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THREE-DISTANCE SEQUENCES WITH THREE SYMBOLS

By

Kuniko SAKAMOTO

Abstract. We will show that every 3 dimensional cutting sequence is
a three-distance sequence, and there are uncountable many periodic
or aperiodic three-distance sequences (with 3-symbols) which are not
3 dimensional cutting sequences.

1 Introduction

W. F. Lunnon and P. A. B. Pleasants defined two-distance sequences
and proved that each 2 dimensional (2D) cutting sequence (see below, for the
definition) is a two-distance sequence and the converse also holds. The basic
framework of their research is traced back to the one by M. Morse and G. A.
Hedlund [4].

In this paper, we will discuss the relationships between 3 dimensional (3D)
cutting sequences and three-distance sequences. We will show that every 3D
cutting sequence is a three-distance sequence, and there are uncountable many
periodic or aperiodic three-distance sequences which are not 3D cutting
sequences.

First, we recall the definition of 2D cutting sequences. Although the definition
given below is slightly different from that described in [I] or [5], the equivalence
of 2D cutting sequences and two-distance sequences ([1, theorem 1]) holds by the
same proof.

The set of the real numbers and the rational integers, and the non-negative
rational integers are denoted by R, Z, Z,, respectively.

We consider the standard orthogonal coordinates x, y in the 2 dimensional
Euclidean space IR?, and take a line L in R?. We assume that the slope of the line
L is non-negative, and L is not parallel to either axis. When the line L crosses a
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vertical grid line or a horizontal one, we mark the point of the intersection and
label it as A and B, respectively.

A/

Figure 1

In the above labeling, we need to specify the way of labeling the intersection
LNZ2.

Type 1: #(LNZ?2) = 1. Label the point of the intersection LNZ? by either of the
two elements of S, = {AB, BA}.

Type 2: #(LNZ?) > 2. Observe that #(LNZ?) = .

(1) Label all the points of the intersection LN Z? by one of the two elements
of Sz.

In this way, we obtain two infinite periodic sequences associated with the

line L.

(2) Fix an arbitrary point P on L. The point P divides L into two half-lines
Ly and Lp. We label the integer points on L5 \{P} by an element of S,,
and label the integer points on L \{P} by another element of S>. When P
is an integer point, we label P by an element of S;.

These give one or more two-way infinite sequences of symbols A and B. Such
sequences are called the 2D cutting sequences obtained from L.

ReEMARK 1.1. The labeling of Type 2 (2) is introduced to obtain the
equivalence between 2D cutting sequences and two-distance sequences ([1]).

2 3D Cutting Sequence

In this section, we define 3D cutting sequences as a natural extension of 2D
cutting sequences. We consider the standard orthogonal coordinates x, y,z in the
3 dimensional Euclidean space R3. Let Py, (L) be the projection of a line L in RS
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on the uv-plane, where u,v e {x, y,z}. We assume that each projection Py (L)
has a non-negative slope, and L does not lie in any uv-hyperplane. Let Ha (resp.
Hg,Hc) be the collection of hyperplanes in R? defined by

X=ry, (resp. y=ry, z=r;)

where ry,ry,r; € Z.
When L intersects with a hyperplane Ha € Ha (resp. Hp € Hp, Hc € Hc),
label the point of the intersection Ha NL (resp. HgNL, Hc NL) by A (resp. B, C).

Figure 2

Let £, (resp. L£,, L) be the collection of the lines defined by the equation

y=r,and z=r;, r,r,€Zl
(resp. x=rx and z=r,, ry,1;€Z,

x=rcand y=r, rqrel)

We put £ = £, UL, UL, and the set A = | ) £ is called the grid of R? in the
present paper.

As we did in defining the 2D cutting sequences, we need to specify the
way of labeling the points of the intersection of L and A or Z*. We divide our
consideration into the following three cases. First notice that if LNZ> # & then
#(LNZ*) =1 or oo.

