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THREE-DISTANCE SEQUENCES WITH THREE SYMBOLS

By

Kuniko SAKAMOTO

Abstract. We will show that every 3 dimensional cutting sequence is
a three-distance sequence, and there are uncountable many periodic
or aperiodic three-distance sequences (with 3-symbols) which are not
3 dimensional cutting sequences.

1 Introduction

W. F. Lunnon and P. A. B. Pleasants [1] defined two-distance sequences
and proved that each 2 dimensional (2D) cutting sequence (see below, for the
definition) is a two-distance sequence and the converse also holds. The basic
framework of their research is traced back to the one by M. Morse and G. A.
Hedlund [4].

In this paper, we will discuss the relationships between 3 dimensional (3D)
cutting sequences and three-distance sequences. We will show that every $3D$

cutting sequence is a three-distance sequence, and there are uncountable many
periodic or aperiodic three-distance sequences which are not $3D$ cutting
sequences.

First, we recall the definition of $2D$ cutting sequences. Although the definition
given below is slightly different from that described in [1] or [5], the equivalence
of $2D$ cutting sequences and two-distance sequences ([1, theorem 1]) holds by the
same proof.

The set of the real numbers and the rational integers, and the non-negative
rational integers are denoted by $\mathbb{R},$ $Z,$ $Z_{+}$ , respectively.

We consider the standard orthogonal coordinates $x,$ $y$ in the 2 dimensional
Euclidean space $\mathbb{R}^{2}$ , and take a line $L$ in $\mathbb{R}^{2}$ . We assume that the slope of the line
$L$ is non-negative, and $L$ is not parallel to either axis. When the line $L$ crosses a
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vertical grid line or a horizontal one, we mark the point of the intersection and

label it as A and $B$ , respectively.

Figure 1

In the above labeling, we need to specify the way of labeling the intersection
$L\cap Z^{2}$ .

Type 1: $\#(L\cap Z^{2})=1$ . Label the point of the intersection $L\cap Z^{2}$ by either of the
two elements of $S_{2}=$ {AB, BA}.

Type 2: $\#(L\cap Z^{2})\geq 2$ . Observe that $\#(L\cap Z^{2})=\infty$ .

(1) Label all the points of the intersection $L\cap Z^{2}$ by one of the two elements
of $S_{2}$ .

In this way, we obtain two infinite periodic sequences associated with the
line L.
(2) Fix an arbitrary point $P$ on L. The point $P$ divides $L$ into two half-lines

$L_{P}^{+}$ and $L_{P}^{-}$ . We label the integer points on $L_{P}^{+}\backslash \{P\}$ by an element of $S_{2}$ ,

and label the integer points on $L_{P}^{-}\backslash \{P\}$ by another element of $S_{2}$ . When $P$

is an integer point, we label $P$ by an element of $S_{2}$ .

These give one or more two-way infinite sequences of symbols A and B. Such
sequences are called the $2D$ cutting sequences obtained from L.

REMARK 1.1. The labeling of Type 2 (2) is introduced to obtain the
equivalence between $2D$ cutting sequences and two-distance sequences ([1]).

2 $3D$ Cutting Sequence

In this section, we define $3D$ cutting sequences as a natural extension of $2D$

cutting sequences. We consider the standard orthogonal coordinates $x,$ $y,$ $z$ in the
3 dimensional Euclidean space $\mathbb{R}^{3}$ . Let $P_{uv}(L)$ be the projection of a line $L$ in $\mathbb{R}^{3}$
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on the uv-plane, where $u,$ $v\in\{x, y, z\}$ . We assume that each projection $P_{uv}(L)$

has a non-negative slope, and $L$ does not lie in any uv-hyperplane. Let $\mathcal{H}_{A}$ (resp.
$\mathcal{H}_{B},$ $\mathcal{H}_{C}$ ) be the collection of hyperplanes in $\mathbb{R}^{3}$ defined by

$x=r_{x}$ , (resp. $y=r_{y},$ $z=r_{Z}$ )

where $r_{x},$ $r_{y},$
$r_{Z}\in Z$ .

When $L$ intersects with a hyperplane $H_{A}\in \mathcal{H}_{A}$ (resp. $H_{B}\in \mathcal{H}_{B},$ $H_{C}\in \mathcal{H}_{C}$ ),
label the point of the intersection $H_{A}\cap L$ (resp. $H_{B}\cap L,$ $H_{C}\cap L$) by A (resp. $B,$ $C$).

Figure 2

Let $\mathcal{L}_{x}$ (resp. $\mathcal{L}_{y},$
$\mathcal{L}_{Z}$ ) be the collection of the lines defined by the equation

$y=r_{y}$ and $z=r_{Z}$ , $r_{y},$
$r_{Z}\in Z$

(resp. $x=r_{x}$ and $z=r_{Z}$ , $r_{x},$ $r_{z}\in Z$ ,

$x=r_{x}$ and $y=r_{y}$ , $r_{X},$ $r_{y}\in Z.$ )

We put $\mathcal{L}=\mathcal{L}_{x}\cup \mathcal{L}_{y}\cup \mathcal{L}_{z}$ and the set $A=\cup \mathcal{L}$ is called the grid of $\mathbb{R}^{3}$ in the
present paper.

