a space $X$ . For a cover $\mathscr{U}$ of $X$ and a subset $A\subset X$ , let
$\mathscr{S}t(A, \mathscr{U})=\cup\{U\in \mathscr{U} : U\cap A\neq\otimes\}$ , $\mathscr{S}t^{1}(\mathscr{U})=\mathscr{S}t(\Psi)=\{\mathscr{S}t(U, \mathscr{U}) : U\in \mathscr{U}\}$ ,
and $\mathscr{S}t^{n+1}(\mathscr{U})=\mathscr{S}t(\mathscr{S}t^{n}(\mathscr{U}))$ for $n\geq 1$ . Given two families $\mathscr{U},$

$\gamma$ of subsets of
a space $X$ we write $\mathscr{U}\prec \mathscr{V}$ if any $U\in \mathscr{U}$ lies in some $ V\in\gamma$ . For a map $f$ : $Z\rightarrow$

$X$ and a family $\mathscr{U}$ of subsets of $X$ we put $f^{-1}(\mathscr{U})=\{f^{-1}(U):U\in \mathscr{U}\}$ .
For a metric space $(X, d)$ and a point $x_{0}\in X$ by $B(x_{0}, \epsilon)=$

$\{x\in X:d(x, x_{0})<\epsilon\}$ we denote the open $\epsilon$-ball centered at $x_{0}$ . Also we put
mesh $\mathscr{U}=\sup_{U\in}$ av diam $U$ for a cover $\mathscr{U}$ of $X$ . A homotopy $h:Z\times[0,1]\rightarrow X$ is
called an $\epsilon$-homotopy if diam $ h(\{z\}\times[0,1])<\epsilon$ for all $z\in Z$ .
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For a simplicial complex $K$ , denote by $K^{(n)}$ the n-dimensional skeleton of $K$

and let $\mathscr{S}t(K)=\{\mathscr{S}t(v, K):v\in K^{(0)}\}$ where $\mathscr{S}t(v, K)$ stands for the open star of
a vertex $v$ in $K$ . Several times we shall use the following homotopy extension
property of simplicial pairs (see Corollary 5 of [Spa, p. 112]): If $L$ is a subcomplex
of a simplicial complex $K,$ $f$ : $K\rightarrow X$ is a $con$ tinuous map into a space $X$ , and
$h:L\times[0,1]\rightarrow X$ is a homotopy with $h(z, 0)=f(z)$ for all $z\in L$ , then there is a
homotopy $H:K\times[0,1]\rightarrow X$ such that $H|L\times[0,1]=h$ and $H(z, O)=f(z)$ for all
$z\in K$ . If $h$ is a $\mathscr{U}$-homotopy for some open cover $\mathscr{U}$ of $X$ , then $H$ can be chosen to
be a $\mathscr{U}$-homotopy. If diam $h(\{x\}\times[0,1])<\epsilon\circ f(x),$ $x\in L$ , for some continuous
map $\epsilon$ : $X\rightarrow(O, \infty)$ , then $H$ can be chosen so that diam $H(\{x\}\times[0,1])<\epsilon\circ f(x)$

for all $x\in K$ .
In the proof of Theorem 1 we shall exploit some known facts about proper

maps.

LEMMA 1. For a perfect map $f$ : $K\rightarrow X$ from a locally compact space $K$

there is an open cover $\mathscr{U}$ of $X$ such that each map $g:K\rightarrow X$ with $(f, g)\prec \mathscr{U}$ is
perfect.

PROOF. Let $\overline{X}$ be any metrizable compactification of $X$ . It follows from
[En, 3.7.21] that the image $f(K)$ of the locally compact space $K$ under the perfect
map $f$ : $K\rightarrow X$ is a closed locally compact subspace of $X$ . Consequently, $f(K)$ ,
being locally compact, is open in its closure $c1_{\overline{X}}(f(K))$ in $\overline{X}$ and hence the
complement $F=c1_{\overline{X}}(f(K))\backslash f(K)$ is closed in $\overline{X}$ . It follows that $\tilde{X}=\overline{X}\backslash F$ is a
locally compact space containing $X$ so that the map $f$ : $K\rightarrow X\subset\tilde{X}$ still is
perfect. Now it is legal to apply Theorem 4.1 of [Ch] to find an open cover $\tilde{\mathscr{U}}$ of
$\tilde{X}$ such that each map $g:K\rightarrow\tilde{X}$ with $(f, g)\prec\tilde{\mathscr{U}}$ is perfect. Then the open cover
$\mathscr{U}=\{U\cap X:U\in\tilde{U}\}$ satisfies our requirements. $\square $

LEMMA 2. If $f$ : $K\rightarrow X$ is a map from a locally compact space $K$ and the
restriction $f|L:L\rightarrow X$ of $f$ onto a closed subset $L\subset K$ is perfect, then $f|\overline{W}$ is
perfect for some closed neighborhood $\overline{W}$ of $L$ in $K$ .

PROOF. Fix any metric $d$ generating the topology of $X$ and write $K=$

$\bigcup_{l\geq 0}K_{j}$ as the countable union of an increasing sequence $(K_{j})_{i\geq 0}$ of compact
subsets such that $ K_{0}=\emptyset$ and each $K_{n}$ lies in the interior of $K_{n+1}$ . For each $i\geq 1$

and $z\in K_{j}\backslash K_{i-1}$ find a neighborhood $O(z)\subset K$ such that $O(z)\subset K_{i+1}\backslash K_{i-1}$

and $f(O(z))\subset B(f(z), 1/i)=\{x\in X:d(x, f(z))<1/i\}$ . Let $\overline{W}$ be any closed
neighborhood of $L$ in $K$ with $\overline{W}\subset\bigcup_{z\in L}O(z)$ .
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Let us show that the restriction $f|\overline{W}$ is perfect. Assuming the converse we
could find a sequence $(x_{j})_{i\geq 1}\subset\overline{W}$ that has no cluster point in $\overline{W}$ but $(f(x_{j}))_{i\geq 1}$

converges to some point $a$ in $X$ . Passing to a subsequence, if necessary, we can
assume that $x_{j}\not\in K_{j}$ . For every $i\geq 1$ find a point $z_{j}\in L$ with $x_{l}\in O(z_{i})$ . Taking
into account that $x_{j}\not\in K_{i}$ and $O(z)\subset K_{j}$ for all $z\in K_{i-1}$ , we conclude that
$z_{j}\not\in K_{i-1}$ for all $l\geq 1$ . Then $d(f(x_{j}),f(z_{j}))<1/i$ for $i\geq 1$ and thus the sequence
$(f(z_{j}))$ converges to $a=\lim f(x_{j})$ which is not possible since $f|L$ is perfect and
the sequence $(z_{j})$ has no cluster point in L. $\square $

Applying n-PHAP it will be convenient to work with its stronger version.