Case 1 LNZ3# & and LN(A\Z?) = &,

Case 2 LNZ= ¢ and LN(A\Z?) # & and

Case 3 LNZ# & and LN(A\Z*) # .
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Case 1:
type 1: #(LNZ%) = 1.
Label the point of the intersection LN y/A by an element of S3;, where
S; = {ABC,ACB, BAC,BCA,CAB,CBA}.
In this way, we obtain the six infinite sequences associated with the line L.
type 2: #(LNZ?) = oo.

Fix an arbitrary point P on L. The point P divides L into two half-lines
Ly and Lp. Pick up two (possibly equal) elements X+, X~ of S3. Then label
the points of the intersection (Lf\{P})NZ* by X*, and label the points of the
intersection (Lp\{P})NZ* by X~.

In this way, we obtain the 36 infinite periodic sequences associated with the
line L.

Case 2:
type 1: Suppose that there exists a unique ¢ € £ which intersects with L.

We define S, (u=x,y,z) as follows.
S, ={BC,CB}, S, ={AC,CA}, S.={AB,BA}.
When 7 € L, label the point of the intersection /NL by an element of S,.

In this way, we obtain two infinite periodic sequences associated with the
line L.

type 2: Suppose that there exist two lines #,/' € £ such that /ZNL # & and
¢'NL # ¢, and recall that L does not lie in any uv-hyperplane. Fix an arbitrary
point P on L. The point P divides L into two half-lines L§ and Lp. Pick up two
(possibly equal) elements X, X;; of Sy. Then label the point of the intersection
(LI\{P})N¢, £ € Ly, by X}, and the point of the intersection (Lp\{P})N¢’,
'€ L, by X;. When {P} =LN/, £ e Ly, we label P by an element of S.

Case 3: First we observe that, #{/ e L:LN(/\Z*) # &} = .

We define the following notation for the labeling in this case. Let W be the
set of all finite sequences with symbols A, B,C. A function

Dy:W-W

(u = x, y,z) is defined as follows: for w e W, D, (w) is a finite sequence with two
symbols obtained by removing J(u) from w, where
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A fu=x
6(u)y=4¢B, fu=y
C, ifu=z
Also a function
Fu:W-oW
is defined as follows: for an element w=w;---w; of W ({wy,...,w} <

{Aa B,C}), ]:u(w) = W;---Wj.
We fix an arbitrary point P on L. The point P divides L into two half-lines Ly
and Lp.

type 1: #(LNZ%) = 1.

Label the point of the intersection Lg NZ3 by an element X of S;. For the
labeling the intersection #NLY, we take the following two ways.
(1) Label the intersection ZNL{ and ¢'NLy with ¢,¢' € L, as Dy(X).
(2) Label the intersection #N Ly with £ € £, by Dy(X), and the intersection
¢'NLp with ¢ € L, by F,o0Dy(X).
type 2: #(LNZ?) = oo.
Pick up two (possibly equal) elements X+, X~ of S;. Label the points of the

intersection Ly NZ3 by X+ and Ly NZ* by X~. Then label L} N¢ with £ € £, by
Dy(X*) and Lg N¢' with ¢’ € Ly by Dy(X 7).

These give one or more bi-infinite sequences with symbols A, B,C. Such
sequences are called the 3D cutting sequences obtained from L.

REMARK 2.1. The function D, is naturally extended to a function D, :
X — X of the set ¥ of all infinite sequences with symbols A, B, C.

If S is a 3D cutting sequence associated with a line L, then Dy(S) is a 2D
cutting sequence associated with the line P,y (L), where {u,v} = {x, y,z}. In
this way, 2D cutting sequences are obtained from 3D cutting sequences.

3 Three-Distance Sequence

In this section, we define the notion of three-distance sequences with three
symbols. The following definitions are the natural extensions of those for two-
distance sequences with two symbols A, B [1].

Let S be a bi-infinite sequence with three symbols A, B,C.

DerFiNiTION 3.1. 4 word w in S is a finite string of consecutive symbols
from S.



134 Kuniko SAKAMOTO

DEFINITION 3.2. The length |w| of a word w is the total number of symbols
which are contained in w.

DEFINITION 3.3.  The i-weight |w|; of a word w (i € {A,B,C}) is the number
of the symbol i in the word w. Notice that |w| = |w|, + |W|g + |W]c.

