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ON THE EXCEPTIONAL SET OF HARDY-
LITTLEWOOD’S NUMBERS IN SHORT INTERVALS

By

A. LANGuUASCO

1. Introduction

In 1923 Hardy and Littlewood conjectured that every sufficiently large
integer is either a k-power of an integer or a sum of a prime and a k-power of an
integer, for k = 2,3. Define a Hardy-Littlewood number (HL-number) to be an
integer which is a sum of a prime and of a k-power of an integer, k e N, k > 2.
Let X be a sufficiently large parameter. Denote by E; the set of integers which
are neither an HL-number nor a power of an integer, let Ex(X) = E;N[1, X]
and Ex(X,H)=E N[X,X + H], where H = o(X). Hardy-Littlewood’s conjec-
tures are equivalent to Ei(X) « 1.

, The best known result on E,(X) was independently proved by Briinner-
Perelli-Pintz [1] and A. 1. Vinogradov [14]:
There exists a (small) positive constant 6 such that

|Ey(X)| «< X179,

In 1992 Zaccagnini proved that such a result holds in the general case
k > 2 too. Concerning short intervals, Perelli-Pintz and Mikawa (6] proved
independently:

Let A >0, ¢> 0 be arbitrary constants and H > X7/?4t¢; then

|E>(X,H)| « Hlog™ X.

In 1995 Perelli and Zaccagnini proved that such a result holds in the
general case k > 2 too.

The aim of this paper is to prove that we can save a power of H in the
estimate of |Ex(X,H)|, ke N, k > 2, for H in some suitable range.

THEOREM. Let k > 2 be a fixed integer and K = 2%=2. There exists a (small)
positive absolute constant 6 such that for H > X7/12(-1/k)+d

|Ex (X, H)| « H'7/GK),

Received November 26, 2002.



170 Alessandro LANGUASCO

To prove our result we follow the circle method setting used by Briinner-
Perelli-Pintz [1], Zaccagnini [15], Perelli-Pintz and Perelli-Zaccagnini to
treat the major arcs. So we estimate the contribution of the zeros of Dirichlet
L-functions located in a suitable thin strip near ¢ =1 as “secondary” main
terms. In the body of the proof we will use the zero-density estimate

S"S TN(o, T, ) « (P2T) 21" (log PT)?, (1)
q<P x

for o € [1/2,1], see Ramachandra [13], and the log-free zero-density estimate

S S UN(e, T, x) < (PRI, 2)

q<P 1

for o € [4/5, 1], see Jutila [5], where * means that the summation is over primitive
characters and N(o,T,x) =|{p=p+iy:L(p,x) =0, >0 and |y| < T}|.

In the proof we insert a localization parameter Y = o(X) for the primes
and write an HL-number ne [X,X + H] as p+m* with X - Y <p<X+7Y
and Y/4 <m* < Y. The is obtained using Y = X7/12+100+¢ and H =
y(-1/k)+0 The meaning of the previously mentioned constants 7/12 and
(1 — 1/k) can be explained as follows. In the error term of the explicit formula
we have to choose 7' > X't%)~1 Jog? X and, to estimate the contribution of the
secondary main terms using (2), we have to choose T' < X'!'/27¢=%%. Combining
such relations we get Y > X!/2+#+% which is already satisfied since in the centre
of the major arcs our treatment requires (1) and hence Y > X7/12+¢+109 More-
over, in the mean-square estimates of the minor arcs and of the periphery of
major arcs, we will choose H > Y(-1/k+d,

The paper is organized as follows: in section 2 we shall define the quantities
involved; section 3 will be devoted to arithmetic and analytic lemmas while in
section 4 we will prove suitable mean-square estimates for minor arcs; in section 5
we will treat the contribution of the major arcs and in section 6 we will study the
singular series of this problem. Finally, in section 7, we will deduce the Theoreml
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2. Notations and Definitions

Let n be an integer,

Rimy= > A(h) and Mmn)= > 1,

h+m*=n h+m*=n
X-Y<h<X+Y X-Y<h<X+Y
Y/d<mk<yY Y/4<mk<Y

where A(n) denotes the von Mangoldt function. Defining

S(a) = Z A(h)e(ha), Fi(a) = Z e(m*a), e(a) = e,
X-Y<h<X+Y Y/4<mk<Y
it is an easy matter to see that S(e)Fi(%) = 3y 3y/a<n<xray R(n)e(na) and
R(n) = [} S(a)Fi(x)e(—na) do. Let now Q = 4¥'-1/% and consider the Farey dis-
section of level Q of [1/Q,1+1/Q]. Let a/q be a Farey fraction,
, _fa : ,_(_Pt Pt
Iq,a—{q+n,n65q}, where éq—< ek