As we did in defining the $2D$ cutting sequences, we need to specify the
way of labeling the points of the intersection of $L$ and $\Lambda$ or $Z^{3}$ . We divide our
consideration into the following three cases. First notice that if $L\cap Z^{3}\neq\emptyset$ then
$\#(L\cap Z^{3})=1$ or $\infty$ .

Case 1 $L\cap Z^{3}\neq\emptyset$ and $L\cap(A\backslash Z^{3})=\emptyset$ ,

Case 2 $L\cap Z^{3}=\emptyset$ and $L\cap(A\backslash Z^{3})\neq\emptyset$ and
Case 3 $L\cap Z^{3}\neq\emptyset$ and $L\cap(A\backslash Z^{3})\neq\emptyset$ .
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Case 1:

type 1: $\#(L\cap Z^{3})=1$ .

Label the point of the intersection $L\cap Z^{3}$ by an element of $S_{3}$ , where

$S_{3}=$ {ABC, ACB, BAC, BCA, CAB, CBA}.

In this way, we obtain the six infinite sequences associated with the line L.

type 2: $\#(L\cap Z^{3})=\infty$ .

Fix an arbitrary point $P$ on L. The point $P$ divides $L$ into two half-lines
$L_{P}^{+}$ and $L_{P}^{-}$ . Pick up two (possibly equal) elements $\chi+\chi-$ of $S_{3}$ . Then label
the points of the intersection $(L_{P}^{+}\backslash \{P\})\cap Z^{3}$ by $X^{+}$ , and label the points of the
intersection $(Lp\backslash \{P\})\cap Z^{3}$ by $\chi-$

In this way, we obtain the 36 infinite periodic sequences associated with the
line L.

Case 2:

type 1: Suppose that there exists a unique $l\in \mathcal{L}$ which intersects with L.

We define $S_{u}(u=x, y,z)$ as follows.

$S_{x}=$ {BC, CB}, $S_{y}=$ {AC, CA}, $S_{Z}=$ {AB, BA}.

When $\ell\in \mathcal{L}_{u}$ , label the point of the intersection $\ell\cap L$ by an element of $S_{u}$ .
In this way, we obtain two infinite periodic sequences associated with the

line L.

type 2: Suppose that there exist two lines $\ell,$
$\ell^{\prime}\in \mathcal{L}$ such that $ l\cap L\neq\emptyset$ and

$ l^{\prime}\cap L\neq\emptyset$ , and recall that $L$ does not lie in any uv-hyperplane. Fix an arbitrary
point $P$ on L. The point $P$ divides $L$ into two half-lines $L_{P}^{+}$ and $L_{P}^{-}$ . Pick up two
(possibly equal) elements $\chi_{u}+\chi_{u}-ofS_{u}$ . Then label the point of the intersection
$(L_{P}^{+}\backslash \{P\})\cap$ ’, $l\in \mathcal{L}_{u}$ by $X_{u^{+}}$ , and the point of the intersection $(L_{P}^{-}\backslash \{P\})\cap l^{\prime}$ ,
$l^{\prime}\in \mathcal{L}_{u}$ by $X_{\overline{u}}$ . When $\{P\}=L\cap l,$ $\ell\in \mathcal{L}_{u}$ , we label $P$ by an element of $S_{u}$ .

Case 3: First we observe that, $\#\{\ell\in \mathcal{L} : L\cap(l\backslash Z^{3})\neq\otimes\}=\infty$ .

We define the following notation for the labeling in this case. Let $W$ be the
set of all finite sequences with symbols $A,$ $B$ , C. A function

$\mathcal{D}_{u}$ : $W\rightarrow W$

$(u=x, y, z)$ is defined as follows: for $w\in W,$ $\mathcal{D}_{u}(w)$ is a finite sequence with two
symbols obtained by removing $\delta(u)$ from $w$ , where
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$\delta(u)=\left\{\begin{array}{l}A,\\B,\\C,\end{array}\right.$ $ifu=zifu=yifu=x$

.

Also a function
$\mathcal{F}_{u}$ : $W\rightarrow W$

is defined as follows: for an element $w=w_{1}\cdots w_{l}$ of $W(\{w_{1}, \ldots, w_{t}\}\subset$

$\{A, B, C\}),$ $\mathcal{F}_{u}(w)=w_{l}\cdots w_{1}$ .
We fix an arbitrary point $P$ on L. The point $P$ divides $L$ into two half-lines $L_{P}^{+}$

and $L_{P}^{-}$ .

type 1: $\#(L\cap Z^{3})=1$ .

Label the point of the intersection $L_{P}^{+}\cap Z^{3}$ by an element $X$ of $S_{3}$ . For the
labeling the intersection $\ell\cap L_{P}^{\pm}$ , we take the following two ways.