DEFINITION 3.4. A sequence S is called a three-distance sequence, if, for each
leZ, and for each ie {A,B,C}, we have the inequality

#{|w|;:w is a word of S and |w| =1} <3.

Similarly we define m-distance sequences for infinite sequences with n symbols
(n=2).

DermNITION 3.5. An infinite sequence S with »n symbols xj,x;,...,X, 1s
called an m-distance sequence if, for each / € Z, and for each x, (1 <o <n), we
have the inequality

#{lw|, :|w| =1} <m.

By the definition, every (m — 1)-distance sequence is an m-distance sequence.

LeEmMMA 3.1. Let S be an infinite sequence with n symbols x1,x2,...,%p.
(1) If S is m-distance, then, for each | € Z, and for each x, (1 < o < n), there
exist pyeZ, and m' with 0 <m’ <m—1 such that

{Iwl,, :wl=0={u+n:0<n<m'}.
(2) If' S is not m-distance, then there exist an | € Z, an a € {1,...,n} and two

words Wi,W, in S of length I, such that |ws|, — |wi|, = m.

Proor. Fix an arbitrary /€ Z, and a € {1,...,n}. We put u = min{|w|, :
lw| =1} and M = max{|w|, :|w| = }. Then for each word w such that |w| =/,
pu<|w|, <M. When M — u < 1, there is nothing to prove. In what follows, we
consider the case M — u > 2. The sequence S is written as

S=---w_wowy - wwi Wi

Take two words wi,wj in S, such that |wi|, =pu, |W|, = M. We assume,
without loss of generality, that wj; = wiwy---wi_iw;, W{ = WitqWaya- -
Wi_1+dWi+d, d > 0. We define

x(Wi) =wa---wpyy,
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and
x°(Wi) = x(x (W) = Wige Wi, (c€Zy).

If |x¢(wi)l,, = |wil,,, for each ¢ >0, then S is three-distance. If it is not the
case, let
c1 = max{c: [x“(wi1)l,, = w1l }-

By the definition, it follows that
e w)ly, = Iwal,, + 1.

If [x¢(w1)l,, <Iwil, +1, for each ¢ > ¢, then S is three-distance. If it is not
the case, we put

¢y = max{c: [x‘(W1)l,, <Iwil,, +1,ce=>a}.

Then
X (wh)ly, = wil,, +2.

If [x¢(w1)l,, <Iwil,, +2, for each ¢ > c,, then S is three-distance. If it is not
the case, let

c3 = max{c: |x‘(wi)l,, <|wil,, +2,c= c2}.

Then
e (wi)ly, = Iwil,, + 3.

We repeat this process up to M — u steps. If S is m-distance, then M — u < m.
Then u and m’ := M — pu satisfy the conclusion of (1). If S is not m-distance,
then there exist an /€ Z, and an o such that #{|w|_ :|w| =/} >m. Arguing
as above, we may find two words wj,w; in S of length /, such that
wal,, — lwil,, =m.

This completes the proof.

Some examples of three-distance sequences with three symbols will be given
in the next section.

4 3D Cutting Sequences and Three-Distance Sequences

ExaMPLE 4.1. The line in IR? defined by the equation “x = y = z” yields a
periodic 3D cutting sequence

(ABC)” = --- ABCABCABCABC --- ABCABCABCABC - - -.

It is easy to see that the above sequence is two-distance.
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Table 1 is a list of the words in the above sequence of length up to 5, and
their weights.

Table 1
Weights

Length Words

\ w IWia Iwig Iwlc
1 A B C 0,1 0,1 0,1
2 AB, BC, CA 0, 1 0,1 0,1
3 ABC, BCA, CAB 1 1 1
4 ABCA, BCAB, CABC 1, 2 1, 2 1, 2
5 ABCAB, BCABC, CABCA 1, 2 1, 2 1, 2

O

ExaMPLE 4.2. The line L which passes through the points (1 + V2,
(14++/5)/2,1) and (0,0,0) yields an aperiodic 3D cutting sequence - - - BACB-
BCABCBBACBCBABCBCBABCBACBBCABCBBACBCBABCBCBABCBACBBC-
ABCBBCABCBABCBCBABABCBBACBBCBACB - --. Theorem 4.1 below shows
that the above sequence is three-distance.