M= UL, and m=[1/0,1+1/Q\m,

g<P a=1

where * means (a,q) =1 and P < Q will be chosen later. Hence

R(n) = ( Jsm + L) S(2) Fe(a)e(—no) dot = Ru(n) + Ron(n), (3)

say.
Let now Py = Y%, 0 < J < 1/2. According to [Lemma 13’ below, applied with
P'=P and |f| < T = XY 'P] log® X, we denote by S the Siegel zero, 7 the
Siegel character and by 7 its modulus. Let now
P, ifFr<P r
- P 2 = pY .
{  otherwise,

where v = v(k) < 1/2 is a parameter which will be specified later. Now [Lemmal
13’ remains true for P’ = P,, with a suitable change in the constant ¢;. Hence
r < Pj, if it exists.

Following and [15], and according to Lemmas [3'-14’ below, we define
the Py-excluded zeros as the zeros of the functions L(s, y), where y is any primi-
tive character (mod ¢q), ¢ < P,, lying in the region

o1 (12k + 6) loglog X
- log X ’

|t) < T, if the Siegel zero does not exist, (4)
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and, if the Siegel zero exists,

o> 1 (12k + 6) loglog X log eci =T, (5)
log X (1 - B) log P, |

excluding the Siegel zero relative to P,. Then define the P;-excluded characters as

the primitive characters (mod q) for which L(p, ) = 0, p being an excluded zero.
The P,-excluded moduli are the moduli of the excluded characters. Let now

& = {Py-excluded characters}, &' = {P,-excluded zeros},
& = {Siegel character} and ' = {Siegel zero}.
Let further P = P,.

Now we write

g :-1_ a v 2
S(q+n> q,(q)x(%q)x( Ye(2)S(x, ) + O(log? ¢X),

where

Semy = Y, ADxDe(ln).

X-Y<I<X+Y

Ty= Y  e(n) and T,(n)= >  I"e(ly).

X-Y<I<X+Y X-Y<I<X+Y

Hence the corresponding approximation for S(a) becomes

a
S(— n n) _#9) 1) 4 D(a,q,n) + E(a,q,n) + O(log® ¢X),  (6)
q o(q)
where
1 _
D(a,q,n) = —— > _t(Dx@W(x,n),
v(q9) 5
S(xo0.4:m) — T(n) if ¥ = x0.4»
Wien) = SUHM + 3 pesuy Tp(n) i x=xox", x" €U,
’ L(p,x*)=0
S(x,n) otherwise,

Xo,qX(@)T(Xo, 4X)
E(a,q,ﬂ) = - Z Z 1 w( ) £ TP(”)a
268U pe &' Uy q
cond xlg L(p, x)=0

cond y is the conductor of x and yx, , is the principal character (mod g).
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Moreover we define

1
Lym= S = L Fe(n) T, (n)e(—nn) dn
m"'=n
X— §’+S1SX+Y
Y/4_<_m1‘ <Y

and
1

L(Y,n) = JO Fe(n) T (n)e(—nn) dn.

For Fi(x) we use the following approximation (see [15], Lemma 5.1 and
p. 409):

F <E+ n) = @Fk(ﬂ) + Ax(a, q,7),

q
where
Ar(a,q,m) < q(1+[1]Y) (7)
and (see eq. (10) of [11])
a
Vi(a,q) = Z e(mk—) « g1k, (8)
m (mod gq) 9

Let further

q
HiGr.g.m) = 3 2(@)Vidas e - %) Hi(q.n) = Hilto.0.4.),
a=1

() Hi(x, 1, n)
ro(r)

_ Yy M)
) 6k(n’R’r)_ 4 q(p(q)Hk(q?n)’

(g:r)=1

Si(n,R) = Gk(n,R,1) and p,(d,n) = |{h (mod d),h* =n (mod d)}|.

Tk(Xaran) =

3. Lemmas

In the following we denote by ¢ a positive absolute constant, not necessarily
the same at each occurrence.

ARITHMETIC LEMMAS.  We recall some lemmas of Zaccagnini (in the case
k =2 they are due to Briinner-Perelli-Pintz [1]).
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LEMMA 1 (Lemma 4.1 of [15]). Let (q1,42) =1 and X, be a character
(mod g;), i =1,2. Then

Hk(XqIquv q192, n) = qu (‘]2)qu (ql)Hk(qu »q1, n)Hk(Xq27 q2, n)-

LEMMA 2 (Lemma 4.2 of [15]). Hi(p,n) = p(pe(p,n) —1). If u(q) #0 then
|Hi(g,m)| < g(k — 1)'9).