(1) Label the intersection $\ell\cap L_{P}^{+}$ and $\ell^{\prime}\cap L_{P}^{-}$ with $\ell,$ $\ell^{\prime}\in \mathcal{L}_{u}$ as $\mathcal{D}_{u}(X)$ .
(2) Label the intersection $\ell\cap L_{P}^{+}$ with $l\in \mathcal{L}_{u}$ by $\mathcal{D}_{u}(X)$ , and the intersection

$\ell^{\prime}\cap L_{P}^{-}$ with $l^{\prime}\in \mathcal{L}_{u}$ by $\mathcal{F}_{u}\circ \mathcal{D}_{u}(X)$ .
type 2: $\#(L\cap Z^{3})=\infty$ .

Pick up two (possibly equal) elements $X^{+},$ $X^{-}$ of $S_{3}$ . Label the points of the
intersection $L_{P}^{+}\cap Z^{3}$ by $X^{+}$ and $L_{P}^{-}\cap Z^{3}$ by $X^{-}$ . Then label $L_{P}^{+}\cap\ell$ with $\ell\in \mathcal{L}_{u}$ by
$\mathcal{D}_{u}(X^{+})$ and $L_{P}^{-}\cap\ell^{\prime}$ with $\ell^{\prime}\in \mathcal{L}_{u}$ by $\mathcal{D}_{u}(X^{-})$ .

These give one or more bi-infinite sequences with symbols $A,$ $B$ , C. Such
sequences are called the $3D$ cutting sequences obtained from L.

REMARK 2.1. The function $\mathcal{D}_{u}$ is naturally extended to a function $\mathcal{D}_{u}$ :
$\Sigma\rightarrow\Sigma$ of the set $\Sigma$ of all infinite sequences with symbols $A,$ $B$ , C.
If $S$ is a $3D$ cutting sequence associated with a line $L$ , then $\mathcal{D}_{u}(S)$ is a $2D$

cutting sequence associated with the line $P_{uv}(L)$ , where $\{u, v\}\subset\{x, y, z\}$ . In
this way, $2D$ cutting sequences are $\backslash obtained$ from $3D$ cutting sequences.

3 Three-Distance Sequence

In this section, we define the notion of three-distance sequences with three
symbols. The following definitions are the natural extensions of those for two-
distance sequences with two symbols $A,$ $B[1]$ .

Let $S$ be a bi-infinite sequence with three symbols $A,$ $B$ , C.

DEFINITION 3.1. A word $w$ in $S$ is a finite string of consecutive symbols
from S.



134 Kuniko SAKAMOTO

DEFINITION 3.2. The length $|w|$ of a word $w$ is the total number of symbols
which are contained in $w$ .

DEFINITION 3.3. The i-weight $|w|_{i}$ of a word $w(i\in\{A, B, C\})$ is the number
of the symbol $i$ in the word $w$ . Notice that $|w|=|w|_{A}+|w|_{B}+|w|_{C}$ .

DEFINITION 3.4. A sequence $S$ is called a three-distance sequence, if, for each
$l\in Z_{+}$ and for each $i\in\{A, B, C\}$ , we have the inequality

$\#$ { $|w|_{l}$ : $w$ is a word of $S$ and $|w|=l$} $\leq 3$ .

Similarly we define m-distance sequences for infinite sequences with $n$ symbols
$(n\geq 2)$ .

DEFINITION 3.5. An infinite sequenoe $S$ with $n$ symbols $x_{1},$ $x_{2},$
$\ldots,$

$x_{n}$ is
called an m-distance sequence if, for each $l\in Z_{+}$ and for each $x_{\alpha}(1\leq\alpha\leq n)$ , we
have the inequality

$\#\{|w|_{x_{\alpha}} : |w|=l\}\leq m$ .

By the definition, every $(m-1)$ -distance sequence is an m-distance sequence.

LEMMA 3.1. Let $S$ be an infinite sequence with $n$ symbols $x_{1},$ $x_{2},$
$\ldots,$

$x_{n}$ .
(1) If $S$ is m-distance, then, for each $l\in Z_{+}$ andfor each $x_{\alpha}(1\leq\alpha\leq n)$ , there
exist $\mu\in z_{+}$ and $m^{\prime}$ with $0\leq m^{\prime}\leq m-1$ such that

$\{|w|_{x_{\alpha}} : |w|=l\}=\{\mu+\eta : 0\leq\eta\leq m^{\prime}\}$ .

(2) If $S$ is not m-distance, then there exist an $l\in Z_{+}$ an $\alpha\in\{1, \ldots, n\}$ and two

words $w_{1},$ $w_{2}$ in $S$ of length 1, such that $|w_{2}|_{x_{u}}-|w_{1}|_{x_{\alpha}}=m$ .