LEMMA 3. If a space $X$ has n-PHAP, then for any open cover $\mathscr{U}$ of $X$ , any
simplicial complex $K$ with $\dim K\leq n$ , any closed subspace $F\subset K$ , and any map
$f$ : $K\rightarrow X$ whose restriction $f|F:F\rightarrow X$ is perfect, there is a perfect map
$g:K\rightarrow X,$ $\mathscr{U}$-homotopic to $f$ via a $\mathscr{U}$-homotopy $h:K\times[0,1]\rightarrow X$ such that
$h(x, 1)=g(x)$ for all $x\in K$ and $h(x, t)=f(x)$ for all $(x, t)\in K\times\{0\}\cup F\times[0,1]$ .

PROOF. By Lemma 2, the restriction $f|\overline{W}$ is perfect for some closed
neighborhood $\overline{W}$ of $F$ in $K$ . By Lemma 1, there is a cover $\gamma\in cov(X),$ $\gamma\prec \mathscr{U}$ ,
such that a map $g:\overline{W}\rightarrow X$ is perfect, whenever it is $\gamma$-near to $f|\overline{W}$ . Using n-
PHAP of $X$ , find a perfect map $\tilde{f}$ : $K\rightarrow X,$ $\gamma\nearrow$-homotopic to $f$ via a homotopy
$\tilde{h}$ : $K\times[0,1]\rightarrow X$ such that $\tilde{h}(x, 0)=f(x)$ and $\tilde{h}(x, 1)=f(x)$ for all $x\in K$ . Fix
any continuous map $\lambda$ : $K\rightarrow[0,1]$ with $\lambda(F)\subset\{0\}$ and $\lambda(K\backslash W)\subset\{1\}$ and
consider the homotopy $h:K\times[0,1]\rightarrow X$ defined by $h(x, t)=\tilde{h}(x, \lambda(x)\iota)$ for
$(x, t)\in K\times[0,1]$ . It is easy to see that the map $g:K\rightarrow X,$ $g:x\vdash\rightarrow h(x, 1)$ , and
the $\mathscr{U}$-homotopy $h$ satisfy the requirements of the lemma. $\square $

The following lemma gives a proof of Theorem 1(1).

LEMMA 4. If $X$ is a space with n-PHAP, then each open subspace of $X$ has n-
PHAP.

PROOF. Let $U$ be an open subspace of $X,$ $\mathscr{U}$ be an open cover of $U$ and
$f_{0}$ : $K\rightarrow U$ be a map of a simplicial complex $K$ with $\dim K\leq n$ . We have to
constmct a perfect map $f_{\infty}$ : $K\rightarrow U$ which is $\mathscr{U}$-homotopic to $f_{0}$ .

Fix any metric $\rho<1$ generating the topology of $X$ . For every $n\geq 0$ let
$K_{n}=\{x\in K:\rho(f_{0}(x), X\backslash U)\geq 2^{-n}\}$ . It is clear that each set $K_{n}$ is closed in $K$

and lies in the interior of $K_{n+1}$ . Since $p<1,$ $ K_{0}=\emptyset$ .
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Let $(\mathscr{U}_{n})_{n\geq 0}$ be a sequence of open covers of $X$ such that mesh $\mathscr{U}_{n}<2^{-(n+1)}$

and $\mathscr{S}t\mathscr{U}_{n+1}\prec \mathscr{U}_{n}$ for any $n\geq 0$ . We can additionally assume that the covers $\mathscr{U}_{n}$

are so fine that $\{\mathscr{S}t(x, \mathscr{U}_{n}):\rho(x, X\backslash U)\geq 2^{-n}\}\prec \mathscr{U}$ for every $n\geq 0$ .
By induction, we shall construct a function sequence $\{f_{n} : K\rightarrow X\}_{n\in\omega}$

satisfying the following conditions for every $n\in N$ :
$(1_{n})f_{n}(x)=f_{n-1}(x)$ for any $x\in K_{n-1}\cup(K\backslash K_{n+1})$ ;
$(2_{n})$ the map $f_{n}|K_{n}$ : $K_{n}\rightarrow X$ is perfect;
$(3_{n})$ the map $f_{n}$ is $\mathscr{U}_{n+2}$ -homotopic to $f_{n-1}$ via a $\mathscr{U}_{n+2}$ -homotopy

$h_{n}$ : $K\times[0,1]\lrcorner X$ such that $h_{n}(x, t)=f_{n}(x)$ for $(x, t)\in K\times\{1\}$ and
$h_{n}(x, t)=f_{n-1}(x)$ for all $(x, t)\in K\times\{0\}\cup(K_{n-1}\cup(K\backslash K_{n+1}))\times[0,1]$ .

Assume that for some $n\in N$ the function $f_{n-1}$ has been constructed. Using
Lemma 3 find a perfect map $g:K\rightarrow X$ and a $\mathscr{U}_{n+2}$ -homotopy $h:K\times[0,1]\rightarrow X$

such that $h(x, 1)=g(x)$ for any $x\in K$ and $h(x, t)=f_{n-1}(x)$ for any $(x, t)\in$

$K\times\{0\}\cup K_{n-1}\times[0,1]$ . Let $\lambda$ : $K\rightarrow[0,1]$ be a continuous function such that
$\lambda^{-1}(0)\supset K\backslash K_{n+1}$ and $\lambda^{-1}(1)\supset K_{n}$ . Finally, consider the function $f_{n}$ : $K\rightarrow X$

defined by $f_{n}(x)=h(x, \lambda(x))$ for $x\in K$ and the homotopy $h_{n}$ : $K\times[0,1]\rightarrow X$

defined by $h_{n}(x, t)=h(x, \lambda(x)\cdot t)$ for $(x, t)\in K\times[0,1]$ . The construction of $f_{n}$ and
$h_{n}$ imply that the conditions $(1_{n})-(3_{n})$ are satisfied.

The conditions $(1_{n})$ imply that for each $x\in K$ the sequence $(f_{n}(x))$ eventually
stabilizes and thus the limit map $f_{\infty}=\lim_{n\rightarrow\infty}f_{n}$ : $K\rightarrow X$ is well-defined. Ob-
serve that $f_{\infty}$ is homotopic to the map $f_{0}$ via the homotopy $h_{\infty}$ : $K\times[0, \infty]\rightarrow X$

defined by $h_{\infty}(x, \infty)=f_{\infty}(x)$ for $x\in K$ and $h_{\infty}(x, t)=h_{n}(x, t-n+1)$ for $x\in K$

and $t\in[n-1, n],$ $n\geq 1$ .
Since $\rho(f_{0}(X), X\backslash U)\geq 2^{-n}$ , for $x\in K_{n}\backslash K_{n-1}$ , we get

(1) $h_{\infty}(\{x\}\times[0, \infty])=\bigcup_{i=-1}^{1}h_{n+i}(\{x\}\times[0,1])\subset \mathscr{S}t(f_{0}(x), \mathscr{U}_{n})\subset \mathscr{S}t(f_{0}(x), \mathscr{U})$ .

