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ON ALMOST PARA-COSYMPLECTIC MANIFOLDS

By

Piotr Dacko

Abstract. An almost para-cosymplectic manifold is by definition
an odd-dimensional differentiable manifold endowed with an almost
paracontact structure with hyperbolic metric for which the structure
forms are closed. The local structure of an almost para-cosymplectic
manifold is described. We also treat some special subclasses of this
class of manifolds: para-cosymplectic, weakly para-cosymplectic and
almost para-cosymplectic with para-Kéhlerian leaves. Necessary and
sufficient conditions for an almost para-cosymplectic manifold to be
para-cosymplectic are found. Necessary and sufficient conditions for
an almost para-cosymplectic manifold with para-Kihlerian leaves to
be weakly para-cosymplectic are also established. We construct
examples of weakly para-cosymplectic manifolds, which are not para-
cosymplectic. It is proved that in dimensions > 5 an almost para-
cosymplectic manifold cannot be of non-zero constant sectional
curvature. Main curvature identities which are fulfilled by any almost
para-cosymplectic manifold are found.

1. Preliminaries

Let M be a (2n+ 1)-dimensional differentiable manifold. Suppose that
(¢,¢,7,9) is an almost paracontact hyperbolic metric structure on M. This means
that (¢,¢,7,g) is a quadruple consisting of a (1, 1)-tensor field @, a vector field &,
a l-form # and a pseudo-Riemannian metric g on M satisfying the following
relations

X=X -n(X)E &) =1, g(pX,pY)=—g(X,Y)+nX)n(Y).
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In the above and in the sequel, X, Y,... denote arbitrary smooth vector fields on
M if it is not otherwise stated. As consequences of the above, we additionally
have

ot =0, n(eX)=0, n(X)=g(X,%), g(pX,Y)=—g(pY,X).

Thus, ®(X,Y) = g(pX, Y) is a 2-form on M, which will be said the fundamental
form of the structure.

With the above terminology we follow [8]. In the papers [14], [3], [4], [1] the
authors called such structures almost para-coHermitian.

The manifold M endowed with the almost paracontact hyperbolic metric
structure will be called

(a) para-cosymplectic if the forms # and ® are parallel with respect to the
Levi-Civita connection V of the metric g, that is, V4 =0 and V® = 0;

(b) almost para-cosymplectic if the forms # and @ are closed, that is, dn =0
and d® = 0.

The above notions of (almost) para-cosymplectic manifolds are paracontact—
with a hyperbolic metric—analogue of (almost) cosymplectic manifolds (for
almost cosymplectic manifolds see [2], [9].

Our definition of the para-cosymplecticity differs from that used in the paper
[8], in which this notion concerns even-dimensional indefinite almost Hermitian or
almost para-Hermitian manifolds with coclosed fundamental forms.

For an almost para-cosymplectic manifold, define the (1,1)-tensor field 4 by

AX = -Vyx{.

PROPOSITION 1. For an almost para-cosymplectic manifold, we have
Fn=0, L0=0, g(4X,Y)=g(AY,X), AL=0,
nod =0, (Zg)(X,Y)=-29(4X,Y), Vep=0,
Ap+9A =0, g(pAX,Y)=g(pAY ,X), Tr(pA)=Tr(4)=0,

where & indicates the operator of the Lie differentiation.

PROOF. By dn =0, d® =0, iz(n) =1 and ie®(X) = g(¢, X) = 0, we have
Fn=dign+izdnp=0, F®=di:®~+i:dP=0.
Moreover, by (Vxn)(Y) =g(Vx&,Y) = —g(4X,Y),
0=2dn(X,Y)=—g(4X,Y)+g(4Y,X),
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that is, 4 is a symmetric operator. Consequently,

(Z9)(X,Y) =g(Vx&, Y) 4+ g(Vyé, X) = —29(4X, Y),

and the last line of equations implies A = —V:£ =0 and #no 4 = 0.
For .%:, we have the decomposition % = V¢ + 4, here 4 indicates the unique
extension of the (1, 1)-tensor field 4 to a derivation of the tensor algebra (see e.g.

[10], p. 30).
From one hand, since £:® =0, it holds

0= (L)X, Y) = (V:0)(X,Y) — O(4X,Y) — B(X, 4Y)
=9((Vep)X, Y) — g((dp + pA) X, Y).
Thus, we have V:p = Ap + ¢A.
On the other hand, since A¢ =0, applying V: to ¢?X =X —n(X)&, we
obtain
o(Vep) X + (Vep)pX = (AL, X)E +n(X)AS = 0.
We note that 4 = g(pA) = (Agp)p, by A£ =0 and no A =0. Hence
0 = o(p(Vew) + (Vep)9)
= p(p(Ap + 9A) + (A + 9A)p) = 29(4 + 9Ap) = 2(pA4 + Ap).

Consequently V:¢ = 0. Since ¢ is skew-symmetric and 4 symmetric, then ¢4 is
traceless. Note that the trace of 4 = p(pA) also vanishes, because p4 + Ap =0
implies the symmetry of ¢A. J

2. The Local Structure

In this section, we establish a local equivalence between almost para-
cosymplectic structures and certain special families of almost para-Kéhlerian
structures.