PROOF. Fix an arbitrary $l\in Z_{+}$ and $\alpha\in\{1, \ldots, n\}$ . We put $\mu=\min\{|w|_{x_{\alpha}}$ :
$|w|=l\}$ and $M=\max\{|w|_{x_{\alpha}} : |w|=l\}$ . Then for each word $w$ such that $|w|=l$ ,
$\mu\leq|w|_{x_{\alpha}}\leq M$ . When $M-\mu\leq 1$ , there is nothing to prove. In what follows, we
consider the case $M-\mu\geq 2$ . The sequence $S$ is written as

$S=\cdots w_{-1}w_{0}w_{1}\cdots w_{l}w_{l+1}w_{l+2}\cdots$

Take two words $w_{1},$ $w_{1}^{+}$ in $S$ , such that $|w_{1}|_{x_{\alpha}}=\mu,$ $|w_{1}^{+}|_{x_{\alpha}}=M$ . We assume,
without loss of generality, that $w_{1}=w_{1}w_{2}\cdots w_{l-1}w_{l}$ , $w_{1}^{+}=w_{1+d}w_{2+d}\cdots$

$w_{l-1+d}w_{l+d},$ $d>0$ . We define

$\chi(w_{1})=w_{2}\cdots w_{l+1}$ ,
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and
$\chi^{c}(w_{1})=\chi(\chi^{c-1}(w_{1}))=w_{1+c}\cdots w_{l+c}$ , $(c\in Z_{+})$ .

If $|\chi^{c}(w_{1})|_{x_{\alpha}}=|w_{1}|_{\chi_{\alpha}}$ , for each $c\geq 0$ , then $S$ is three-distance. If it is not the
case, let

$c_{1}=\max\{c:|\chi^{c}(w_{1})|_{x_{\alpha}}=|w_{1}|_{x_{\alpha}}\}$ .

By the definition, it follows that

$|\chi^{c_{1}+1}(w_{1})|_{x_{\alpha}}=|w_{1}|_{x_{\alpha}}+1$ .

If $|\chi^{C}(w_{1})|_{x_{\alpha}}\leq|w_{1}|_{x_{\alpha}}+1$ , for each $c\geq c_{1}$ , then $S$ is three-distance. If it is not
the case, we put

$c_{2}=\max\{c:|\chi^{c}(w_{1})|_{x_{\alpha}}\leq|w_{1}|_{x_{\alpha}}+1, c\geq c_{1}\}$ .

Then
$|\chi^{c_{2}+1}(w_{1})|_{x_{\alpha}}=|w_{1}|_{x_{\alpha}}+2$ .

If $|\chi^{c}(w_{1})|_{x_{\alpha}}\leq|w_{1}|_{x_{\alpha}}+2$ , for each $c\geq c_{2}$ , then $S$ is three-distance. If it is not
the case, let

$c_{3}=\max\{c:|\chi^{c}(w_{1})|_{x_{\alpha}}\leq|w_{1}|_{x_{\alpha}}+2, c\geq c_{2}\}$ .

Then
$|\chi^{c_{3}+1}(w_{1})|_{x_{\alpha}}=|w_{1}|_{x_{\alpha}}+3$ .

We repeat this process up to $ M-\mu$ steps. If $S$ is m-distance, then $M-\mu<m$ .
Then $\mu$ and $m^{\prime}$ $:=M-\mu$ satisfy the conclusion of (1). If $S$ is not m-distance,
then there exist an $l\in Z_{+}$ and an $\alpha$ such that $\#\{|w|_{x_{\alpha}} : |w|=l\}>m$ . Arguing
as above, we may find two words $w_{1},$ $w_{2}$ in $S$ of length 1, such that
$|w_{2}|_{x_{\alpha}}-|w_{1}|_{x_{\alpha}}=m$ .

This completes the proof.

Some examples of three-distance sequences with three symbols will be given
in the next section.

4 $3D$ Cutting Sequences and Three-Distance Sequences

EXAMPLE 4.1. The line in $\mathbb{R}^{3}$ defined by the equation $x=y=z$ ’ yields a
periodic $3D$ cutting sequence

$(ABC)^{\infty}=\cdots$ ABCABCABCABC $\cdots$ ABCABCABCABC $\cdots$ .

It is easy to see that the above sequence is two-distance.
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Table 1 is a list of the words in the above sequence of length up to 5, and
their weights.

Table 1

$Len|w|$

gth
$Wordsw$

$\frac{Weights}{|w|_{A}|w|_{B}|w|_{C}}$

1 $A,$ $B,$ $C$ $0,1$ $0,1$ $0,1$

$2$ AB, BC, CA 0,10,10,1
3 ABC, BCA, CAB 1 1 1
4 ABCA, BCAB, CABC 1, 2 1, 2 1, 2
5 ABCAB, BCABC, CABCA 1, 2 1, 2 1, 2

$\square $

EXAMPLE 4.2. The line $L$ which passes through the points $(1+\sqrt{2}$ ,
$(1+\sqrt{5})/2,1)$ and (0,0,0) yields an aperiodic $3D$ cutting $sequence\cdots BACB-$

BCABCBBACBCBABCBCBABCBACBBCABCBBACBCBABCBCBABCBACBBC-
ABCBBCABCBABCBCBABABCBBACBBCBACB $\cdots$ . Theorem 4.1 below shows
that the above sequence is three-distance.

Table 2 is a list of the words in the above sequence of length up to 4, and
their weights.