This means that $h_{\infty}$ is a $\mathscr{U}$-homotopy, which yields $h_{\infty}(K\times[0, \infty])\subset U$ and
$f_{\infty}(K)\subset U$ . Also (1) implies that $\rho(f_{\infty}(x),f_{0}(x))\leq mesh\mathscr{U}_{n}<2^{-(n+1)}$ for any
$x\in K_{n}\backslash K_{n-1}$ .

Let us show finally that the map $f_{\infty}$ : $K\rightarrow U$ is perfect. Take any com-
pact subset $C\subset U$ and find $n\geq 0$ such that $\rho(C, X\backslash U)>2^{-n}$ . We claim that
$f_{\infty}^{-1}(C)\subset K_{n+1}$ . Fix any $x\in K\backslash K_{n+1}$ and find a unique number $m$ such that
$x\in K_{m}\backslash K_{m-1}$ . It follows that $m\geq n+2$ and $p(f_{\infty}(x),f_{0}(x))<2^{-(m+1)}\leq 2^{-(n+3)}$ .
By the definition of the set $K_{m-1}$ , we get $p(f_{0}(x), X\backslash U)<2^{-(m-1)}\leq 2^{-(n+1)}$ and
thus

$\rho(f_{0}(x), C)\geq\rho(C, X\backslash U)-\rho(f_{0}(x), X\backslash U)>2^{-n}-2^{-(n+1)}=2^{-(n+1)}$ .
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Then $\rho(f_{\infty}(x), C)\geq p(f_{0}(x), C)-\rho(f_{\infty}(x),f_{0}(x))>2^{-(n+1)}-2^{-(n+3)}>0$ and thus
$f_{\infty}(x)\not\in C$ . Therefore $f_{\infty}^{-1}(C)\subset K_{n+1}$ . Since the map $f_{\infty}|K_{n+1}=f_{n+2}|K_{n+1}$ is
perfect we conclude that the preimage $f_{\infty}^{-1}(C)=(f_{\infty}|K_{n+1})^{-1}(C)$ is compact. This
means that the map $f_{\infty}$ : $K\rightarrow U$ is perfect. $\square $

LEMMA 5. A space $X$ has n-PHAP provided $X$ is a union of two open
subspaces with n-PHAP.

PROOF. Suppose $X=U_{0}\cup U_{1}$ where $U_{0},$ $U_{1}$ are open subspaces of $X$ having
n-PHAP. Find two open subsets $V_{0},$ $V_{1}\subset X$ such that $V_{0}\cup V_{1}=X$ and $\overline{V_{i}}\subset U_{j}$

for $j=0,1$ .
To show that $X$ has n-PHAP, fix an open cover $\mathscr{U}$ of $X$ and a map

$f$ : $K\rightarrow X$ of a simplicial complex $K$ with $\dim K\leq n$ . Pick an open cover $\gamma$ of
$X$ such that $\mathscr{S}\iota\gamma\prec \mathscr{U}$ and $c1_{X}(\mathscr{S}t(\overline{V_{i}}, \mathscr{S}t\mathscr{V}))\subset U_{i}$ for $i=0,1$ .

Let $W_{j}=f^{-1}(V_{j})$ and $W_{j}^{\prime}=f^{-1}(U_{i})$ for $i=0,1$ . Taking a sufficiently fine
triangulation of $K$ , we can assume that each simplex of $K$ lies in $W_{0}$ or $W_{1}$ . Then
the union $K_{j}$ of simplexes lying in $W_{i}$ is a subcomplex of $K$ and $K_{0}\cup K_{1}=K$ .

Since the space $W_{0}^{\prime}\subset K$ is triangulable, the n-PHAP of $U_{0}$ allows us to find a
proper map $f_{0}$ : $W_{0}^{\prime}\rightarrow U_{0}$ which is $\gamma$-homotopic to $f|W_{0}^{\prime}$ via a $\gamma$-homotopy
$h_{0}$ : $W_{0}^{\prime}\times[0,1]\rightarrow U_{0}$ such that $h_{0}(x, 0)=f(x)$ and $h_{0}(x, 1)=f_{0}(x)$ for $x\in W_{0}^{\prime}$ .
Note that $f_{0}(K_{0})\subset \mathscr{S}t(f(K_{0}), \mathscr{V})\subset \mathscr{S}t(\overline{V}_{0}, \mathscr{V})\subset c1_{X}(\mathscr{S}\iota(\overline{V}_{0}, \mathscr{V}))\subset U_{0}$ which
implies that the map $f_{0}|K_{0}$ : $K_{0}\rightarrow X$ is perfect.

Let $\lambda$ : $K\rightarrow[0,1]$ be a continuous map such that $\lambda^{-1}(1)\supset K_{0}$ and $\lambda^{-1}(0)\supset$

$K\backslash W_{0}$ . Since $\overline{W}_{0}\subset W_{0}^{\prime}$ , we can define a homotopy $\tilde{h}_{0}$ : $K\times[0,1]\rightarrow X$ letting
$\tilde{h}_{0}(x, t)=h_{0}(x, \lambda(x)\cdot\iota)$ for $(x, t)\in W_{0}^{\prime}\times[0,1]$ and $\tilde{h}_{0}(x, t)=f(x)$ for $x\not\in W_{0}$ and
$\iota\in[0,1]$ . Let $\tilde{f_{0}}(x)=\tilde{h}_{0}(x, 1)$ . Since $\tilde{f_{0}}|K_{0}=f_{0}|K_{0}$ the map $\tilde{f_{0}}|K_{0}$ : $K_{0}\rightarrow X$ is
perfect.

Observe that $\tilde{f_{0}}(K_{1})\subset \mathscr{S}t(f(K_{1}), \gamma)\subset \mathscr{S}\iota(\overline{V}_{1}, \mathscr{V})\subset U_{1}$ and applying
Lemma 3, find a perfect map $f_{1}$ : $K_{1}\rightarrow U_{1}$ which is $\gamma$-homotopic to the re-
striction $\tilde{f_{0}}|K_{1}$ via a $\gamma$-homotopy $h_{1}$ : $K_{1}\times[0,1]\rightarrow U_{1}S^{\prime}uch$ that $h_{1}(x, 1)=f_{1}(x)$

and $h_{1}(x, t)=\tilde{f_{0}}(x)$ for $(x, t)\in K_{1}\times\{0\}\cup(K_{0}\cap K_{1})\times[0,1]$ . Then $ f_{1}(K_{1})\subset$

$\mathscr{S}t(\tilde{f_{0}}(K_{1}), \mathscr{V})\subset \mathscr{S}t(\mathscr{S}t(f(K_{1}), \mathscr{V}),$ $\gamma$ ) $\subset c1_{X}\mathscr{S}t(\overline{V}_{1}, \mathscr{S}t\gamma)\subset U_{1}$ and hence the
map $f_{1}|K_{1}$ : $K_{1}\rightarrow X$ is perfect.