The next lemma is Lemma 5.2 of Montgomery-Vaughan [7].

LemMmA 3. If y is a character (mod q) induced by the primitive character
x* (mod r). Then rlg and <(x) = u(a/r)x*(a/r)e(x") and |e(z*)] = r'/%.

LeMMA 4 (Lemma 4.4 of [15]). Let y (mod r) be a primitive character. Then

|\Hi(x,r,n)| < r3/7'H<1 __’L(‘Z’%n)) <R
plr

In the next lemma we cite Lemma 4.5 of and we state also a short
interval version of it whose proof is totally analogous.

LEMMA 5. Let Ae N. We have

ZA“’(j) « T(log T)*™".
J=T

Let further Y = o(X). We have

A" « Y(log X)*7".
X-(3/4)Y<n<X+2Y

LEMMA 6 (Lemma 4.6 of [15]). Let y (modr) be a primitive character,
Y=0(X) and X — (3/4)Y <n< X +2Y. Then

,T(X() qX)' k
E —"|H ,q,n)| < (log P)”".
= qw(q) l k(XO,qX q )l ( g )

rlg

LEMMAS ON Fi(a). We first state Gallagher’s famous lemma (Cemma 1 of
[3]) which is a fundamental tool to estimate truncated L? norm of exponential

sums.
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LeEMMA 7. Let uy,...,uy be arbitrary real numbers. Then for any 0 > 0
9 2 o | xtot |2
J Z uge(nn)| dn < J 0 Z u,| dx.
—Oln<nN - n=x

Using the following lemmas can be proved.

LemMa 8 (Lemma 5.2 of [1S]). For any integer s> ck?logk, c being a
suitable absolute constant, we have

1
‘Mawﬁw«YW”P
0

LemmA 9 (Lemma 5.4 of [15]). Let 0 <60 < YV* 1 Then

g
jl&mﬁw«WW%
-6

The next lemma was proved by Perelli-Zaccagnini [11], eq. [39)-(40).

LemMmA 10. Let (a,q) =1 and || < 1/qQ. Then

a
F_+)
k(q n

The next Lemma is a modified version of the Lemma proved at page 199
of Perelli-Zaccagnini [11]. The difference is in the last term and follows from a
different estimate of the divisor function involved in the proof in [I1]-

Yl/k—l
lnl

<

LEMMA 11. Let F(x,y) = x9y + j‘.’;ol bj(y)x/ where g > 2 is a fixed integer
and bj(y) are real-valued functions. Let |o — a/q| < 1/q* and (a,q) = 1. Then for
T,R,q < X and for every ¢ >0 we have

2

1 1 q 1/K
<, TR (— +—+ —) T¢/K R9-1e/K
1<d<T

q R TRY

Z e(aF(n,d))

n<R

where K = 2k-2,

ANALYTIC LEMMAS. In the following we state several results on the distribu-
tion of zeros of Dirichlet L-functions and on some summations involving such
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zeros. The following Lemma can be proved following the line of the proof of

of Briinner-Perelli-Pintz [1].

LemMMma 12, Let |y| < X/qQ and 1/qQ < |n| < 1/2. Then

Now we recall some analytic results on zero-free regions for Dirichlet L-
functions.

Lemma 13. Assume T >0. There exists a constant ¢y >0 such that
L(o +it, x) # 0 whenever

C1

o=>1- 3747
max{log P’; (log(T + 3) loglog(T + 3))*/*}

lt|< T

for all the primitive characters y modulo q < P', with the possible exception of at
most one primitive character ¥ (mod 7). If it exists, the character y is quadratic
and the (unique) exceptional zero B of L(s,y) is real, simple and satisfies

C1

S <1-f< Ay
r/<log” F max{log P’; (log(T + 3) loglog(T + 3))"/"}

The previous form of the zero-free region for Dirichlet L-functions can be
found in Prachar [12], ch. 8, Satz 6.2. In our case we have log T =< log P’. Hence
(log(T + 3) loglog(T + 3))3/4 < log P’ for X sufficiently large. So in fact the zero
free-region becomes

Lemma 13'. Assume T > 0 and log(T + 3) < log P'. There exists a constant

c1 > 0 such that L(o + it,y) # 0 whenever
C1
> —-— <T
7= log P’ UE

Jor all the primitive characters y modulo q < P’, with the possible exception of at
most one primitive character y (mod 7). If it exists, the character ¥ is quadratic
and the (unique) exceptional zero f of L(s,%) is real, simple and satisfies

o C]

log P'°

—— —<1-f<
7172 log? 7 d
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Concerning again the distribution of the zeros of Dirichlet L-functions, we
state the following form of Deuring-Heilbronn phenomenon. It can be proved
using the function max(log P’; (log(7T + 3) loglog(T + 3))3/4) instead of the func-
tion log P’ + (log(T + 3) loglog(T + 3))** in the proof of of Peneva

[8].
LemMA 14.  Under the same hypotheses of Lemma 13, if B exists, then for all

the primitive characters y modulo q < P', L(o + it, y) # 0 whenever

1 ec
iy 1°g<<1—/§)f<Pf,T>)’ =T

where f(P',T) = max{log P’; (log(T + 3) loglog(T + 3))3/4} and B is still the
only exception.