By an almost para-Kihlerian manifold it is meant a 2n-dimensional dif-
ferentiable manifold M endowed with a pair (J,§), where J is an almost para-
complex structure (J>=17I), § is a pseudo-Riemannian metric such that
G(JX,JY) = —gG(X,Y) and the fundamental form Q(X, Y) = G(JX, Y) is closed.
An almost para-Kihlerian manifold with integrable almost para-complex
structure J (equivalently, VJ = 0) is said to be para-Kéhlerian. For almost para-
Kihlerian structures, we refer the survey articles [5], [6]-
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Let (J,,§,), te (a,b), a<b, be a l-parameter family of almost para-
Kihlerian structures on a 2n-dimensional manifold M such that Q, = Q for any
t € (a,b), Q being a fixed closed 2-form on M. This family enables us to define an
almost para-cosymplectic structure on the product M = (a,b) x M. In fact, it is
sufficient to assume that ¢, &,7,g are given on M by

1) bop = G0y g=de@di+d, E=2. g
The fundamental form ®(X,Y)=g9g(e¢X,Y) at any (t,p)e M is given by
D, ) (Q) =Q,, and therefore it is closed. Especially, if the family (J;,4§,)
collapses to a single almost para-Kiler structure (J,§), that is, (J;,g,) = (J,§) for
any ¢ € (a,b), then we say that the almost para-cosymplectic manifold M is the
product of the open interval (a,b) and the almost para-Kihlerian manifold M.
We will show that any almost para-cosymplectic structure can locally be seen
as that in formula (1).
In fact, let (¢, &,7,g) be an almost para-cosymplectic structure on M and p a
fixed point of M. Since dn =0 and n(¢) =1, we choose a coordinate neigh-
bourhood U around p, which is diffeomorphic to (—a,a) x U, a >0, U = R?",

with coordinates (x°,x!,...,x?"), x° being the coordinate on (—a,a), such that
g
0 0
&= 350" n=dx" .

Since go; = doi, g can be written as
2n . .
g :dx0®dx0+ Zg,-j dx' ® dx’.
ij=1

By ¢¢ =0 and #n(pX) =0, we find
rp—pr,’dx ®—

Moreover, ®(&,-) =0 and %P =0 yield for the components of @

o0

®y; =0,
0 0x0

=0.

Thus the fundamental form ® has the shape

®=2 Y  ®ydxnrdx

l<i<j<2n
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0

and does not depend on x°. For any fixed x" =, define an almost para-

Kihlerian structure (J;,§,) on U by putting
R 2n ) _ 0 2n ‘ _
J = (6,)dX' ® —, §,= i(t, ) dx' & dx/,
1 i]z::l i (1) Ox/ 9: z'; gi(t,-)

with the fundamental form Q,=|U.
We have just proved the following theorem.

THEOREM 1. Let M(¢p,&,n,9) be an almost para-éosymplectic manifold. Then,
for any point pe M,

(a) there is a neighbourhood U = (—a,a) x U of p, where U is a 2n-
dimensional differentiable manifold and a > 0;

(b) there exist a 1-parameter family of almost para-Kdhlerian structures
(J1,d,), t € (—a,a), which are defined on U with the fundamental forms Q,
not depending on the parameter t, Q, = Q; and

(c) on (—a,a) x U, the structure (¢,&,n,g) is given as in formula (1). []

Families of almost para-Kidhlerian structures with the same fundamental
form can be constructed in many ways. Below, we present some of them.

ExAMPLE 1. Let (J,§) be a fixed almost para-Kihler structure on a 2n-
dimensional differentiable manifold N and Q its fundamental form. Let ¥ be an
open subset of N endowed with a frame of vector fields (Ej,..., Ey,) such that
an = Eyin, an+n = Ey, g(EOHEﬂ) = 6Otﬂ: g(Eoz+n,Eﬁ+n) = ‘_5aﬂ, g(EaaEﬂ+n) =0
for o, f=1,...,n.

Given a family of functions f;,: ¥V — R, a <t < b, define (J,,§,) by

eroc = exp(ft)EOH—m thoH-n = exp(_ft)Ea»

gt(EowE,E’) = eXp(f,)g(Ea,Eﬁ), gt(EOH-rHEﬂ—HI) = eXp(“ft)g(anLmEﬁ—Fn)

for any t € (a,b). One checks that (J;,§,) are almost para-Kéhlerian structures
with fundamental forms Q, = Q. O

ExaMPLE 2. Let (J,§) be an almost para-Kihlerian structure on a 2n-
dimensional differentiable manifold N. Let ¥ be an open subset of N and assume
that there exist a I-parameter family of diffeomorphisms f;: V — f£,(V) = N,
t€(—a,a), a>0, such that the fundamental form Q of N is invariant with
respect to all f;’s, that is, ft*f) = Q. [One should note that any point of N has a
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neighbourhood ¥V with this property.] Define a family of almost para-Hermitian
structures (J;,§,) on V as follows

jt = ﬁ:ljﬁ*a g, = ft*g
It can be checked that (J;,§,) are almost para-Kdhlerian structures on V' with
fundamental forms Q, = Q for any fe€ (—a,q).
The very special case of the above construction can be obtained when X is a
vector field on N satisfying #yQ = 0. Then, any point of N has a neighbourhood