Finally, consider the map $g:K\rightarrow X$ defined by $g|K_{0}=\tilde{f_{0}}|K_{0}$ and $g|K_{1}=f_{1}$ .
The map $g$ is perfect because so are its restrictions onto the closed sets $K_{0}$ and
$K_{1}$ . It is easy to show that $g$ is $\gamma$-homotopic to $\tilde{f_{0}}$ and hence is $\mathscr{S}t\gamma$-homotopic
to $f$ . $\square $
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Now we can prove the second item of Theorem 1. We shall exploit the
classical Michael result [Mi] on local properties. Following E. Michael we call
a property $\mathscr{P}$ of topological spaces to be local if a space $X$ has $\mathscr{P}$ if and only if
each point of $X$ has an open neighborhood with the property $\mathscr{P}$ . According to
[Mi] (see also Proposition 4.1 of [BP, Ch. II]) a property $\mathscr{P}$ is local if and only if
$\mathscr{P}$ is open-hereditary (open subspaces of a space with the property $\mathscr{P}$ have that
property), open-additive (a space has the property $\mathscr{P}$ if it is a union of two open
subspaces with that property), and discrete additive (a space has $\mathscr{P}$ provided it is
the union of a discrete family of open subspaces with the property $\mathscr{P}$).

Lemmas 4 and 5 imply that the n-PHAP is an open-hereditary and open-
additive property. It is trivial to check that the discrete union of spaces with n-
PHAP has n-PHAP. Applying the Michael Theorem, we conclude that n-PHAP is
a local property. In other words the following lemma implying Theorem 1(2) is
true.

LEMMA 6. A space $X$ has n-PHAP provided $X$ admits an open cover by
subspaces with n-PHAP.

The third statement of Theorem 1 follows from

LEMMA 7. If a space $X$ has n-PHAP, then $X$ has the discrete n-cells property.

PROOF. This lemma trivially follows from a result of [Cu] asserting that a
space $X$ has the discrete n-cells property if and only if each map $f$ : $I^{n}\times\omega\rightarrow X$

can be approximated by a map $g$ sending $\{I^{n}\times\{i\}\}_{l\in\omega}$ onto a locally finite
collection in $X$ . $\square $

To reverse the preceding lemma we will need one classical result conceming
$LC^{n}$ -spaces.

LEMMA 8 ([Hu, V.5.1]). For any cover $\mathscr{U}\in cov(X)$ of an LC’-space $X$ there
is a cover $\mathscr{V}\in cov(X)$ such that any two $\mathscr{V}$-near maps $f,$ $g:K\rightarrow X$ from a space
$K$ with $\dim K\leq n$ are $\mathscr{U}$-homotopic.

Now we are able to prove the item 4 of Theorem 1.

LEMMA 9. An $LC^{n}$ -space has n-PHAP if and only if it has the discrete n-cells
property.
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PROOF. The “only if” part follows from Lemma 7. The “if” part will be
proven by induction. Fix any finite $n\geq 0$ and assume that Lemma 9 has been
proved for all $k<n$ . To show that an $LC^{n}$ -space $X$ with the discrete n-cells
property has n-PHAP, fix a cover $\mathscr{U}\in cov(X)$ and a map $f:K\rightarrow X$ from an n-
dimensional simplicial complex $K$ .

Let $\mathscr{U}_{1}\in cov(X)$ be an open cover with $\mathscr{S}t\mathscr{U}_{1}\prec \mathscr{U}$ . Let $K^{(n-1)}$ denote the
$(n-1)$ -dimensional skeleton of $K$ . By the inductive hypothesis, the space $X$ has
$(n-1)$ -PHAP which allows us to find a perfect map $g:K^{(n-1)}\rightarrow X$ which is $\mathscr{U}_{1^{-}}$

homotopic to $f|K^{(n-1)}$ . Since the pair $(K, K^{(n-1)})$ has the homotopy extension
property, the map $g$ admits a continuous extension $\overline{g}:K\rightarrow X,$ $\mathscr{U}_{1}$ -homotopic to
$f$ .

By Lemma 2, the restriction $\overline{g}|\overline{W}$ is perfect for some closed neighborhood $\overline{W}$

of $K^{(n-1)}$ in $K$ . By Lemma 1, there is a cover $\mathscr{U}_{2}\in cov(X)$ such that $\mathscr{U}_{2}\prec \mathscr{U}_{1}$

and any map $p:\overline{W}\rightarrow X,$ $\mathscr{U}_{2}$ -near to $\overline{g}|\overline{W}$ is perfect. By Lemma 8 there is a
cover $\mathscr{U}_{3}\in cov(X)$ such that any two $\mathscr{U}_{3}$ -near maps from a space $D$ with
$\dim D\leq n$ into $X$ are $\mathscr{U}_{2}$ -homotopic.

Write the complement $K\backslash K^{(n-1)}=\bigcup_{i\in I}\sigma_{j}$ as the disjoint union of open n-
dimensional simplexes of $K$ and consider the discrete topological sum $D=$

$u_{i\in I}\overline{\sigma}_{j}$ of their closures in $K$ . Denote by $i:K\backslash K^{(n-1)}\rightarrow D$ the natural
embedding. There is a natural surjective perfect map $\pi$ : $D\rightarrow K$ such that
$\pi(\bigcup_{i\in I}\partial\overline{\sigma}_{i})=K^{(n-1)}$ .

Since $X$ has the discrete n-cells property, there is a perfect map $q:D\rightarrow X$

such that $(q,\overline{g}0\pi)\prec \mathscr{U}_{3}$ . By the choice of the cover $\mathscr{U}_{3}$ , there is a $\mathscr{U}_{2}$ -homotopy
$h:D\times[0,1]\rightarrow X$ connecting the maps $\overline{g}\circ\pi$ and $q$ in the sense that $h(x, 0)=$

$\overline{g}\circ\pi(x)$ and $h(x, 1)=q(x)$ for $x\in D$ . Let $\lambda$ : $K\rightarrow[0,1]$ be a continuous map such
that $\lambda^{-1}(0)$ is a neighborhood of $K^{(n-1)}$ and $K\backslash W\subset\lambda^{-1}(1)$ . Finally, consider the
map $p:K\rightarrow X$ defined by

$p(x)=\left\{\begin{array}{l}g(x) ifx\in K^{(n-l)},\\h(i(x),\lambda(x)) otherwise.\end{array}\right.$

It is easy to see that the map $p$ is continuous and $\mathscr{U}_{2}$ -homotopic to $\overline{g}$ . Taking into
account that $\mathscr{U}_{2}\prec \mathscr{U}_{1},$ $\mathscr{S}\iota \mathscr{U}_{1}\prec \mathscr{U}$ , and $\overline{g}$ is $\mathscr{U}_{1}$ -homotopic to $f$ , we conclude that
the map $p$ is $\mathscr{U}$-homotopic to $f$ .