Table 2

$Len|w|$

gth
$wWords$

$\frac{Weights}{|w|_{A}|w|_{B}|w|_{C}}$

1 $A,$ $B,$ $C$ $0,1$ $0,1$ $0,1$

2 AB, BA, BB, AC, CB, CA, BC $0,1$ $0,1,2$ $0,1$

3 ABC, CBB, BAB, BBA, BCB, CBC, BAC, CAB, CBA, $0,1$ 1, 2 $0,1,2$

BBC, BCA, ACB, ABB
4 ACBB, ABCB, ACBC, ABCB, BACB, BBCA, BCAB, BCBB, $0,1$ 1, 2, 3 1, 2

BBAC, BCBA, BABC, BCBC, BBCB, CBBC, CABC, CBCA,
CBBA, CABB, CBAC, CBAB, CBCB

$\square $

We show that each $3D$ cutting sequence is three-distance.
The orthogonal projection on the u-axis $(u\in\{x, y, z\})$ in $\mathbb{R}^{3}$ is denoted by

$P_{u}$ . Let $S$ be a $3D$ cutting sequence associated with a line $L$ in $\mathbb{R}^{3}$ . Take an
arbitrary word $w=w_{1}\cdots w_{l}$ in $S,$ $\{w_{1}, \ldots, w_{l}\}\subset\{A, B, C\}$ . And take the points
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(4.0)

$m,$
$m^{\prime}$ which correspond to $w_{1}$ and $w_{l}$ respectively, as the point of the intersection

$L\cap H_{i}(H_{i}\in \mathcal{H}_{i}, i\in\{A, B, C\})$ , or $L\cap\ell(\ell\in \mathcal{L})$ , or $L\cap Z^{3}$ . Let $M$ be the segment
of $L$ whose end-points are $m$ and $m^{\prime}$ . The length of the projection of $M$ on the
u-axis is denoted by $\overline{P_{u}(M)}$ . Then we obtain the following inequalities.

$\{\left|\begin{array}{l}w\\w\\w\end{array}\right|B_{-1\leq^{\frac}\leq|w|_{C}+1}^{-1\leq\leq|w|_{A}+}-1\leq^{\overline{\frac{P_{x}(M)}{P_{z}^{y}(M)P(M)}}}\leq|w|_{B}+1^{1}$

The symbols $A,$ $B,$ $C$ correspond to $x,$ $y,$ $z$ , respectively via the above inequality.

THEOREM 4.1. Each $3D$ cutting sequence is three-distance.

PROOF. Let $S$ be a $3D$ cutting sequence associated with a line $L$ in $\mathbb{R}^{3}$ . We
assume that there exist an $i\in\{A, B, C\}$ and two words $w_{1},$ $w_{2}$ in $S$ , such that
$|w_{1}|=|w_{2}|$ and $|w_{1}|_{j}+2<|w_{2}|_{j}$ . Then we obtain

$0<|w_{1}|_{i}+1<|w_{2}|_{i}-1$ . (4.1)

Let $u$ be the coordinate corresponding to $i$ via (4.0). And let $M_{1},$ $M_{2}$ be the
segments of $L$ whose end-points are the points corresponding to the first and last
symbols of $w_{1},$ $w_{2}$ respectively. Then the slope of $P_{uv}(L)$ is

$\overline{\frac{P_{v}(M_{1})}{\overline{P_{u}(M_{1})}}}=\overline{\frac{P_{v}(M_{2})}{\overline{P_{u}(M_{2})}}}$ .

Let $k$ be a symbol, $k\in\{A, B, C\}\backslash \{i\}$ and $v$ the coordinate corresponding to $k$,
$v\in\{x, y, z\}\backslash \{u\}$ . By using the inequalities (4.0) and (4.1), it follows that

$\frac{|w_{1}|_{k}-1}{|w_{1}|_{i}+1}\leq\overline{\frac{P_{v}(M_{1})}{\overline{P_{u}(M_{1})}}}=\overline{\frac{P_{v}(M_{2})}{\overline{P_{u}(M_{2})}}}\leq\frac{|w_{2}|_{k}+1}{|w_{2}|_{i}-1}$ .

Therefore, we have

$\frac{|w_{1}|_{k}-1}{|w_{1}|_{i}+1}\leq\frac{|w_{2}|_{k}+1}{|w_{2}|_{i}-1}$ . (4.2)

From (4.1) and (4.2), we obtain

$|w_{1}|_{k}-1<|w_{2}|_{k}+1$ . (4.3)

Let $j$ be the symbol other then $i,$ $k$ . Namely $\{i, j, k\}=\{A, B, C\}$ . Then,

$|w_{1}|=|w_{1}|_{j}+|w_{1}|_{j}+|w_{1}|_{k}=|w_{2}|_{l}+|w_{2}|_{j}+|w_{2}|_{k}$

$<|w_{2}|_{j}-2+|w_{1}|_{j}+|w_{2}|_{k}+2=|w_{2}|_{i}+|w_{1}|_{j}+|w_{2}|_{k}$ .
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Hence
$|w_{2}|_{j}<|w_{1}|_{j}$ . (4.4)

By the symmetric argument, from (4.2), we have

$\frac{|w_{1}|_{j}-1}{|w_{1}|_{i}+1}\leq\frac{|w_{2}|_{j}+1}{|w_{2}|_{i}-1}$ , (4.5)

and thus
$|w_{1}|_{j}-1<|w_{2}|_{j}+1$ . (4.6)