Using the same remark after Lemma 13 we have.

LemMA 14'.  Under the same hypotheses of Lemma 13', if ,b; exists, then for all
the primitive characters y modulo q < P', L(c +it,y) # 0 whenever

C1 ec]
oc>1-— lo = , 1 <T,
log P’ g<(1 —#) log P’) 4

with B is still the only exception.

The next lemma is a localized version of Lemma 4.3 of Montgomery-
Vaughan (7]

LEMMA 15. Let Y > X7/124100+e T — x 14703~V 1692 X and P be as defined
in section 2. Then

* Y ~1 x .
"SZP)((mZod " XAZY?)?;(AGLZY Y/ﬂ%liY(h-l-F) :L;h Ay
<< G(log Y)—zk—l +P_1/3, (9)
where
( X
(A -1 i r=1
- # I=x—h
S TAD() =
- > ADx(D) + > jp-1 if r>1
\l:x—h peEUS
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and G — {(1 —ﬂ~)~10g P if B exists
1 if B does not exist.

ProOF. The proof follows the line of Theorem 7 of Gallagher (in its
effective form due to Montgomery-Vaughan [7], Lemma 4.3) in which x is
localized near X. The differences here are that we sum only over the not-excluded
zeros, the use of Lemmas [3'~14 above and of the zero-density estimates (1) and
(2). For seek of completeness, we sketch the proof. First we insert, in the left
hand side of (9), the explicit formula, see, e.g., Davenport [2], ch. 19,

B p
S Alm)x(m) =6xx—5x,z%— S+ 0(% log? gx + x'/* log x), (10)

m<x lpl<T

where J, = 1 if y is the principal character, J, = 0 otherwise, J,,; = 1 if x = ¥ and
3,7 = 0 otherwise. We get that the error term of the explicit formula furnishes a
total contribution in (9) which is

Y\ P¢ X
max |(h+—; ilog2x< T log? X « P,

1
p2
T yoareasxaay Y/4<th( P4> T YT

since for our choice of T the second error term in (10) is negligible. We
remark that (x? — (x — h)”)/p « hx?~! and that maxy_»y<x<x+2y MaXy ch<y
(h+ Y/P"*)_lhxﬂ‘l < (X - 2Y)ﬁ_l « XP1) since X —2Y » X.

Using the definition of Z#, the explicit formula and the previous remarks we
have to estimate

Z Z Z XA« JHKP,T)X"_‘Z Z N(o,T,x) log X do

g<Py (mod q) p¢ &'V’ 12 g<Py (mod g)
2¢8US 2¢EUS

+X—1/2Z Z )NG,T,X), (11)

g<Py(modgq

where 5(P, T) is one of the functions defined in (4)—(5) (according to the existence
of the Siegel zero).
By (1) the second term in is

6/5

9 2

« x-12 (M) (log X)2 « X~1/2p=6/5(x5/12-¢/2)6/5(10g X)?
Y

«< P (12)
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Now we split the integral according to the range of validity of the zero-
density estimates (1) and (2). For o€ [1/2,4/5] we get

4/5
J X! Z Z Jv T’X) log X do « (]og X)23X—1/5(

12/25
PPX log? X) /
1/2 g<P y (mod q)

Y
« (log X)Px 13 x3/12-¢/2)12/25 p=12/25 . p=1/3, (13)

Let now o€ [4/5,1 — (P, T)]. We have

1—n(P,T) o
X Z Z N(o,T,x) log X do

4/5 g<Py (mod q)
(2+¢)(1—0)

1—n(P,T) 9 1 2 X

< J X log X L log” X do
4/5 Y
1-n(P,T)

« J X (1/6+20)(e-1) log X do « X~ (/6P T) (14)
4/5

If the Siegel zero does not exist, then
X~ W/OnP.T) « exp(—(1/6)(12k + 6) loglog X) = (log X) %71, (15)

If the Siegel zero exists, then

(1—p)log P

< (1-p)logP exp(—(2k + 1) loglog X)

X~ W/OnPT)  exp (——(2k + 1) loglog X log (——L))

« G(log X)™*!, (16)
now follows from log X < log Y and [11}-(16). O

Using the same argument in [Lemma 13 one can obtain the following result
on a sum over the excluded zeros.