V « N and there exists a l-parameter group of diffeomorphisms f;:V —
f:(V) = N generated by X. By ZxQ =0, any f, preserves Q. O

REMARK 1. An almost para-cosymplectic manifold M possesses a canonical
foliation & generated by the 2n-dimensional, completely integrable and ¢
invariant distribution @ = ker#. A leaf M of % is a submanifold of M of
codimension 1. Since &|M is a vector field normal to M, we may treat M as a
pseudo-Riemannian hypersurface. Then 4 = —V¢ restricted to M is the shape
operator A of M.

Let J be the (1, 1)-tensor field defined by JX = ¢X and g the induced metric
on M. Then the pair (J,§) is an almost para-Hermitian structure on M. In fact,
it is almost para-Kihlerian since its fundamental form is closed, as it is the pull-
back of the fundamental form of M.

Fix a point of M and choose a neighbourhood U = (—a,a) x U, on which
the structure (¢, ¢&,7,9) is given as in (1), where (J;,d,) is a suitable family of
almost para-Kdhlerian structures on U. Then {t} x U is an open subset of a
leaf. Identifying the set U with {¢} x U, we note that (J,,§,) is just the induced
almost para-Kihlerian structure (J,§) on {7} x U. Moreover, by the equality
g(AX,Y) = —(1/2)(Zg)(X,Y) (see Proposition 1), for the second fundamental
form h, of {t} x U, we have h, = —(1/2)(0g,/0s)l_,- O

3. Basic Structure Identities

LeMMA 1. For an almost paracontact hyperbolic metric manifold M(p,&,n,9)
with its fundamental 2-form ® the following equations hold

(2) (Vx®)(Y,Z) = g((Vxo) Y, Z),

3)  (Wx®)(Z,9Y) + (Vx@)(Y,0Z) = —n(Z)g(4AX, Y) — n(Y)g(4X, Z),
4)  (Vx®)(9Y,9Z) — (Vx®)(Y,Z) = —n(Z)g(AX,pY) + n(Y)g(AX, ¢Z),
where A = —V¢E.
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ProoF. Equality (2) is obvious. Differentiating the identity ¢p?> =7 — 5 ® &
covariantly, we obtain '

(5) (Vxp)pY + o(Vxp)Y = g(AX, Y)E +n(Y)AX

Projecting this equality onto Z, we find (3).
To prove (4), we find at first

(6) (Vxp)¢ = —pVx¢é = pAX,

whence it follows
(Wx®)(Y,&) = —g((Vxp)¢, Y) = —g(pAX, Y).

Replacing Z by ¢Z in (3), and applying the last equality, we find (4). O

PROPOSITION 2. For any almost para-cosymplectic manifold, we have

(7) (Vox9)pY — (Vxp)Y —n(Y)ApX = 0.

PrOOF. Let us define (0,3)-tensor field B as follows
B(X,Y,Z) = g(Voxp)oY — (Vxo)Y — n(Y)4¢X, Z)
= (Vox@)(9Y, Z) — (Vx®)(Y, Z) — n(Y)g(9pX, AZ).
Antisymmetrizing B with respect to X,Y we have
B(X,Y,Z) - B(Y,X,Z) = (Vpx®)(pY, Z) - (V,y®)(pX, Z)
— (x®@)(Y,Z) + (Vy®)(X, Z)
—n1(Y)g(oX, AZ) + n(X)g(pY,AZ).
Since the metric connection V is torsionless and d® = 0,
(Vx®)(Y, Z) + (Vy®)(Z,X) + (Vz@)(X, Y) = 0.
Applying this in the previous formula, we obtain
B(X,Y,Z) - B(Y,X,Z) = —(Vz®)(¢pX,0Y) + (VD) (X, Y)
—n(Y)g(pX,AZ) + n(X)g(pY,AZ).

By (4), the right hand side of this equality vanishes identically, so that
B(X,Y,Z)-B(Y,X,Z)=0, ie. B is symmetric with respect to X, Y.
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Symmetrizing B with respect to Y,Z, we find
B(X,Y,Z)+B(X,Z,Y) = (Vx®)(9Y,Z) + (V,x®)(9Z,Y)
—n(Y)gloX,AZ) — n(Z)g(pX,AY).

This, with the help of (3), implies B(X,Y,Z)+ B(X,Z,Y) =0, i.e. B is anti-
symmetric with respect to Y,Z. The tensor B having such symmetries must
vanish identically, which implies (7). O

LemMMA 2. For an almost para-cosymplectic manifold, we also have
(8) (Vox9)Y — (Vx9)oY +1(Y)4X =0,
(9) (Vox9)Y + 9(Vx9)Y — g(4X, Y)¢ = 0.