The inequalities (4.4) and (4.6) imply $|w_{1}|_{j}-1<|w_{2}|_{j}+1<|w_{1}|_{j}+1$ . Hence,
we have

$|w_{2}|_{j}+1=|w_{1}|_{j}$ . (4.7)

Then, $|w_{1}|_{i}+|w_{1}|_{j}=|w_{1}|_{i}+|w_{2}|_{j}+1<|w_{2}|_{j}+|w_{2}|_{j}-1$ . Therefore, we obtain

$|w_{1}|_{k}>|w_{2}|_{k}$ . (4.8)

The inequalities (4.8) and (4.3) imply $|w_{1}|_{k}-1<|w_{2}|_{k}+1<|w_{1}|_{k}+1$ . Hence
we have

$|w_{2}|_{k}+1=|w_{1}|_{k}$ . (4.9)

From (4.7) and (4.9),

$|w_{1}|=|w_{1}|_{i}+|w_{1}|_{j}+|w_{1}|_{k}$

$=|w_{1}|_{i}+|w_{2}|_{j}+|w_{2}|_{k}+2<|w_{2}|_{j}+|w_{2}|_{j}+|w_{2}|_{k}=|w_{2}|$ .

This is the contradiction. Hence for each $i\in\{A, B, C\}$ , there exist no words
$w_{1},$ $w_{2}$ such that $||w_{2}|_{j}-|w_{1}|_{i}|>2$ . So $S$ is a three-distance sequence. Q.E. $D$

There exists a three-distance sequence which is not a $3D$ cutting sequence.
We give such an example.

EXAMPLE 4.3. A periodic infinite sequence which repeats the word
AACABCAB

$ S=\cdots$ CABAACABCABAACAB $\cdots=(AACABCAB)^{\infty}$

is three-distance. We show that $S$ is not a $3D$ cutting sequence. If $S$ is a $3D$

cutting sequence associated with a line $L$ in $\mathbb{R}^{3}$ , then by Remark 2.1, for each $u$ ,
$\mathcal{D}_{u}(S)$ is a $2D$ cutting sequence associated with $P_{uv}(L)(\{u, v\}\subset\{x, y, z\})$ . Here
by [1, Theorem 1], $\mathcal{D}_{u}(S)$ is a two-distance sequence. However,

$\mathcal{D}_{y}(S)=\cdots$ CAAACACAAACA $\cdots=(CAAACA)^{\infty}$
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is not two-distance with two symbols $A,$ $C$ , since the C-weight of the words AAA,
ACA, CAC of length 3 in $\mathcal{D}_{y}(S)$ is $0,1,2$ respectively. Thus $\mathcal{D}_{y}(S)$ cannot be a
$2D$ cutting sequence. Accordingly, $S$ is a three-distance sequence which is a not
$3D$ cutting sequence.

5 Three-Distance Sequences which are not $3D$ Cutting Sequences

In this section, we show that there exist infinitely many three-distance
sequences which are not $3D$ cutting sequences. Let $x_{1},$

$\ldots,$
$x_{n}$ be the $n$ symbols.

We fix a bijection
$f_{n}$ : $\{1, 2, \ldots, n!\}\rightarrow S_{n}$ ,

where
$@_{n}=\{x_{\sigma_{1}}\cdots x_{\sigma_{n}} ; \{\sigma_{1}, \ldots, \sigma_{n}\}=\{1, \ldots, n\}\}$ .

Note that $\#\{S_{n}\}=n!$ . For each bi-infinite sequence $ R_{n}=\cdots p_{-1}\rho_{0}\rho_{1}p_{2}\cdots$ with
$p_{v}\in\{1,2, \ldots, n!\}(v\in Z)$ , we define a bi-infinite sequence with $n$ symbols
$x_{1},$

$\ldots,$
$x_{n}$ as follows.

$f_{n}(R_{n})=\cdots f_{n}(\rho_{-1})f_{n}(\rho_{0})f_{n}(\rho_{1})f_{n}(p_{2})\cdots$ .

The set of all such sequences is denoted by $\Sigma_{f_{n}}$ .

PROPOSITION 5.1.
(1) If $n\leq 3$ , then each sequence of $\Sigma_{f_{n}}$ is three-distance.
(2) If $n\geq 4$ , then each sequence of $\Sigma_{f_{n}}$ is four-distance.

PROOF. When $n=1$ , there is nothing to prove. Assume $n\geq 2$ . Let $S$ be
an element of $\Sigma_{f_{n}}$ . Fix an arbitrary $l\in Z_{+}$ . We put $l=nt+r$ with $t\in z_{+}$ and
$0\leq r<n$ . Let $w$ be a word of $S$ such that $|w|=l$ . When $l=|w|<n$ , we obtain
$|w|_{x_{\alpha}}\leq 2(x_{\alpha}\in\{x_{1}, \ldots, x_{n}\})$ . Now suppose $l\geq n$ . We write $w$ as $w=w_{1}\overline{w}w_{2}$ ,

where $\overline{w}=f_{n}(p_{v})\cdots f_{n}(p_{v+h}),$ $v\in Z,$ $h\in Z_{+}$ , and $w_{1},$ $w_{2}$ are the words of $S$

such that $w_{1}$ is a proper subword of $f_{n}(p_{v-1})$ and $w_{2}$ is a proper subword of
$f_{n}(p_{v+h+1})$ . If $|w_{1}|=|w_{2}|=0$ , then $|w|=|\overline{w}|=t$ . If $|w_{a}|\neq 0$ and $|w_{b}|=0$