LEMMA 16. Let T < X'/272P~2. There exists a positive constant ¢ such that

Z Z ZXﬁ«GXexp(—cllzgg‘;{),

g<Py (modgq)pes’
XEE

where G is defined as in Lemma 15.
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PrOOF. We argue as in starting from [11). We have

—ny(P, T)
XZ Z ZXﬂ_1<<XJIW(PTX”IZ Z N(o,T,y) log X do

g<Py(modq)peé’ I=m (P, T) 4<Py (mod q)
Z€6 xeé

+ X! EDN N N1 =1y (P, T), T, %), (17)
4<Py (mod g)
where #,(P,T) is one of the functions defined in (4)—(5) and #,(P,T) is one of
the functions defined in Lemmas [3' and 14’ (according to the existence of the
Siegel zero). Using the density estimate (2) and integrating, we have that the right
hand side of (17) is «<X!'-en(PT) 4 x1=/6Om(P.T)  x1=n(P.T)  Hence, if the
Siegel zero does not exist, we get that the right hand side of (17) is

log X
< Xexp(—e l(c)ai P).

If the Siegel zero exists, we have that the right hand side of (17) is

< X exp —810g X log el
log P (1-p)log P

~ log X log X
< X(1—-p)logP exp(—s og P) < GX exp (—c og P)

and follows. O

The last two lemmas of this section will be useful to evaluate the behaviour
of the main term and of the ‘“‘secondary” main terms.

LemMMA 17. Let ne[X — (3/4)Y,X +2Y) and ye€ &. Then there exists a
constant ¢ >0 such that L(Y,n) — Ly(Y,n) > cGY'/*.

Proor. By Lagrange’s theorem we have

L(Y,n) - Ly(Y,m)= > (1-FY>cyVea-pi
I+m*=n
X-Y<I<X+Y
Y/4<mk<Y
> cYV¥(1 — f) log P > ¢cGY /¥ O

LEMMA 18. Let ne[X — (3/4)Y,X +2Y]. Then there exists an absolute
constant ¢ > 0 such that |L,(Y,n)| < cY'VkxF-1,
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Proor. We have

|L,(Y,n)| < DD ES L P LI S SLELRSS 475 Cat)
n—X-Y<mk<n-X+Y
Y/4<mk<Y
since X — Y >» X. [l

4. Minor Arcs

Following the argument of Perelli-Pintz [10], we subdivide [1/Q,1+ 1/Q]
in H adjacent intervals I, j=1...,H, and we use the estimate K(z)=
Y x<mex+g€(mn) «min(H,1/|y|). Then we obtain, using also the Prime

Number [Theoreml| that
X+H
> IR = [ S@F(© | SEIR@KGE- &) dud

H H H
<« 33| ISOROI| ISR dade

=1 =1 J Ln 1+ 1i—J|

J 1S(a))? doc) (J | Fre(o)]? doc)
LNm LNm

« HY (log X)* (_r?axH Lﬂm | Fie(a0)|? doc). (18)

yeuey

Recalling Q = 4Y!~V/k and letting H = QP, we remark that, for 1 < g < P,
we have 1/¢gQ > 1/H and that, if P < g < Q, we have 1/¢qQ < 1/H. We will prove

—P%/qY 1/4Q a
J + J F (- + 77)
-1/9Q P4/qY q
2/H a
J F (—- + 77)
—2/H q

Let 1 < ¢ < P. By Lemma 10| we have

~P*/gY  (1/40 a
J + J Fi (— + 77)
-1/9Q P4lqY q

and the first part of follows.

2
dn « Y 1p~1/2 for 1 < ¢ < P,

2
dn « YY*1p=12K for P < g < Q. (19)

2 1/9Q 1 Y2/k~l
dn < Yz/k*z‘[ — AN K ——5—
P/qY |1| P
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Let now P < g < Q. Arguing as in eq. (41)}-(43) of Perelli-Zaccagnini [I1],

we get
2/H y l/k
J |+
—~2/H

H b

2
Fy (g + 71) ‘ dn « H™? (20)

l<d<H/Y'-Vk
where

IEEDS e(P(md)-;f) max( kzl( )nfdk‘/)

Y1 <n<Y; j=0

P(n,d) = Zk 1( )"Jdk_’ and Y, = (Y/8+ H/4)V*, v, = (2Y — H/4)"*. Hence
by Abel’s inequality we have

Zd « H erél;lé()” Ze(P(n,d) ‘—;) ‘ (21)