Proor. Putting ¢Y instead of Y in (7), we get

(Yox0)Y —n(Y)(Vyoxp)l — (Vxp)pY = 0.

By (6), (Vox9)¢ = pApX = —AX, which applied to the above gives (8). Now, (9)
follows from (8) and (5). Ol

PROPOSITION 3. For the curvature of an almost para-cosymplectic manifold,
we have the following identities
(10) Ryyé=—(VxA)Y + (VyA)X,
(11) RoxoyE + Rxyl + 0Ryxy& + 9RxpvE = —Vy(x, )¢,
where Ryy = [Vx,Vy| —V|x y) and N is the Nijenhuis torsion tensor of ¢,

N(X,Y) = ¢’[X, Y] + [0X,0Y] — 9pX, Y] — ¢[X,0Y].

Proor. By AX = —Vx¢, we have
(VxA)Y = =VxVy& + Vy, v
Hence, we get
—(VxA)Y + (VyA)X = [Vx, Vv — Vix v)& = Rxv¢,

that is, formula (10).
Proposition 1 leads to

(12) Vox¢ = —ApX = pAX = —¢Vx<.
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Moreover, using (8), we obtain

—(Vox9)Vy& + (Vxp)pVyé = 0.

Hence this, together with [12), gives
(13) Vox Yoyl + oVox Vy & + Vx Vy& + 9oVy V, v & = 0.
Now, using and [(13), we find

=Vnix, 1)€ = Vox Voré + oVox Vv & + Vx V& + ¢Vx V, v é
~ VorVox& — oV,y Vxé — Vy V¢ — oVyV,x &
= Vix, 1i€ — Vipx,o11€ — 0Viox, 1€ — 0Vix,o1¢
= Ryxpv¢ + Rxyé + 9RyxvE + 9Rx,vE,

that is (11). 0.

4. Para-cosymplectic Manifolds

In this section, we prove various necessary and sufficient conditions for an
almost para-cosymplectic manifold to be para-cosymplectic.
At first, we prove the following proposition

PrOPOSITION 4. For the Nijenhuis torsion tensor N of an almost para-
cosymplectic manifold, we have the following

(14) NX,Y)=2((Voxp) Y — (Vorp)X) = —20((Vxp) Y — (Vyp)X),

(15) N(pX,9Y)=N(X,Y) - 29(X)AY +2p(Y)AX,
(16) (%ez®)(X, V) = = 39(Z, N (X, Y),
(17) A(N(X,Y)) =0, N(&X)=24X.

ProoF. Writing the Nijenhuis torsion tensor of ¢ with the help of the Levi-
Civita connection, we get

N(X,Y)=—p(Vx0) Y + o(Vyo)X + (Vox9) Y — (V,rp)X.
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Formula (14) follows from the above in view of (9). Using (14) and (7), we find
(15). Moreover, using (14), we compute

(Voz@)(X, Y) = —g((Vx9) Y — (Vyp) X, 0Z)
= 9(0((x0)Y ~ (Vy9)X), Z) =~ 9(Z, N(X, Y)),

which gives [16). Formulas are immediate consequences of (14) and [[15),
respectively. L]

THEOREM 2. For an almost para-cosymplectic manifold M, the following
conditions are equivalent

(a) M is para-cosymplectic,

(b) N =0,

(c) ¢ is parallel,

(d) M is locally a product of an open interval and a para-Kdihlerian manifold,

(€) the leaves M of the canonical foliation & are totally geodesic and the
induced structures (J,§) are para-Kdihlerian.

PrOOF. (a) = (e): Note that 4 =0 since AZ = ¢(Vzp)¢ and V¢ =0.
Therefore, for the shape operator of a leaf M of %, it holds A = A|M = 0. Thus,
M is totally geodesic and V = V|M by the Gauss equation. Consequently,
VJ =0, that is, (J,§) is para-Kihlerian.

(¢) = (d): By Theorem 1, choose a neighbourhood U = (—a,a) x U on
which the structure (¢,¢,7,9) is given as in (1), where (J,,§,) is a family of
almost para-Kihlerian structures on U with Q, not depending on r. Restrict
further considerations to the set U. As we have already known, (J;,§,)’s are the
induced structures on leaves. By our assumption, they are para-Kihlerian. Since
the leaves are also totally geodesic, their second fundamental forms 4, vanish
identically and consequently (8/0t)§, = —2h, = 0. Hence (J,,§,) are independent
of 7. Thus, M is locally a product of an open interval and a para-Kihlerian
manifold.

(d) = (c): It is obvious.

(c) = (b): It follows from (2) and (16).

(b) = (a): Since N =0, (2) and (16) give V,z® = 0 and (V,z¢) = 0. But then,
by the virtue of Proposition 1 that Vz¢ = 0, we get Vo = 0 which in turn implies
V¢ =0. Also V:® =0 by (2), so we have V® = 0. On the other hand, since
(Ven)(Y) =g(Vx&, Y) and V€ =0 one gets V= 0. Thus (a) follows. O
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Let us call an almost para-cosymplectic manifold, satisfying the condition
(18) [Rxy,p] = Rxy o9 —po Ryy =0,

weakly para-cosymplectic.