$(a, b\in\{1,2\})$ , then $|\overline{w}|=nt$ and $1\leq|w_{a}|=r<n$ . If $|w_{1}|\neq 0$ and $|w_{2}|\neq 0$ , then
$2\leq|w_{1}|+|w_{2}|\leq 2n-2$ . Thus we have

$nt+r-2\leq|\overline{w}|\leq nt+r-2n+2$ .

Since $0\leq r<n$ , we obtain

$nt-2\leq t+r-2\leq|\overline{w}|\leq nt+r-2n+2<nt-n+2=n(t-1)+2$ .
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Namely

$n(t-1)\leq nt-2\leq|\overline{w}|<n(t-1)+2$ .

Therefore $|\overline{w}|=n(t-1)$ . First, we consider the case $|\overline{w}|=n’$ . Then $|w_{1}|+$

$|w_{2}|=r$ and $|\overline{w}|_{x_{\alpha}}=t,$ $0\leq|w_{1}|_{x_{\alpha}}+|w_{2}|_{x_{\alpha}}\leq 2$ . Since $|w|_{x_{\alpha}}=|w_{1}|_{x_{\alpha}}+|\overline{w}|_{x_{\alpha}}+$

$|w_{2}|_{x_{\alpha}}$ , we have

$t\leq|w|_{\chi_{\alpha}}\leq t+2$ . (5.10)

Next, we consider the case $|\overline{w}|=n(\iota-1)$ . Then $|w_{1}|+|w_{2}|=n+r$ and
$0\leq|w_{1}|_{x_{\alpha}}+|w_{2}|_{x_{\alpha}}\leq 2$ , and $|\overline{w}|_{x_{\alpha}}=t-1$ . Thus we have

$t-1\leq|w|_{\chi_{\alpha}}\leq t+1$ . (5.11)

By inequalities (5.10) and (5.11), we obtain $t-1\leq|w|_{x_{\alpha}}\leq t+2$ . Therefore $S$ is
at most four-distance. Furthermore, if $n\geq 4$ , it is easy to create a four-distance
sequence. Next, we consider the following case: $n\leq 3$ .

Case 1: When $n=2$ , an arbitrary 1 is written as $l=2t$ or $l=2t+1$ .
First, we assume $l=|w|=2t$ . If $|\overline{w}|=2\iota$ , then $|w|_{x_{\alpha}}=|\overline{w}|_{x_{\alpha}}=\iota$ . If $|\overline{w}|=$

$2(t-1)$ , then $t-1\leq|w|_{x_{\alpha}}\leq\iota+1$ . Hence, we obtain $t-1\leq|w|_{x_{\alpha}}\leq t+1$ .
Next, we assume $l=|w|=2t+1$ . If $|\overline{w}|=2t$ , then $t\leq|w|_{x_{\alpha}}\leq t+1$ . We

note that $|\overline{w}|=2(t-1)$ does not hold in this case. Because, if $|\overline{w}|=2(t-1)$ ,

then we obtain $|w_{1}|+|w_{2}|=3$ . Hence $|w_{1}|=1$ and $|w_{2}|=2$ , or $|w_{1}|=2$ and
$|w_{2}|=1$ . This is contrary to our assumption that $w_{1}$ and $w_{2}$ are proper subwords
of $f_{n}(p_{v-1})$ and $f_{n}(p_{v+h+1})$ , respectively.

Therefore, if $n=2$ , then $S$ is three-distance.

Case 2: When $n=3$ , an arbitrary $l$ is written as $l=3t$ or $l=3t+1$ or
$l=3t+2$ .

First, we assume $l=|w|=3t$ . If $|\overline{w}|=3\iota$ , then $|w|_{x_{\alpha}}=|\overline{w}|_{x_{\alpha}}=t$ . If $|\overline{w}|=$

$3(t-1)$ , then $\iota-1\leq|w|_{x_{\alpha}}\leq t+1$ . Hence, we obtain $t-1\leq|w|_{x_{\alpha}}\leq t+1$ .
Next, we assume $l=|w|=3t+1$ . If $|\overline{w}|=3t$ , then $t\leq|w|_{x_{\alpha}}\leq t+1$ . If

$|\overline{w}|=3(t-1)$ , then $\iota-1\leq|w|_{x_{\alpha}}\leq t+1$ . Hence, we have $t-1\leq|w|_{x_{\alpha}}\leq\iota+1$ .
Assume $l=|w|=3t+2$ . If $|\overline{w}|=3t$ , then $t\leq|w|_{x_{\alpha}}\leq t+2$ . We note that

$|\overline{w}|=3(t-1)$ does not hold in this case. Because, if $|\overline{w}|=3(t-1)$ , then we
obtain $|w_{1}|+|w_{2}|=5$ . Hence $|w_{1}|=1$ and $|w_{2}|=4$ , or $|w_{1}|=4$ and $|w_{2}|=1$ ,

or $|w_{1}|=2$ and $|w_{2}|=3$ , or $|w_{1}|=3$ and $|w_{2}|=2$ . This is contrary to our
assumption that $w_{1}$ and $w_{2}$ are proper subwords of $f_{n}(\rho_{v-1})$ and $f_{n}(p_{v+h+1})$ ,
respectively.
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Therefore, if $n=3$ , then $S$ is three-distance.
This completes the proof.