2ln<y

Applying with g=k -1, a=ka/q, F(x,y)=P(x,y), T=
H/Y'"Vk R=y into [2I), we have, since ka/q =a'/q’' for some q’ > g and
(a’,q') =1, that

Z ‘Z ‘<< H2Y2/k H—SP—I/K (22)
1<d<H/Y'-Vk

Now by [20), and H = QP, the second part of follows.
Using and we finally get

S R <« TV 0g X7 HYPR
m

P praK) < pyGK)

5. Major Arcs

Using what we have seen in section 2, we can write

Rap(n) = Z” ) q,n)L k(n)T (n)e(—nn) dn

q<P q

S

1 q * a [
+> = "Vi(a,q)e (—n —) Fi(n)D(a,q,n)e(—nn) dn
qSPq a=1 97 Jg,

1 q .
;52 k(a,q)e (—na) Fi(n)E(a,q,n)e(—nn) dn

&
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+ZZ (—n—)J Ak(aqn)S( +77>€( —nn) dn

q<P a=
=851 +8 + 83+ 84, (24)

say.

EsTiMATE OF Ss. Using (7), the Cauchy-Schwarz estimate and the Prime
Number [Theorem| we have that
, \1/2
d;y)

1/2
Sy < ZZ (J (1+ |5|Y)? dﬂ) (J
& !
1 1/2 1/2 p15/2 1/2
v(q 2 (Ylog X)/“P Y
WZ D ([ s an) « TREDE— «(3) @9

a
S(—+17>
g<Pa= ¢ q

for 0 > 0 sufficiently small.

EvaLuATION OF S). First of all we remark that

1
=3 B9 () | Bl T@pet-m) dn
g<P

#(q) —P*/qY  1/2
(qu(q) k(q’n)l(L/z +JP4/qY)|Fk(’7)T(’7)'d’7). (26)

g<P

In the error term we estimate explicitely only the integral over [P*/qY,1/2].
The other one can be estimated in a completely similar way. Applying [Lemma 2,
Holder inequality with s as in Lemma 8, 7(7) <« min(Y,1/|y|) and [Lemma 3, we
get that the error term in (26) is

k—1 1 ’ 1/2s / 1/2 o /(2s
<<Z( ) (j Ee(n))? dn) [ e ay
0 PY/qY

g<P

(2s—1)/2s

y 1/k=1/2s y1/2s (k — l)w(q)
P30 g(q)

< « Y*(log P)¥P3/% « y'/kpls,

for 0 > 0 sufficiently small. Hence (26) becomes
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Yy q) Hi(g,m) + O(Y /% p~17)

q<P

= Gk (n, P)L(Y,n) + O(Y/kp~1/s), (27)

ESTIMATION OF S,. Using (6), the Cauchy-Schwarz estimate and, for 6 > 0
sufficiently small, Lemma 9, we have that

1/2 1/2
S« Y 3 D Hil >i(j |Fk(n>|2dn) (j IW(x,den)
q<pq¢ ¢ &

< Y2 k)/ZkZZq(p(q Z (m)Hk(Xo,qX»Qan)‘<J

r<Pg<P x (mod r)
rlg

1/2
AW (o2 dn) :

(28)

We remark, for primitive characters y, cond x = rlg, that W(xx, ,.,n) = W(x,n) +
O((log gX ) ). It is easy to see that such an error term is negligible. Using Lemma
6 and the explicit formula for ¥(x,y), see (10), we get

172
1T(X0. ) Hi (X0, 4%, 9, )]
sty S ([ winia) | ED .,
r<Py (modr) qu qo\q
rlq

12
« Y@K/ (10g Y)kZ Z (J W (x,m)|? d’?)

r<Py(modr)

< Yl/k (log Y) (Z Z

max ( )
F=P y (mod r) X— 2Y<x<X+2Y Y/4<h<Y

E A(l D
l=x—h
(29)

Choosing now 7 = XY~!P] log? X and using with Y = x7/12+¢pl0
we get, from (28)—(29), that

Yl/k Y Vk(log Y)*

S <« G P (30)

EsTIMATE OF S3. First of all we remark that
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(7 1
== 5 S pgn S | T dr

r<P yebU¥ q<P q9 ped'VS’ 0
cond y=rlq rig

+o > > ZI—T—(@IHk(XO,qx,q,n)I

=P S0y = 99(9)
cond y=r|q rlq

Pt/qY 1/2
x 3 j 4 j \Fe(n) To(n)) di | 31)
pesoyr \J-1/2 P4/qY

In the error term we estimate explicitely only the integral over [P*/qY,1/2].
The other one can be estimated in a completely similar way.