Table 2 is a list of the words in the above sequence of length up to 4, and
their weights.

Table 2
Weights
Length Words
\yd w IWla Iwlg Iwlc
1 A B, C 0,1 0,1 0, 1
2 AB, BA, BB, AC, CB, CA, BC 0,1 01,2 01
3 ABC, CBB, BAB, BBA, BCB, CBC, BAC, CAB, CBA, 0,1 1,2 0, 1,2
. BBC, BCA, ACB, ABB '
4 ACBB, ABCB, ACBC, ABCB, BACB, BBCA, BCAB, BCBB, 0,1 1,2, 3 1,2
BBAC, BCBA, BABC, BCBC, BBCB, CBBC, CABC, CBCA,
CBBA, CABB, CBAC, CBAB, CBCB
O

We show that each 3D cutting sequence is three-distance.

The orthogonal projection on the u-axis (u € {x, y,z}) in IR? is denoted by
P,. Let S be a 3D cutting sequence associated with a line L in R?. Take an
arbitrary word w = w; ---w; in S, {wy,...,w;} = {A,B,C}. And take the points
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m, m’ which correspond to w; and w; respectively, as the point of the intersection
LNH; (HieH;ie{A B,C}), or LN (£e€L), or LNZ>. Let M be the segment
of L whose end-points are m and m’. The length of the projection of M on the
u-axis is denoted by P,(M). Then we obtain the following inequalities.

|w|A—lsP M) < |w|s+1
lwlg — 1 <B,(M) < |w|g +1 (4.0)
|W|<:_IS M) < |wlc +1

The symbols A, B, C correspond to x, y,z, respectively via the above inequality.
THEOREM 4.1. Each 3D cutting sequence is three-distance.

ProoF. Let S be a 3D cutting sequence associated with a line L in R3. We
assume that there exist an i e {A,B,C} and two words wj,w; in S, such that
|lwi| = |wz| and |w|; +2 < |wz|,. Then we obtain

0<|wi];+1 < |wy|, - L (4.1)

Let u be the coordinate corresponding to i via (4.0). And let M;,M, be the
segments of L whose end-points are the points corresponding to the first and last
symbols of w;,w, respectively. Then the slope of Py (L) is

PV(MI) _ PV(M2)
P.(M1)  Pu(M2)
Let k be a symbol, k € {A,B,C}\{i} and v the coordinate corresponding to k,
v e {x,y,z}\{u}. By using the inequalities (4.0) and (4.1), it follows that
Wil =1 _ Py(Mi) _ Py(M2) _ || +1
|W1ii+1 B Pu(Nll) Pu(MZ) N 'W2|i -1

Therefore, we have
wil, =1 _ |wa, +1

< . 4.2
lwil; +1 lwa|; — 1 42
From (4.1) and (4.2), we obtain

Wil =1 < |wa, + 1. (4.3)

Let j be the symbol other then i,k. Namely {i, j,k} = {A,B,C}. Then,
Iwi| = [wi; + (Wil + (Wil = [wal; + |wal; + |wa,

< Wa|; = 2+ [Wi; + [Walg + 2 = [Wa|; + (Wi + [Walg.
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Hence v
|W2|j < |W1 |j' (44)

By the symmetric argument, from (4.2), we have

|Wl|j—l _|W2|j+1
wil; +1 7 |wy|, =1’

(4.5)
and thus
|w1|j—1 < |W2|j+1. (4.6)

The inequalities and imply |wi|; —1 < |wz|; +1 < |wi|; + 1. Hence,
we have

lwa|; +1 = |wi];. (4.7)
Then, |wi|; + |wi; = [wi|; + [w2|; + 1 < [W2|; + |wz|; — 1. Therefore, we obtain

Wil > W2l (4.8)

The inequalities and imply |wi|, — 1 < |wz|, +1 < |wi|, + 1. Hence
we have
W2l + 1 = [Wig. (4.9)

From and [4.9),
Iwi| = |wil; + [wi]; + [wi,
= w1, + [W2; + [Wol, + 2 < [Wa; + [Wa; + [Wa, = [wal.
This is the contradiction. Hence for each ie {A,B,C}, there exist no words

Wi, W, such that | |w;|; — |w|;] > 2. So S is a three-distance sequence. QED

There exists a three-distance sequence which is not a 3D cutting sequence.
We give such an example.