EXAMPLE 5.1. When $n=3,$ $\#\{S_{3}\}=6$ . We put $\{x_{1}, x_{2}, x_{3}\}=\{A, B, C\}$ .
Let $f_{3}$ : $\{1,2, \ldots, 6\}\rightarrow s_{3}$ be a bijection given by:

$ 1-\rangle$ ABC, $ 2\mapsto$ ACB, $ 3\mapsto$ BAC, $ 4\leftrightarrow$ BCA, $ 5-\rangle$ CAB, $ 6\vdash\rightarrow$ CBA.

By Proposition 5.1, an infinite sequence

$ R_{3}=\cdots$ 52435364564311432253522451353624626625316243341334622466243235

543456625426166216231525522166544 $\cdots$ ,

produces a three-distance sequence $S(\in\Sigma_{f_{3}})$ ,

$S=\cdots$ CABACBBCABACCABBACCBABCACABCBABCABACABCA

BCBCA. . ..
However,

$\mathcal{D}_{x}(S)=\cdots$ CBCBBCBCCBBCCBB $\cdots$

and

$\mathcal{D}_{y}(S)=\cdots$ CAACCAACCAACCACAC $\cdots$ ,

$\mathcal{D}_{z}(S)=\cdots$ ABABBABAABBABABAABBABAB. . .

are not two-distances with two symbols BC, CA, AB respectively. Namely, there
does not exist a line in $\mathbb{R}^{2}$ which has $\mathcal{D}_{u}(S)$ as its $2D$ cutting sequence. Therefore
$S$ is a three-distance sequence which is not a $3D$ cutting sequence. From the
above construction, it is easy to see that there are infinitely many such sequences.

The set of the elements of $\Sigma_{f_{3}}$ which are not $3D$ cutting sequences is denoted
by $\Sigma_{f_{3}}^{*}$ .

COROLLARY 5.2. card $\Sigma_{f_{3}}^{*}=card\Sigma_{f_{3}}=card$ R.

PROOF. The set of bi-infinite sequences with symbols 1, 2, . . . , 6 is denoted by
$\mathcal{R}_{3}$ . For a sequence $R_{3}=\cdots r_{-1}r_{0}r_{1}r_{2}\cdots\in \mathcal{R}_{3}$ with $r_{v}\in\{1,2, \ldots, 6\}(v\in Z)$ , we
define the infinite sequence $ R_{3}^{*}=\cdots r_{-1}135r_{0}r_{1}r_{2}\cdots$ . We put

$\mathcal{R}_{3^{*}}=\{R_{3}^{*} : R_{3}\in \mathcal{R}_{3}\}$ .
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Then we have card $\mathcal{R}_{3}^{*}=card\mathcal{R}_{3}=card$ IR. Note that

$\mathcal{D}_{Z}0$ f3 $(135)=\mathcal{D}_{Z}(f_{3}(1)f_{3}(3)f_{3}(5))=\mathcal{D}_{z}(ABCBACCAB)=ABBAAB$ .

Hence, for any element $R_{3}^{*}$ of $\mathcal{R}_{3}^{*},$ $\mathcal{D}_{z}0$ f3 $(R_{3}^{*})$ is not two-distance with two
symbols $A$ , B. Thus $\mathcal{D}_{Z}\circ f_{3}(R_{3}^{*})$ cannot be a $2D$ cutting sequence. From Remark
2.1, we see $f_{3}(R_{3}^{*})\in\Sigma_{f_{3}}^{*}$ . We put

$\Sigma_{f_{3}}^{*}(135)=$ {f3 $(R_{3}^{*})$ : $R_{3}^{*}\in \mathcal{R}_{3}^{*}$ }.

Note that $\Sigma_{f_{3}}^{*}(135)\subset\Sigma_{f_{3}}^{*}$ . Since there exists an injection:

$\mathcal{R}_{3^{*}}\rightarrow\Sigma_{f_{3}}^{*}(135)$ , $R_{3}^{*}\mapsto f_{3}(R_{3}^{*})$ ,

we have card $\mathbb{R}\leq card\Sigma_{f_{3}}^{*}(135)$ . Hence card $\mathbb{R}\leq card\Sigma_{f_{3}}^{*}$ . Therefore we obtain

card $\mathbb{R}\leq card\Sigma_{f_{3}}^{*}\leq card\Sigma_{f_{3}}\leq card\mathbb{R}$ ,

and

card $\Sigma_{f_{3}}^{*}=card\Sigma_{f_{3}}=card$ R. Q.E. $D$
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