Now we split the interval of integration according to P*/qY <# < 1/qQ and
1/g0 <n<1/2.

Using the Cauchy-Schwarz inequality, and Parseval identity, the
first integral is

-1/9Q 1/2

1/q0 12 0
J |F(m) T, (n)| dn < ( |Fie(n)]? dn) (JO T, (n)|? dn)

P4/qY JPt/qY

r1/49Q 1/2
P YZ/k—Z,nl—z d” (YXZﬂ—Z)l/Z
JP4/qY

« P32 ylkyb-1, (32)

Using Holder inequality with s as in [Lemma 8, Lemma § and Cemma 12
(since T = XY 'P] log> X < X/qQ for 6 > 0 sufficiently small), the second inte-
gral is

1/2 1 1/2S 1/2 (2S—1)/2$
J |Ex () T, ()] dn < (J | Fr(m)]* d’?) (J | T, () >/ 7D dn)
/40 0 1/4Q

12 (25-1)/2s
« YVk-1/5) b1 J 725D g
1/9Q

< Yl/k_l/(zs)Xﬁ_‘l(qQ)1/(25) &< P—l/(zs)Yl/kXﬁ—l. (33)
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Hence, using (32)-(33), Lemmas 6 and 16, the error term in (31) is

« PUCIY XS log PYF ST S X

r<P XeEEUS pes'US’
« P-1/Gs) yl/k y-1 X84 xP | « YVkpl/Gs), (34)

since f§ < 1.
Using Lemmas 1 and 3, the first term in (31) becomes

—Z Z t(0)Hi(x,r,n) Z 1()x( J)x(j)xo,j(r)Hk(Xo,j’J.’") Z L,(Y,n)

r<P yé8Us ro(r) 55, JoU) pe&US’
x (mod r)
7(X) .U(J
Yy D S D pn) S L
r<P yesU¥ J<P/r pe&'UY’
x (mod r) ()=
P
:—Z Z Tk(x,r,n)6k<n,—,r) Z L,(Y,n). (35)
r<P yeéU¥ r pe&'VY’
x (mod r)

Hence, by (31)—(35), we finally get

Ss==Y > Tk(X,r,n)6k<n,17),r> S L(Y,n)+ O(YVEPV/9) (36)

r<P ye8UY¥ pe&' VY’
x (mod r)

Hence, from (24), (25), (27), (30) and (36) we get

Ry(n) = Si(m, P)L(Y,n) = > > Tk(x,r,n)Gk(n,g,r> > Ly(Y,n)

r<P yeéU¥ pe&'VF’
x (mod r)

Yl/k

+ O(Yl/kp—l/(3s) + leTy> (37)
og

6. The Singular Series

Here we follow closely the approach of Zaccagnini [15] and Perelli-Zaccagnini
[11].
As in section 12 of Zaccagnini [15], let P* = P*/5 and write
F ={1}U{r < P*,r is an excluded or Siegel modulus}.

In the following we will call the r < P as small moduli and the P* <r < P large
moduli.
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LARGE mMopULL. The contribution of the large moduli, ie. P* <r < P, can
be performed as in section 13 of [I5]. We just sketch the main differences.

By eq. (13.1) of we have

Titrn) =" olrn), where a(rzm = 30 2(F0)  (38)
4 h (mod )

and f(h) = h* —n. Now we need the following lemma.

LemMA 19. Let y (modr) be a primitive character. Then for all but Hr=3/8
integers n€ [ X,X + H|, we have

o(r, x,n) « r'=1/0&=1)

uniformly for r < X /100.

In the proof we have to study

AX,H,r)=|{ne[X,X + H]: (r,n) > r'/?}| and
B(r) = |{n (modr): (r,n) = r'/?}|.

Since it is clear that A(X,H,r) « (H/r+ 1)B(r) and B(r) « d(r)r'/?, we get
H
A(X,H,r) < 7

which is the analogue of eq. (13.8) of [15]. The rest of the proof is the same of
Lemma 13.1 of [I5].

Using we get that for all but H(P*)™/* integers n e [X, X + H],
we have that

o(r,jt,n) < ri=1/0&=1) (39)

holds for all excluded or Siegel moduli r e (P*, P].
From Lemmas 2 and 5, we have, letting R = P/r, that

S (n R #*(q) B K
km Rr) < Y [T 1pc(pin) — 1] « (log R)*. (40)
=z 2@ 4,
(g,r)=1

Hence we get, by (38)—(40) and Lemmas 18 and 16, that
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Z Z Tk(x,r,n)6k<n,$,r) Z L,(Y,n)

P*<r<P ye8U¥ pe&'UVY’
x (mod r)