Finally, let us show that the map $p$ is perfect. For this observe that the
restriction $p|\overline{W}$ , being $\mathscr{U}_{2}$ -homotopic to $\overline{g}$ , is perfect while the restriction
$p|K\backslash W$ , being equal to $qoi|K\backslash W$ is perfect too. $\square $

For the proof of Theorem 1(5) we shall need
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LEMMA 10. Let $K$ be a simplicial comp $lex$ and $\emptyset=L_{0}\subset L_{1}\subset\cdots$ be a tower

of subcomplexes of $K$ such that $K=\bigcup_{i\in\omega}L_{i}$ and each $L_{i}$ lies in the interior of
$L_{i+1}$ . Then for any map $f:K\rightarrow X$ into a metric space (X, $d$ ) with n-PHAP
and any sequence $(\epsilon_{j})_{i\in\omega}$ in $(0,1$ ] there exists a map $f:K\rightarrow X$ and a homotopy
$H:K\times[0,1]\rightarrow X$ satisfying the following conditions:

(a) $H(z, O)=f(z),$ $H(z, 1)=f(z)$ for all $z\in K$ ;
(b) diam $H(\{z\}\times[0,1])<\epsilon_{k}$ for all $z\in L_{k}\backslash L_{k-1}$ and $ k\in\omega$ ;
(c) $f|L_{k}^{(n)}$ is perfect for every $ k\in\omega$ .

PROOF. Without loss of generality, $\epsilon_{k+1}<\epsilon_{k}/2$ for all $ k\in\omega$ . Put $f_{0}=f$ . By
induction, for every $k\in N$ we shall construct a map $f_{k}$ : $K\rightarrow X$ and a homotopy
$H_{k}$ : $K\times[0,1]\rightarrow X$ satisfying the following conditions:

$(1_{k})H_{k}(z, 0)=f_{k-1}(z)$ and $H_{k}(z, 1)=f_{k}(z)$ for all $z\in K$ ;
$(2_{k})H_{k}(z, t)=f_{k-1}(z)$ for all $z\in L_{k-1}\cup\overline{K\backslash L_{k+1}}$ and $t\in[0,1]$ ;
$(3_{k})$ diam $H_{k}(\{z\}\times[0,1])<\epsilon_{k+1}$ for all $z\in K$ ;
$(4_{k})f_{k}|L_{k}^{(n)}$ is perfect.
Suppose that functions $f_{i}$ and homotopies $H_{j}$ have been constructed

for $i\leq k$ . Take any open cover $\mathscr{U}$ of $X$ with mesh $\mathscr{U}<\epsilon_{k+2}$ . Using
Lemma 3, find a perfect map $g:K^{(n)}\rightarrow X,$ $\mathscr{U}$-homotopic to $f_{k}$ via a homotopy
$h:K^{(n)}\times[0,1]\rightarrow X$ such that $h(z, 1)=g(z)$ for $z\in K^{(n)}$ and $h(z, t)=f_{k}(z)$ for
$(z, t)\in K^{(n)}\times\{0\}\cup L_{k}^{(n)}\times[0,1]$ . Then $M=L_{k}\cup L_{k+1}^{(n)}\cup\overline{K\backslash L_{k+2}}$ is a simplicial
subcomplex of $K$ and the homotopy extension property of the simplicial pair
$(K, M)$ allows us to find a $\mathscr{U}$-homotopy $H_{k+1}$ : $K\times[0,1]\rightarrow X$ such that
$H_{k+1}(z, t)=f_{k}(z)$ if $(z, t)\in K\times\{0\}\cup(L_{k}\cup\overline{K\backslash L_{k+2}})\times[0,1]$ and $H_{k+1}(z, t)=$

$h(z, t)$ if $(z, t)\in L_{k+1}^{(n)}\times[0,1]$ . Letting $f_{k+1}(z)=H_{k+1}(z, 1)$ for $z\in K$ we finish the
inductive step.

The conditions $(1_{k})-(3_{k})$ imply that the limit map $f=\lim_{k\rightarrow\infty}f_{k}$ is well-
defined and continuous. Using the homotopies $H_{k}$ it is easy to compose a
homotopy $H$ connecting the maps $f$ and $f$ and satisfying the conditions $(a)-(c)$

of the lemma. $\square $

With Lemma 10 in disposition we can prove the fifth item of Theorem 1. It
should be mentioned that a particular case of Lemma 11 was proven by P.
Bowers in $[Bo_{2},4.6]$ .

LEMMA 11. If $X_{1}$ is a space with $n_{1}$ -PHAP and $X_{2}$ is a space with $n_{2}$ -PHAP,
then the product $X_{1}\times X_{2}$ has $(n_{1}+n_{2}+1)$ -PHAP.
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PROOF. Let $n=n_{1}+n_{2}+1,$ $K$ be a simplicial complex with $\dim K\leq n$ ,
$\mathscr{U}\in cov(X_{1}\times X_{2})$ , and $f=(f_{1},f_{2}):K\rightarrow X_{1}\times X_{2}$ be a map. For every $j\in\{1,2\}$

fix an admissible metric $d_{j}<1$ on $X_{j}$ . On the product $X_{1}\times X_{2}$ consider the
metric $d((x_{1}, x_{2}),$ $(x_{1}^{\prime}, x_{2}^{\prime}))=\max\{d_{1}(x_{1}, x_{1}^{\prime}), d_{2}(x_{2}, x_{2}^{\prime})\}$ . Find a continuous map
$\epsilon$ : $X_{1}\times X_{2}\rightarrow(0,1$ ] such that $\{B(x, 6\epsilon(x)) : x\in X_{1}\times X_{2}\}\prec \mathscr{U}$ . Replacing $K$ by its
sufficiently fine subdivision, we can assume that for any simplex $\sigma$ of $K$ we have

(1) $\min\{\epsilon\circ f(z) : z\in\sigma\}>\frac{1}{2}\max\{\epsilon\circ f(z) : z\in\sigma\}$ and
(2) diam $f(\sigma)<\min\{\epsilon\circ f(z):z\in\sigma\}$ .
For every $ k\in\omega$ let $F_{k}=(\epsilon\circ f)^{-1}([2^{-k}, 1])$ . It follows from (1) that any

simplex of $K$ meeting $F_{k}$ lies in the interior of $F_{k+1}$ . Consequently, the simplicial
subcomplex $L_{k}$ of $K$ , composed by simplexes meeting $F_{k}$ lies in the interior of the
subcomplex $L_{k+1}$ . Evidently, the subcomplexes $L_{k},$ $ k\in\omega$ , cover the complex $K$ .