ExaMPLE 4.3. A periodic infinite sequence which repeats the word
AACABCAB

S =...CABAACABCABAACAB - -- = (AACABCAB)®

is three-distance. We show that S is not a 3D cutting sequence. If S is a 3D
cutting sequence associated with a line L in IR?, then by Remark 2.1, for each u,
Dy(S) is a 2D cutting sequence associated with Py, (L) ({u,v} < {x, y,z}). Here
by [1, Theorem 1], Dy(S) is a two-distance sequence. However,

D,(S) = - -- CAAACACAAACA - - - = (CAAACA)”
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is not two-distance with two symbols A, C, since the C-weight of the words AAA,
ACA, CAC of length 3 in D,(S) is 0, 1, 2 respectively. Thus D,(S) cannot be a
2D cutting sequence. Accordingly, S is a three-distance sequence which is a not
3D cutting sequence.

5 Three-Distance Sequences which are not 3D Cutting Sequences

In this section, we show that there exist infinitely many three-distance
sequences which are not 3D cutting sequences. Let xi,...,x, be the n symbols.
We fix a bijection

f,: {1,2,...,nl} = S,

where

S, = {X4, "+ Xg, : {01,---,0.} ={1,...,n}}.
Note that #{S,} = n!. For each bi-infinite sequence R, =---p_1pop1p, -+ With
p,€{1,2,...,n} (veZ), we define a bi-infinite sequence with » symbols
X1,...,X, as follows.

fa(Rn) = - - Fa(p_)Ffn(po)fn(p1)f(p2) - - -

The set of all such sequences is denoted by X, .

PROPOSITION 5.1.
(1) If n <3, then each sequence of X, is three-distance.
(2) If n > 4, then each sequence of X¢, is four-distance.

PrROOF. When n =1, there is nothing to prove. Assume n > 2. Let S be
an element of X¢. Fix an arbitrary /e Z,. We put [ =nt+r with te Z, and
0 <r < n. Let w be a word of S such that |w| = /. When / = |w| < n, we obtain
wl,, <2 (x, € {x1,...,xn}). Now suppose / >n. We write w as w = wW;Ww,,
where W =f,(p,) - f.(pysp), VvEZ, heZ,, and w;,w, are the words of S
such that w; is a proper subword of f,(p,_;) and w, is a proper subword of
fu(pyinsr)- If |wi| =|wy| =0, then |w|=|W|=nt. If |wa|#0 and |wp|=0
(a,be {1,2}), then |W| =nt and 1 < |w,| =r < n. If |wq| # 0 and |w;| # 0, then
2 < |wi|+ |wz| < 2n — 2. Thus we have

nt+r—-2<|w|<nt+r—-2n+2.
Since 0 <r < n, we obtain

nt—-2<nt+r—-2<|W| <nt+r—-2n+2<nt—n+2=n(t—1)+2.
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Namely
nit—1)<nt—-2<|Wl <n(t—1)+2.

Therefore |W|=n(z —1). First, we consider the case |W|=nt. Then |w;|+
wa| =r and |W|, =1, 0<|w|, +[w,y[, <2. Since |w| = |wi|, +|W|, +
W2

X,
we have

Xo?

t<|wl, <t+2 (5.10)

Next, we consider the case |W|=n(t—1). Then |w;|+ |wy|=r+r and
0 <|wil, +|wz|, <2, and |W|,_=¢—1. Thus we have

f—1<|w, <t+1. (5.11)

By inequalities and |5.11), we obtain # — 1 < |w|, <+ 2. Therefore S is
at most four-distance. Furthermore, if n > 4, it is easy to create a four-distance
sequence. Next, we consider the following case: n < 3.

Case 1: When n =2, an arbitrary / is written as / =2¢ or / =2¢t+ 1.