It is obvious that a para-cosymplectic manifold is weakly para-cosymplectic.
The converse implication does not hold in general. Indeed, the almost para-
cosymplectic manifolds given in the below example fulfill and are not para-
cosymplectic.

ExampLE 3. Consider the flat pseudo-Riemannian metric g on R> of sig-
nature (+-+-—),

g =dx' ®dx! +dx* ® dx? — dx* ® dx°.

Let h=1—x! — x3 and define a frame of vector fields (Eo, E1, E>) on R? by

0 0 0
E0:h6x1+8x2—h6x3’
0 0
B =T T
1 ,. 0 o 1 ,. 0

For these vector fields, we have g(Ey, Ey) = g(E}, E;) = g(E», E}) = 1, otherwise
g(Ei,E;j) =0. Let (0% o', w?) be the dual frame of 1-forms. Then g can be
written in the form

g=0"R0’ +0' ®w?* +0?* @'
Let us define ¢,&,5 by
(=E, n1=0’, 9=0'@®E -w*Q®E.

Then My = R*(p,&,7,9) is a 3-dimensional flat almost para-cosymplectic man-
ifold. By the flatness, M, realizes (18). Since AE, = —Vg,& = 8/0x! — d/0x3 # 0,
then Vg # 0. Thus, M, is weakly para-cosymplectic but not para-cosymplectic.

It is interesting to point out that the vector fields Ey, E1, E, form a basis of a
3-dimensional Lie algebra isomorphic to the Lie algebra of the Heisenberg group
H’. Explicitly, the Poisson brackets are the following

[Eo, E1] =0, [Eo, E2] = Ey, [E1,E] =0.
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Moreover, Ey, E|, E; are complete. Thus, there is a unique Lie group structure G
on R*® with (0,0,0) € R® as the identity element, for which Ey, E|, E, are left-
invariant [I5]. Because the group G is connected and simply connected, G is
isomorphic to the Heisenberg group H?>. By the above construction, the structure
(p,&,m,9) is left-invariant.

Let Gy be a discrete, cocompact subgroup of G and M; = Gy\G be a
compact cosets manifold. Via the canonical projection, we obtain a flat non para-
cosymplectic, almost para-cosymplectic structure on M;, which will be denoted
also by (¢,¢,7,9). |

Examples of strictly weakly para-cosymplectic manifolds in higher dimensions
can be obtained in the following way. Let M = M, or M = M, with the suitable
structure (p,&,7,g) defined in the above and M(J,§) be an arbitrary para-
Kihlerian manifold. On the product manifold M’ = M x M, define an almost
para-cosymplectic structure (¢’,&' %', g’) as the product structure

o =(p,J), &=(0), n'=0), g =(9,§).

Then, clearly, [R}y,¢'] =0 and V'¢p’ # 0. Thus, M’ is weakly para-cosymplectic
non para-cosymplectic. If M = M| and M is compact, then M’ is compact too.

O

5. Manifolds with Para-Kihlerian Leaves

In this section, we study almost para-cosymplectic manifolds, whose leaves
of the canonical foliation are para-Kéhlerian submanifolds. We will call such
manifolds almost para-cosymplectic with para-Kihlerian leaves.

THEOREM 3. An almost para-cosymplectic manifold M has para-Kdihlerian
leaves if and only if any of the following equivalent conditions holds

(19) N(X,Y) =2n(X)AY — 25(Y)AX,
(20) (Vx@)Y = g(4pX, Y)E —n(Y)ApX,

ProoF. Note that the Nijenhuis tensors N and N of ¢ and the induced para-
complex structure J of a leaf M € % are related by N Iy = N. If the induced
structures (J,§) are para-Kihlerian, then N = 0, and consequently N (X, Y)=0
for any vector fields X, Y tangent to M. Therefore, N (pX,9pY) =0 for any
vector fields on M, whence (19) follows by (15).

Let us assume (19) for an almost para-cosymplectic manifold. Then, by (16),
we have
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(Voz®@)(X,Y) = —n(X)g(AZ, Y) +n(Y)g(AZ, X),
and hence
(Voz0) X = g(AZ, X)E — n(X)AZ.

If we replace Z by ¢Z in the last equation and use V:p =0, we get (20).

Now we prove that (20) implies the leaves of the manifold M are para-
Kéhlerian. Let (J,§) be the induced almost para-Kéhlerian structure on a leaf M
and V be the Levi-Civita connection of g. By the Gauss equation

Vi ¥ =V ¥ — g(4AX, Y)¢
and (20), we find
(Vi)Y = (Vzp) ¥ + g(pAX, )¢ = g(ApX, V) + g(pAX, T)E =0,
hence (/,§) is para-Kéhlerian. O
PROPOSITION 5. For an almost para-cosymplectic manifold with para-
Kdhlerian leaves, we have the following curvature identity
(21)  RzxpY — @RzxY = g(A9Z, Y)AX — g(ApX,Y)AZ + g(AZ, Y)ApX

—9(AX,Y)ApZ — g(Rzx&,9Y)E —n(Y)pRzxE.