Denote by $K_{1}$ the $n_{1}$ -dimensional skeleton of $K$ and let $K_{2}$ be the full
subcomplex of the barycentric subdivision of $K$ , generated by the barycenters
of simplexes of dimension $>n_{1}$ . Then $K_{2}$ is a subcomplex of dimension
$\dim K-(n_{1}+1)\leq n_{2}$ of the barycentric subdivision of $K$ . Applying Lemma 10
with $\epsilon_{k}=2^{-(k+1)}$ , for every $i\in\{1,2\}$ we can find a map $\overline{f_{i}}:K\rightarrow X_{j}$ and a
homotopy $H_{j}^{1}$ : $K\times[0,1]\rightarrow X_{j}$ such that the following conditions hold

(3) $H_{j}^{1}(z, 0)=f_{i}(z)$ and $H_{j}^{1}(z, 1)=\overline{f_{i}}(z)$ for $z\in K$ ;
(4) diam $H_{i}(\{z\}\times[0,1])<\epsilon\circ f(z)$ for $z\in K$ ;
(5) $\overline{f_{i}}|K_{i}\cap L_{k}$ is perfect for all $ k\in\omega$ .
Observe that for points $z,$ $z$

‘ of a simplex $\sigma$ of $K$ , the conditions (1), (2) and
(4) imply

$d_{j}(\overline{f_{i}}(z),\overline{f_{i}}(z^{\prime}))\leq d_{j}(\overline{f_{i}}(z),f_{i}(z))+diamf_{i}(\sigma)+d_{i}(f_{i}(z^{\prime}),\overline{f_{i}}(z^{\prime}))$

$<\epsilon\circ f(z)+diamf_{i}(\sigma)+\epsilon\circ f(z^{\prime})<5\min\epsilon\circ f_{i}(\sigma)$ ,

which yields diam $\overline{f_{i}}(\sigma)<5\min\epsilon\circ f(\sigma)$ .
Each point $z\in K$ can be written as $z=sz_{1}+(1-s)z_{2}$ with $z_{i}\in K_{j}$ and

$s\in[0,1]$ and such a representation is unique if $z\not\in K_{1}\cup K_{2}$ . The set $C_{1}$ (resp. $C_{2}$ )

of points $z$ for which $s\geq 1/2$ (resp. $s\leq 1/2$) is closed in $\prime K$ and $K=C_{1}\cup C_{2}$ . For
every $i\in\{1,2\}$ there is a homotopy $\Phi_{i}$ : $K\times[0,1]\rightarrow K$ such that $\Phi_{j}(z, 0)=z$ ,
$\Phi_{i}(C_{j}\times\{1\})\subset K_{i}$ and $\Phi_{j}(\sigma\times[0,1])\subset\sigma$ for each simplex $\sigma$ of $K$ (such a
homotopy $\Phi_{j}$ can be defined by $\Phi_{i}(z, t)=\alpha_{j}(s, t)z_{1}+(1-\alpha_{j}(s, t))z_{2}$ for $z=sz_{1}+$

$(1-s)z_{2}$ , where $\alpha_{1}(s, t)=\min\{1, (1+t)s\}$ and $\alpha_{2}(s, t)=\max\{0,s+t(s-1)\})$ .
For $i\in\{1,2\}$ , define a homotopy $H_{i}^{2}$ : $K\times[0,1]\rightarrow X_{i}$ by $H_{j}^{2}(z, t)=$

$\overline{f}_{i}\circ\Phi_{i}(z, t)$ and let $g_{i}(z)=H_{j}^{2}(z, 1)$ . Let $z\in K$ and $\sigma$ be a simplex of $K$ , con-
taining the point $z$ . Since $\Phi_{l}(\sigma\times[0,1])\subset\sigma$ we get diam $ H_{j}^{2}(\{z\}\times[0,1])\leq$
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diam $\overline{f}_{j}(\sigma)<5\epsilon\circ f(z)$ . Since $H_{j}^{1}(z, 1)=f_{i}(z)=H_{i}^{2}(z, 0)$ , we can glue $H_{i}^{1}$ and
$H_{i}^{2}$ together and define a homotopy $H_{j}$ linking $f_{i}$ and $g_{j}$ and such that
diam $H_{j}(\{z\}\times[0,1])<6\epsilon\circ f(z)$ for all $z\in K$ . Then $H=(H_{1}, H_{2})$ is a homotopy
between $f$ and $g=(g_{1}, g_{2})$ such that diam $h(\{z\}\times[0,1])<6\epsilon\circ f(z)$ for all $z\in K$ .
The choice of $\epsilon$ guarantees that $H$ is a $\mathscr{U}$ -homotopy.

Let us show that the map $g$ is perfect. Assuming the converse we would find
a sequence $\{z_{r}\}$ without limit points in $K$ and such that the sequence $\{g(z_{r})\}$

converges to some point $x=(x_{1}, x_{2})\in X$ . Since $C_{1}\cup C_{2}=K$ , we can suppose
that $\{z_{r}\}\subset C_{j}$ for some $i\in\{1,2\}$ . The inclusion $\Phi_{j}(\sigma\times[0,1])\subset\sigma$ for any
simplex $\sigma$ of $K$ implies that the homotopy $\Phi_{j}$ is proper and $\Phi_{j}(L_{k}\times[0,1])\subset L_{k}$

for all $k$ . In particular, $\Phi_{j}((C_{j}\cap L_{k})\times\{1\})\subset K_{i}\cap L_{k}$ and since the restriction
$\overline{f}_{i}|K_{j}\cap L_{k}$ is proper, we get that the restriction of $g_{j}$ onto the closed subset
$C_{j}\cap L_{k}$ is proper. Then $C_{j}\cap L_{k}$ contains only finitely many points $z_{r}$ which yields
$\epsilon\circ f(z_{r})<2^{-k}$ for all sufficiently large $r$ and thus $\lim_{r\rightarrow\infty}\epsilon\circ f(z_{r})=0$ . Since
$d(f(z_{r}), g(z_{r}))<6\epsilon\circ f(z_{r})$ , we get that the sequence $\{f(z_{r})\}$ converges to $x$ and
thus $\epsilon(x)=\lim_{r\rightarrow\infty}\epsilon\circ f(z_{r})=0$ , which is impossible. $\square $

Let $X$ be a topological space and $\mathscr{U}\in cov(X)$ . We define a subset $B\subset X$ to
be $\mathscr{U}$-bounded, if $B\subset\cup \mathscr{F}$ for some finite subcollection $\mathscr{F}$ of $\mathscr{U}$ .

LEMMA 12. Let $X$ be a space with n-PHAP and $\mathscr{U}\in cov(X)$ . Then for any
simplicially approximable map $f$ : $P\rightarrow X$ from a space $P$ with $\dim P\leq n$ and any
open cover $\gamma$ of $P$ there exists an open cover $\mathscr{W}$ of $X$ and a map $g:P\rightarrow X,$ $\mathscr{U}-$

homotopic to $f$ and such that $g^{-1}(A)$ is $\gamma$-bounded in $P$ for any $\mathscr{W}$-bounded subset
$A\subset X$ .