« Y'kx\(log P (pr)7/OE L ST ST S x4 xF

P*<r<P xeé& peé&’
x (mod r)

« Y VK p-1/(10(k-1)) (41)
holds for all but « HP~!/5 integers ne [X,X + H].
SmaLL MODULI. The contribution of the small moduli follows the line of the

Corollary in section 3 of Perelli-Zaccagnini [I1]. We just sketch the main dif-
ferences. Let R = P/r and

A(n,q,r) = %u«q, n?) quo)k(p,n) ).
Then
Ampn) = ——=u((p.n)D) Y 2= Y elaxin)
p x(modp) xe(p)

say, where |.2/(p)] <k —1 and |c(x)| < ¢(p)~'. We approximate

Sn k= T %rll(pkmn) 1)
qg< pq

(q’r)zl

(n, R, r)= [] (1 + 4, p,r),
P<R’

say, where R’ = R'/2, Let 2(R’) = {q € N\{0} : u(q) # 0, pl|g = p < R'}. Hence

Sk(n,R,r) —I(n,R',r) = Z A(n,q,r) + Z A(n,q,r) = Z] +Zz, (42)

R’'<g<R >R
q¢2(R') qge2(R’)

say.
To estimate >, we argue as in equations (12.10)—(12.12) of [15]; we just
choose differently the parameter A there. We choose 1 = (log P)_'/ 2 to obtain

22 « exp(—c(log P) 1/2). (43)
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To estimate the mean square of >, we argue as in eq. (53) of [1I]. We finally
get

H H
]Z ' < (R,—t—R)(logX) < B/

X<n<X+H

and hence, for all but « H!=%/%0 integers in [X,X + H], we have

Zl « P12, (44)

Using (42)—-(44) we have, for all but H'=%/% integers in [X,X + H] and all
re %, that

Si(m R,r) = ] (14 A(n, p,r) + O(exp(—c(log P)''?))

P<R'
P pk(p, n) _p-1 - a
) ”Il( ) png <P = (P, n)) +exp(—c(log P) 7). (45)
plr

Before ending this section we state other two lemmas on the singular series
that we will use to finish the proof of the [Theoreml

LemMA 20.  For all but <« H'=9/% integers ne [X,X + H] and all r € #\{1},
we have

e (n.)

<c]] (”—ﬁ(—”i> + O(exp(—c(log P)/?)).

p<P p
The proof of is essentially the same of Lemma 14.1 of [13].

LeMMA 21 (Lemma 14.2 of [15]).

I (p — (D, n)) > (g Py

p<P p—1

7. Proof the

Now we are ready to finish the proof.

From we get
|Rm(n)| < Y1/kp=1/00K) (46)
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for all but « HP~'/GK) integers n e [X X + H|. Let C(X, H) the union of all the
exceptional set encountered in [4I), (45), Lemma 20 and [46). It is clear that

|C(X, H)| « HP~V/GK),
Now, from and [41), we have, for every ne [X,X + H|\C(X, H), that
Rsm(n) = 6k(n’ P)L(Y7n) - Tk(i? ;7’1)6/((”’})/;’ f)Lﬂ.( Y’n)

-5 S TG mSen, P/r,r) S Ly(Y,n)

r<P+ yeé& peé’
x (mod r)
Yy Vk
+ O(Yl/"P‘l/(“) + Gﬁ) (47)
log“' v

Now by (45), Lemmas 20 and 21 we obtain that

p— pk p,n)
(n,P) 2 5 1‘[ (48)

pP<P
and
i p —pk(p,n))

Te(x,r,n)Si | n,—,r)| <2c =, 49
)@ (n ) H( s (49)

for re #\{1}, if P is sufficiently large.
Now, by and [(47)-(49), we have

Run(n) > H” ”k(p’ CGYVE—4c 3" ST N L (v,n)

p<P r<P* xeé& peé’
x (mod r)

Yl/k
+ O(Glog—Y + Yl/kP-l/“f)) (50)

By Lemmas and we get

S S IL(y <YY" N S X <0G, (51)

r<P* xeé& ped’ r<P* xye& peé&’
x (mod r) x (mod r)

where ¢(d) can be chosen arbitrarily small.
Recalling [Lemma 13’ and the definition of G we obtain
G - clll
=1-f>——.
log P p= P2 log X
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Letting v =v(k) = 1/(3s), from [47}-(51) and [Cemma 21, we finally get

GY!'/*

Rygi(n) » —
(1) (log Y)k

(52)

for every ne [X,X + H\C(X, H).
Now, from (3), and [52), we have that
R(n) » GYl/k(log Y)_k,

for every ne[X,X + H] with at most O(H!'~%/GK)) exceptions. The Theoreml
follows. '
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