PrOOF. By ¢4 = —Ap, (20) and #(4X) =0 we find
(Vz(A49))X = —(Vz9)AX — p(VzA)X = —g(ApZ, AX )¢ — p(VzA)X.
Differentiating covariantly (20) and using the relation above, we obtain
(Vox0)Y = —g(ApX, Y)AZ + g(AZ, Y) ApX
+9((VzA) X, 9Y )+ n(Y)p(VzA)X.
Now, the result follows if we antisymmetrize the last relation with respect to Z, X

and use (10). O

THEOREM 4. Almost para-cosymplectic manifolds of constant non-zero sec-
tional curvature do not exist in dimensions > 5.

PrROOF. Let M be an almost para-cosymplectic manifold of non-zero
constant sectional curvature A # 0 of dimension 2n+ 1 > 5. Then

Rexl = oRepxé = An(X)E — AX.



206 Piotr DACKO

On the other hand, by and Proposition 1, Ryx¢ = A?X — (V:A)X and
@R:yx& = A*X + (V:A)X. Hence, (V:4)X =0 and

(22) A*X = —AX + An(X)¢.

Formula implies

Applying A to the both sides of the above equation and using (22), and
A #0, we find

29(Y)AX - 2n(X)AY = —N(X, Y).

Then by the virtue of Theorem 3, M has para-Kihlerian leaves. By Tr(4) =
Tr(Ap) = Tr(Z — pRzx<&) = 0, the trace of (21) with respect to Z gives

2n—1)Ag(X,9Y) = —g(Rex&, 0Y) = Ag(X, pY).

This is a contradiction since n > 2 and A # 0. O

LeMMA 3. Let u,v be bilinear symmetric forms on a real s-dimensional vector
space W, s > 2. If rank(u) = rank(v) = p, u and v have a common diagonalizing
basis and

u(z, y)u(x,w) — u(x, y)u(z,w) + v(z, y)v(x,w) — v(x, y)v(z,w) =0

for any x,y,z,we W, then p <?2.

Proor. Choose a basis (e;,i =1,2,...,s), so that u(e;, e;) = a;0;, v(e;,ej) =
bio; for certain a;,b;. We may assume that gq; #0, b;#0 for i=1,...,p,
otherwise a; =b; =0. Let us suppose that p >3. From (3), for z=y =g,
x=w=¢;, 1 <i#j<p, we obtain a;a; + b;b; =0. Hence b; = —a;a;/b; for
2 <i < p. This applied in the previous equation gives a;a; =0, 2 <i # j < p,
which is a contradiction. ]

THEOREM 5. Let M be an almost para-cosymplectic manifold with para-
Kdhlerian leaves. Then M is weakly para-cosymplectic if and only if the following
two conditions (1) and (II) are fulfilled

(I) the tensor field A is a Codazzi tensor, that is, (VxA)Y = (VyA)X;
(IT) at any point p € M, the operator A has one of the following shape
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(a) 4=0,

(b) AX =eg(X, V)V, where |e| =1 and V is a non-zero null vector such
that oV =V or oV = -V,

() AX =e1g(X, V1)V1 +&9(X,V2)Va, where Vi,V, are non-zero
orthogonal null vectors such that Vi = -V, Vo =V, and |e;| = 1.

ProoF. Let M be the weakly para-cosymplectic. Then ¢Ryyé = Ryyopé —
[Rxy,p]é =0, and hence Ryy& =0. Now (I) follows by (10). Observe, 0 =
PRezpxE = A2X + (VzA)X = A?X + (VxA)¢é = 24%X. Thus A2X = 0.

By Ryyl =0 the identity (21) simplifies to

g(A9Z, Y)AX — g(ApX,Y)AZ + g(AZ,Y)ApX — g(AX,Y)ApZ = 0.
Projecting the last relation onto ¢W we find
(23) 9(AeZ, Y)g(ApX, W) — g(ApX, Y)g(ApZ, W)
+9g(AZ,Y)g(AX, W) — g(AX,Y)g(AZ, W) = 0.

Now, let (Eo, Ey, Eyin), o =1,...,n, be a basis of the tangent space at a point
p € M, such that

(24) Ey = ép’ 9E, = E;, @Eyn= —Eyin,
g(EO)EO) = 1, g(Ea)EaH-n) = I.

For X = Y X'E,, Y = X% Y'E,, put g(4X,Y) = S o ey XY/, By A¢ =0,
coi = g(A&,, E;) =0 and by ¢4 = —Ag, (24)

Cu(p+n) = 9(AEqs, Eg1n) = —g(pAEy, 9Eg,p)

= g(A9E,, pEp,n) = —g(AEy, Egin) = —Cy(pin) = 0.