PROOF. Given a cover $\mathscr{U}\in cov(X)$ let $\mathscr{U}^{\prime}\in cov(X)$ be any cover with
$\mathscr{S}t^{2}\mathscr{U}^{\prime}\prec \mathscr{U}$ . Since $f$ is simplicially approximable, there are a simplicial complex
$K_{0}$ and two maps $p0:P\rightarrow K_{0}$ and $q0:K_{0}\rightarrow X$ such that the map $q0\circ p0$ is $\mathscr{U}^{\prime}-$

homotopic to $f$ . Replacing the triangulation of $K_{0}$ by a sufficiently fine sub-
division, if necessary, we can assume that $\mathscr{S}t(K_{0})\prec q_{0}^{-1}(\mathscr{U}^{\prime})$ .

Let $\mathscr{V}_{1}\prec \mathscr{V}$ be an open star-finite cover of $P,$ $K_{1}$ be the nerve of $\gamma_{1}$

and $p1^{;P}\rightarrow K_{1}$ be a canonical map such that $ p_{1}^{-1}(\mathscr{S}t(K_{1}))\prec\gamma$ . Let
$K=K_{0}\times K_{1},$ $p=(p0, p1)$ : $P\rightarrow K$ and $\alpha=q0\circ pr_{K_{0}}$ : $K\rightarrow X$ . Endow $K$ with
a triangulation such that the projections of $K$ onto $K_{0}$ and $K_{1}$ are sim-
plicial maps. Then $\mathscr{S}t(K)\prec(pr_{K_{0}})^{-1}(\mathscr{S}t(K_{0}))\prec\alpha^{-1}(\mathscr{U}^{\prime})$ while $ p^{-1}(\mathscr{S}r(K))\prec$

$p_{1}^{-1}(\mathscr{S}t(K_{1}))\prec \mathscr{V}$ .
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$K_{0}$

Since $\dim P\leq n$ , there is a continuous function $\xi$ : $P\rightarrow K^{(n)}$ such that for
any $x\in P$ the point $\xi(x)$ belongs to the minimal simplex containing $p(x)$ . Then $\xi$

is $\mathscr{S}t(K)$ -homotopic to $p$ and hence $\alpha\circ\xi$ is $\mathscr{U}^{\prime}$ -homotopic to $\alpha\circ p=q0\circ p0$ . On
the other hand, for every vertex $v$ of $K,$ $\xi^{-1}(\mathscr{S}t(v, K))\subset p^{-1}(\mathscr{S}t(v, K))$ and thus
$\xi^{-1}(\mathscr{S}t(K))$ refines $\gamma$ .

Using the n-PHAP of $X$ , we can find a perfect map $\pi$ : $K^{(n)}\rightarrow X,$ $\mathscr{U}^{\prime}-$

homotopic to $\alpha|K^{(n)}$ . Then $ g=\pi 0\xi$ is $\mathscr{U}^{\prime}$ -homotopic to $\alpha\circ\xi$ and consequently,
$\mathscr{S}t^{2}(\mathscr{U}^{\prime})$ -homotopic to $f$ .

Since $\pi$ is perfect and $\mathscr{S}t(K)$ is locally finite, each point $x\in X$ has an open
neighborhood $o(x)$ such that $\pi^{-1}(O(x))$ is $\mathscr{S}t(K)$ -bounded. Then $g^{-1}(O(x))$

is $\xi^{-1}(\mathscr{S}t(K))$ -bounded and hence $\gamma$-bounded. Consequently, the cover $\mathscr{W}=$

$\{O(x):x\in X\}$ has the desired properties. $\square $

Next, we prove the sixth item of Theorem 1.

LEMMA 13. For any simplicially approximable map $f$ : $P\rightarrow X$ from a Polish
space $P$ with $\dim P\leq n$ into a Polish space $X$ with n-PHAP and any open cover
$\mathscr{U}\in cov(X)$ there is a perfect map $g:P\rightarrow X,$ $\mathscr{U}$-homotopic to $f$ .

PROOF. We assume that the Polish spaces $P$ and $X$ are endowed with some
complete metrics generating their topology.

Let $f_{-1}=f$ and $\mathscr{U}_{-1}=\mathscr{U}$ . Using Lemma 12 we can constmct by induction
two sequences of star-finite open covers $(\gamma_{n})_{n\in\omega}\subset cov(P)$ and $(\mathscr{U}_{n})_{n\in\omega}\subset cov(X)$

and a sequence $(f_{n})_{n\in\omega}$ of continuous maps from $P$ into $X$ satisfying the fol-

lowing conditions:
(a) $\lim_{n\rightarrow\infty}mesh(\gamma_{n})=0$ ;
(b) mesh $(\mathscr{U}_{n})<1/n^{2}$ for every $ n\in\omega$ ;
(c) $\mathscr{S}t(\mathscr{U}_{n+1})\prec \mathscr{U}_{n}$ for every $ n\in\omega$ ;

(d) $f_{n}^{-1}(B)$ is $\mathscr{V}_{n}$ -bounded in $P$ for any $\mathscr{U}_{n}$ -bounded subset $B\subset X$ ;

(e) $f_{n}$ and $f_{n-1}$ are $\mathscr{U}_{n-1}$ -homotopic for all $ n\in\omega$ .
It follows from (b), (c) and (e) that the limit map $g=\lim_{n\rightarrow\infty}f_{n}$ : $P\rightarrow X$ is a
well-defined continuous function, $\mathscr{S}t(\mathscr{U}_{n})$ -homotopic to each $f_{n}$ .
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We claim that the map $g$ is proper. Indeed, let $C$ be a compact subset of $X$ .
We have to show that $g^{-1}(C)$ is compact. Since $g^{-1}(C)$ is closed in the complete
metric space $P$ , we may prove the total boundedness of $g^{-1}(C)$ . Due to (a), it
suffices to verify that for every $ n\in\omega$ the set $g^{-1}(C)$ is $\mathscr{V}_{n}$ -bounded. Since
$(g,f_{n})\prec \mathscr{S}t(\mathscr{U}_{n})$ , we get $g^{-1}(C)\subset f_{n}^{-1}(\mathscr{S}t(C, \mathscr{S}t(\mathscr{U}_{n})))$ . Taking into account that
the cover $\mathscr{U}_{n}$ is star-finite and the set $C$ is compact, we conclude that the set
$\mathscr{S}t(C, \mathscr{S}t(\mathscr{U}_{n}))$ is $\mathscr{U}_{n}$ -bounded. Then (d) implies that $ f_{n}^{-1}(\mathscr{S}t(C, \mathscr{S}t(\mathscr{U}_{n})))\supset$

$g^{-1}(C)$ is $\gamma_{n}$ -bounded. $\square $

For the proof of two last items of Theorem 1 we need to recall some
definitions from [BRZ]. Given two spaces $X,$ $Y$ denote by $C(X, Y)$ the space of
all continuous functions from $X$ to $Y$ , endowed with the limitation topology
whose neighborhood base at an $f\in C(X, Y)$ consists of the sets $B(f, \mathscr{U})=$

$\{g\in C(X, Y):(g, f)\prec \mathscr{U}\}$ , where $\mathscr{U}$ runs over all open covers of $Y$ , see $[Bo_{3}]$ . If
the space $Y$ is Polish, then the space $C(X, Y)$ is Baire, see [To] or [BRZ, 3.2.1].