First, we assume / = |w| =2t If |W|=2¢, then |w|, =|W|, =1t If |W|=
2(t—-1), then t—1<|w|_<t+1. Hence, we obtain t —1 <|w|, <z+1.

Next, we assume /= |w|=2r+1. If [W|=2¢ then r<|w| <t+1. We
note that |W| = 2(r— 1) does not hold in this case. Because, if |[W|=2(r — 1),
then we obtain |w;|+ |w;| = 3. Hence |w;| =1 and |w;| =2, or |w;| =2 and
Iwz| = 1. This is contrary to our assumption that w; and w;, are proper subwords
of f.(p,_1) and f,(p,,4,1), respectively.

Therefore, if n =2, then S is three-distance.

Case 2: When n =3, an arbitrary / is written as /=3¢ or /=3t+1 or
[ =3t+2.

First, we assume /= |w|=3z. If |W| =3¢, then |W| = |W|, =1t If |W|=
3(¢—1), then t—1 < |w| <1+ 1. Hence, we obtain -1 <|w|, <z+1.

Next, we assume /= |w|=3t+1. If |[W| =3¢ then t<|w|, <t+1. If
|w| =3(t—1), then t —1 < |w|,_ <t+1. Hence, we have t -1 < |w| <t+1

Assume [ = |w| =3t+2. If |[W| =3¢, then ¢ <|w|_<t+2. We note that
|W| = 3(¢ — 1) does not hold in this case. Because, if |W| =3(¢z — 1), then we
obtain |w;| + |wz| = 5. Hence |w;| =1 and |wz| =4, or |w;| =4 and |wy| =1,
or |wi|=2 and |w;| =3, or |wj| =3 and |w,|=2. This is contrary to our
assumption that w; and w, are proper subwords of f,(p,_;) and f.(p, ;.1),
respectively.
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Therefore, if n =3, then S is three-distance.
This completes the proof.

ExampPLE 5.1. When n =3, #{S3} =6. We put {x1,x3,x3} = {A,B,C}.

Let f;: {1,2,...,6} — S3 be a bijection given by:

1— ABC, 2— ACB, 3— BAC, 4—BCA, 5— CAB, 6+— CBA.
By Proposition 5.1, an infinite sequence

R3 = ---52435364564311432253522451353624626625316243341334622466243235
543456625426166216231525522166544 - - -,

produces a three-distance sequence S (€Xy,),

S =...CABACBBCABACCABBACCBABCACABCBABCABACABCA
BCBCA---.
However,
D.(S) =---CBCBBCBCCBBCCBB- - -
and
Dy(S) = --- CAACCAACCAACCACAC - - -,
D,(S) =--- ABABBABAABBABABAABBABAB - - -

are not two-distances with two symbols BC, CA, AB respectively. Namely, there
does not exist a line in R? which has D,(S) as its 2D cutting sequence. Therefore
S is a three-distance sequence which is not a 3D cutting sequence. From the
above construction, it is easy to see that there are infinitely many such sequences.

The set of the elements of X¢, which are not 3D cutting sequences is denoted
by Zf.

COROLLARY 5.2. card Xf = card Xy, = card R.

Proor. The set of bi-infinite sequences with symbols 1,2,...,6 is denoted by
Rs3. For a sequence R3 = ---r_jrorir2--- € R3 with r, € {1,2,...,6} (veZ), we
define the infinite sequence R; = ---r_;135rorir2---. We put

R; = {R; : R3 € R3}.
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Then we have card R} = card R3 = card R. Note that
D, o £3(135) = D,(f3(1)f3(3)f3(5)) = D.(ABCBACCAB) = ABBAAB.

Hence, for any element R} of R}, D,of3(R3) is not two-distance with two
symbols A, B. Thus D, o f3(R}) cannot be a 2D cutting sequence. From Remark
2.1, we see f3(R;3) € Zf,. We put

£;,(135) = {f3(R) : R; e R3).
Note that Zf (135) = Z{,. Since there exists an injection:
Ry - Z3(135), R 63(R3),
we have card R < card Zf,(135). Hence card R < card Zf,. Therefore we obtain
card R < card If < card Ly, < card R,
and

card ¢, = card Zt, = card R. QE.D
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