Hence
n .
(25) 9(AX,Y) = D (capX*YP + Clurmyprm XYM,
o, f=1

Observe the following

9(ApE,, Eg) = g(AE,, Eg) = cup,

g(A¢Eaa Eﬂ+n) = g(AEot»Eﬂ+n) = Co(f+n) = 0,

g(A(PEa+nyEﬁ+n) = _g(AEa+naEﬁ+n) = —C(a+n)(f+n)-
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Thus we have

n

(26) g(ApX,Y) = Z (CaﬂX“ Y? — C(u+n)(/£+n)Xx+n Yﬁ+”),
a, =1

The forms g(A4-,-),g(A¢-,-) have the same rank r, common diagonalizing basis
(by and [26)) and fulfill [23]. That means, they realize the assumptions
of Lemma 3, therefore it must hold r<2. Note that r = rank(c.,)-+
rank(C(yiny(p4m). If r =0, then 4 =0. Let r=1. We will show the assertion
(II)(b). At first, consider the case rank(ce) =1. Then c(yin)pin) =0, and
cyp = edydg for || =1 and certain d,. Define a 1-form w and a vector V' by
assuming o(X)=>._,d,X* and V =3 ._ dyEsn. One checks that 4 =
ew®V, oV =—-V, o(X)=¢g(X,V) and w(V) =g(V, V) =0. Similarly, in the
case rank(c,s) = 0 and rank(c(yin)(g+n)) = 1, we find a 1-form w and a vector V
for which A=ew®V, oV =V, o(X)=¢g(X,V) and g(V,V)=0. Let now
r = 2. Suppose rank(c,z) = 2. Then c(y4n)(p+n) = 0, wWhich together with and
implies g(ApX,Y) = g(AX,Y). Applying the last relation into [23), we find

g(AZ,Y)g(AX, W) — g(4X,Y)g(AZ, W) =0,

which clearly yields rank(g(A4-,-)) =rank(ce) <1, a contradiction. Hence
rank(c,s) < 2. Similar arguments show that rank(c(yyn(g+n)) < 2. Thus

rank(cyg) = rank(C(ytn)(p4n)) = 1,

that is, cup = &1dadp, Clutn)(pn) = E2hahp, |ei| = 1. Define 1-forms w;,w; and
vectors V7, V> by assuming

w1 (X) = zn:daX“, wr(X) = Zn:ha)(”", Vv, = i:daEH,,, V, = ihE
a=1 a=1 a=1 a=1

We verify that
A= @ Vi+amm®@V2, o(X)=g(X, "), w(X)=g(X,V2),
oVi=-V, oVa=Va, g(V,V1)=g(V2, V2)=0.

Finally, A2 = 0 implies 42V = & e29(V1, V2)2V1 = 0, hence g(V1, V2) = 0. Thus,
the assertion (II)(c) holds.

Conversely, by and (I), Rxy¢=0. Moreover, (II) implies [23). Con-
sequently, Rzx¢pY — pRzxY =0 follows from (21). O
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EXAMPLE 4. Let M = R’ with coordinates (z,u;,u3,v;,v;). Define a (1, 1)-
tensor field ¢, a vector field &, a 1-form »# and a metric g as follows

0 0 0
¢‘a~Z—ZUIa—Ul—2uza—vz,

e 30y

0
6u2 “ 0z (3_1,{2 “ 6v1
0 0 0 0

"’aul =8_v1’ ¢8vz oy

0 0 0
f—a—zula—vl—%za}—z,

n =dz — 2u; duy — 2uy duy,
g =dz? + 2 duydv, + 2 durdv,.

By straightforward computations we verify that (¢,&,%,9) is the almost para-
cosymplectic structure on M with the fundamental form ® given by
® = 4uy dz nduy — 4uy dz A duy + 8uyuy duy Aduy — 2 duy Adoy + 2 duy A ds.
For the tensor field 4 = —V¢&, we have
0 0
A=2du @ —+2du, ® —,
ovy ovy

so that 4 is of rank 2 everywhere on M. The covariant derivative Vg, which is
nonzero, satisfies the relation (20) and therefore by Theorem 3, M has para-
Kéhlerian leaves. M is weakly para-cosymplectic since the metric g is flat. [

6. Curvature Identities

PROPOSITION 6. For any almost para-cosymplectic manifold, we have
(27) [Rzox, 9]+ [Rozx, 9] = [Ryzox,0l0 — [Rzx, ¢lp
= Vonz,x)? + 1 ® (Ryzpoxé + Rzx&).

ProoF. At first, by (8), we have

(Vxp)oY — (Vx0)Y =n(Y)AX.
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Next, differentiating this covariantly, we obtain
(28)  (VZx0)oY — (Vzx0) Y
= (Vuzox0) Y — (Vx9)(Vz9) Y — g(4Z, Y)AX +n(Y)(VzA)X.
Replacing in (28) Z,X,Y by oV, U,pW, respectively, we obtain
(29) Vo)W = n(W)(Vyu0)E = Vprpuo)o W
= (Vw, nu2)oW — (Vup)(Voro)oW — g(AV, W)AU.
On the other hand, using (7) and (9), we find
(Voo)(Vorp)oW = (Vue)(Vve) W + n(W)(Vue) AoV,
(Vv u@)0W = (V_p@,0)Utgav,0)c@)9W = —(Vpw, o up)oW
= —(Vwvpuo) W —n(W)Ap(Vye)U.
By these relations, (29) turns into
(30) Vau?)W = (Voypup)o W
= —(Vw,puo) W = (Vuo)(Vvo) W — g(4V, W)AU
+ (W) (Viyo)é — (Vup)AeV — Ap(Vye)U).