By a multivalued map $\mathscr{F}$ : $Z\Rightarrow Y$ we understand a function assigning to
each point $z\in Z$ a (possibly empty) subset $\mathscr{F}(z)\subset Y$ . Such a multivalued map
$\mathscr{F}$ : $Z\Rightarrow Y$ is called perfect if for any compact subsets $A\subset Z,$ $B\subset Y$ the sets
$\mathscr{F}(A)=\bigcup_{z\in A}\mathscr{F}(z)$ and $\mathscr{F}^{-1}(B)=\{z\in Z:\mathscr{F}(z)\cap B\neq\otimes\}$ are compact.

Following [BRZ, p. 124] we define a map $f:X\rightarrow Y$ to be $\mathscr{F}$-injective
if $|f^{-1}(\mathscr{F}(z))|\leq 1$ for all $z\in Z$ . A map $f:X\rightarrow Y$ is called a $(\mathscr{U}, \mathscr{F})$ -map, where
$\mathscr{U}$ is an open cover of $X$ , if there is an open cover $\gamma$ of $Y$ such that
$\{f^{-1}(\mathscr{S}t(\mathscr{F}(z), \gamma))\}_{z\in Z}\prec \mathscr{U}$ .

LEMMA 14. Let $U\subset R^{\omega}$ be an open subspace of the countable product of lines
and $\mathscr{F}$ : $Z\Rightarrow U$ be a perfect multivalued map. For any Polish space $P$ the set of all
perfect $\mathscr{F}$-injeclive maps is dense in the function space $C(P, U)$ .

PROOF. Fix a complete metric on the Polish space $P$ and let $(\mathscr{U}_{n})_{n\in\omega}$ be a
sequence of open covers of $P$ with mesh $\mathscr{U}_{n}<2^{-n}$ for all $ n\in\omega$ .

By [To] the set $\mathscr{E}$ of closed embeddings is dense $G_{\delta}$ in $C(P, U)$ . By Lemma
3.2.14 of [BRZ] for every $ n\in\omega$ the set $\mathscr{H}_{n}$ of $(\mathscr{U}_{n}, \mathscr{F})$ -maps is open and dense in
$C(P, U)$ . Since the function space $C(P, U)$ is Baire (see [To, 1.1]), the intersection
$J=\mathscr{E}\cap\bigcap_{n\in\omega}\mathscr{H}_{n}$ is dense in $C(P, U)$ . It is clear that each function $f\in J$ is
perfect and $\mathscr{F}$-injective. $\square $

Our final lemma proves the item (7) of Theorem 1 and (8) follows from (7)
applied to a constant map.
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LEMMA 15. If a Polish space $X$ has n-PHAP, then for any open cover $\mathscr{U}$ of $X$

and any simplicially approximable map $f:P\rightarrow X$ from a Polish space $P$ with
$\dim P\leq n$ there is a closed embedding $g:P\rightarrow X,$ $\mathscr{U}$ -near to $f$ .

PROOF. Let $\mathscr{V}\in cov(X)$ be any cover with $\mathscr{S}t(\gamma)\prec \mathscr{U}$ . The map
$f:P\rightarrow X$ , being simplicially approximable, is $\mathscr{V}$-homotopic to the composition
$p\circ q$ of maps $q:P\rightarrow K,$ $p$ : $K\rightarrow X$ , where $K$ is a simplicial complex. Identify
the Polish space $P$ with a closed subset of $s=(-1,1)^{\omega}$ , the pseudo-interior of the
Hilbert cube $Q=[-1,1]^{\omega}$ . Since $K$ is an ANR, the map $q$ admits a continuous
extension $\overline{q}:U\rightarrow K$ onto some open neighborhood $U$ of $P$ in $s$ .

According to a result of Dranishnikov [Dr] (see also [BRZ, 2.3.5]), there is
an map $\mu$ : $N\rightarrow Q$ from an n-dimensional compactum $N$ onto $Q$ , which is n-
invertible in the sense that for any map $\alpha$ : $A\rightarrow Q$ from a space $A$ with
$\dim A\leq n$ there is a map $\beta:A\rightarrow N$ such that $\alpha=\mu\circ\beta$ . It follows that $\mu^{-1}(U)$ is
a Polish space with $\dim\mu^{-1}(U)\leq\dim N\leq n$ .

Consider the simplicially approximable map $ p\circ\overline{q}\circ\mu$ : $\mu^{-1}(U)\rightarrow X$ . By
Lemma 13, it is $\mathscr{V}$-near to a perfect map $\pi$ : $\mu^{-1}(U)\rightarrow X$ . It is easy to see that
for any $t\in U$ we get $\pi(\mu^{-1}(t))\subset \mathscr{S}\iota(po\overline{q}(\iota), \mathscr{V})$ . Since the map $\mu|\mu^{-1}(U)$ is
perfect, we can find an open cover $\mathscr{W}$ of $U$ such that $\pi(\mu^{-1}(\mathscr{S}t(t, \mathscr{W})))\subset$

$\mathscr{S}t(p\circ\overline{q}(t), \mathscr{V})$ for all $t\in U$ .
Now consider the multivalued map $\mathscr{F}$ : $U\Rightarrow U$ defined by $\mathscr{F}(x)=$

$\mu 0\pi^{-1}\circ\pi\circ\mu^{-1}(x)$ for $x\in U$ and observe that it is perfect (in the sense that for
any compact set $C\subset U$ the sets $\mathscr{F}(C)$ and $\mathscr{F}^{-1}(C)$ are compact in $U$). By
Lemma 14, there is a perfect $\mathscr{F}$-injective map $\alpha$ : $P\rightarrow U$ which is $\mathscr{W}$-near to the
inclusion $P\subset U$ . By the choice of the map $\mu$ , there is a map $\beta:P\rightarrow\mu^{-1}(U)$ such
that $\alpha=\mu\circ\beta$ . The perfectness of the maps $\alpha$ and $\pi$ implies the perfectness of the
maps $\beta$ and $g=\pi\circ\beta:P\rightarrow X$ . Moreover, the $\mathscr{F}$-injectivity of the map $\alpha$ implies
the injectivity of the map $g$ . Thus $g$ , being injective and perfect, is a closed
embedding.
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Observe that for each $t\in P$ we get

$g(r)=\pi\circ\beta(\iota)\in\pi(\mu^{-1}(\alpha(t)))\subset\pi(\mu^{-1}(\mathscr{S}t(t, \mathscr{W})))\subset \mathscr{S}t(p\circ q(t), \mathscr{V})$ ,

which means that the maps $g$ and $p\circ q$ are $\mathscr{V}$-near. Since $f$ and $p\circ q$ are $\mathscr{V}$-near
and $\mathscr{S}t\mathscr{V}\prec \mathscr{U}$ we get that $f$ and $g$ are $\mathscr{U}$-near. $\square $
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