Putting V=X, U=Z, W=Y in and adding the obtained relation to
(28), we have

~[Rzpx, 01Y = (Vi ,z0)0Y + (V2x0)0Y
= ~(Vwypz®) Y + (Vwpx®) Y — (Vx0)(Vz0) Y — (Vz0)(Vxo) Y
— g(AX, Y)AZ — g(AZ, Y)AX + n(Y)(Vyxz9)¢ — (Vzo)ApX
— Ap(Vx9)Z + (VzA4)X).

Antisymmetrization of the last equality with respect to Z, X and application of
(14), gives

(31) [Rzox, 0] Y + [Ryzx,9)Y — [Rozox,9l9Y — [Rzx,¢loY
= —-2(Vwx?) Y +2(V(wyp)z0) Y —n(Y)S(Z, X)

= (V(pN(Z,X)(”) Y - ’7( Y)S(Z, X)’
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where S is a (1,2) skew-symmetric tensor field. Put ¥ =¢ in [31) and find

[RZsz,(/’]f + [quZXa(P]f - (VwN(ZXW)é = —S(Z, X)~

This implies g(S(Z, X),£) = 0. Having this in mind and projecting onto &,
we find

[Rzox, 91& + [Ryzx, 01 + 0[Ryzox, 9)¢ + 0[Rzx, 01 = (Von(z, x)?)E,
which having substituted to the previous equation, gives
S(Z,X) = ¢[Ryzox, )& + ¢[Rzx, )& = —Ryzpx& — Rzx €.
But then this reduces to [27). O

Let Ric and Ric* be the Ricci and *-Ricci tensors defined by
Ric(X,Y)=Tr{Z— RzxY}, Ric*(X,Y)=Tr{Z— oRzxoY}.

Let Iéﬂ:,ﬁi\c/* be the Ricci and *-Ricci operators and r,r* be the scalar and *-
scalar curvatures given by

Ric(X,Y) = g(RicX,Y), Ric*(X,Y)=g(Ric*X,Y),

r= Tr(Ric), r* = Tr(Ric*).

THEOREM 6. For an almost para-cosymplectic manifold, we have
(32)  RzyxpY — 9Rzyx Y + Ryzx9Y — 9R,zx Y

— Ryzox Y + 9Ryzox0Y — Rzx Y + 0Rzx0Y = (Vonz x)0) Y,

(33) Ric*(X,Y)+ Ric*(Y,X) — Ric(X,Y) + Ric(pX,pY)
1 2n
+5 (Rexve = Repxpre) + > &9(VE®) X, (VEp)Y) =0,
=0
1
(34) r* —r+ Ric(&, &) + Eg(Vw, Vo) = 0.

where (E;,0 <j < 2n) is an orthonormal frame, €;’s are the indicators of E;’s and

2n
9(Vo,Vp) = > eigig((V59)Eis (VE9)E).

i, j=0

PrOOF. Formula (32) is in fact a direct consequence of the identity (27).
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Taking the trace of (32) with respect to Z, we find
(35)  2Ric*(X,Y) —2Ric(X, Y) + 2Ric(pX,pY) — 2Tr{Z — pRz,x Y}

+ Rexve — Repxove = Tr{Z — (Vyn(z, x)9) Y }.
Let (E;) be a local orthonormal frame and compute

2n

Tr{Z — ¢Rz,x Y} = — Y &Ryk,ypxr, = —Ric* (Y, X).
i=0

By [16), we have
2n

TH{Z — (Vonz00) Y} =D &g((Vone, 1)9) ¥, Ei)
i=0

Ze,g (E, X),N(E;, Y)) = —~Zs,g ¢N(E;, X),¢N(E;, Y))

2n

1
= =3 e, oN(E;, X))g(E;, pN(E;, )
i,j=0

2n

= -2 Z tigig(VE )X, ENg((VEQ) Y, E) = =2 &9((VEQ)X, (VE®)Y).
i, j=0 j=0

Applying these relations into (35), we find [33).
Taking the trace of [[33) with respect to g, we obtain

(36) 2 —r 4 Trg{(X, ¥) = RiclpX,p¥)} + 5 Ric(,2)

1
=5 Tr{(X, Y) = Repxore} +9(V9, Vo) = 0.

On the other hand, we find
Trg{(X,Y) — Ric(pX,9Y)} = -Tr{X — (0157'0(0X}
= —Tr{X — Ricp’X} = —r + Ric(, &).
Moreover
Trg{(X,Y) — Repxpre} = —Tr{X — @R, x:}
= —Tr{X — Rys&} = —Ric(&, ).

The last two relations reduce to [34).
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FINAL REMARKS. Certain of our results are para-cosymplectic analogies of

theorems concerning almost cosymplectic manifolds proved in [12], [13], [7].
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