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AN EXTENSION OF RAUCH COMPARISON THEOREM
TO GLUED RIEMANNIAN SPACES

By

Masakazu TAKIGUCHI

Abstract. A glued Riemannian space is obtained from Riemannian
manifolds M; and M, by identifying their isometric submanifolds
B; and B,. A curve on a glued Riemannian space which is a geo-
desic on each Riemannian manifold and satisfies certain passage law
on the identified submanifold B := B; =~ B, is called a B-geodesic.
Considering the variational problem with respect to arclength L
of piecewise smooth curves through B, a critical point of L is a
B-geodesic. A B-Jacobi field is a Jacobi field on each Riemannian
manifold and satisfies certain passage condition on B. In this paper,
we extend Rauch’s theorem which gives a comparison of the lengths
of Jacobi fields along geodesics in different Riemannian manifolds
to B-Jacobi fields along B-geodesics in different glued Riemannian
spaces.

0. Introduction

In Riemannian manifolds, various results have been given on geodesics by
many authors. Recently, N. Innami studied a geodesic reflecting at a boundary
point of a Riemannian manifold with boundary in [IT]. Let M be a Riemannian
manifold with boundary B which is a union of smooth hypersurfaces. A curve on
M is said to be a reflecting geodesic if it is a geodesic except at reflecting points
and satisfies the reflection law. He dealt with the index form, conjugate points
and so on, as in the case of a usual geodesic. Moreover, in [I2], he generalized
these to the case of a glued Riemannian manifold which is a space obtained from
Riemannian manifolds with boundary by identifying their isometric boundary
hypersurfaces. Some collapsing Riemannian manifolds are considered to be a kind
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of glued Riemannian manifolds. In the author gave the definition of a glued
Riemannian space which is obtained from Riemannian manifolds by identify-
ing their isometric submanifolds B; and B, and is a generalization of a glued
Riemannian manifold. A curve on a glued Riemannian space which is a geodesic
on each Riemannian manifold and satisfies certain passage law on the identified
submanifold B:= B; =~ B, was called a B-geodesic. Considering the variational
problem with respect to arclength L of piecewise smooth curves through B, a
critical point of L is a B-geodesic. Also, the definitions of the index form of
B-geodesics, B-Jacobi fields and B-conjugate points were given. A B-Jacobi field
is a Jacobi field on each Riemannian manifold and satisfies certain passage con-
dition on B. The purpose of this paper is to generalize the Rauch comparison
theorem to the case of glued Riemannian spaces. The Rauch comparison theorem
yields a comparison of the lengths of Jacobi fields along geodesics in different
Riemannian manifolds under suitable initial conditions and suitable hypotheses
on the curvatures and on the nonexistence of conjugate points. In this paper,
we show how Rauch’s theorem extend to B-Jacobi fields satisfying the passage
condition, which involves the passage endomorphism defined by using the shape
operators of B in M, and M;. So in the comparison theorem, we need an addi-
tional hypothesis comparing the passage endomorphisms. In Section 1, we review
fundamental definitions and results ([T]) on a glued Riemannian space. In Section
2, we give a precise statement of a Rauch comparison theorem for B-Jacobi
fields. Section 3 is devoted to the proof of this comparison theorem.

The author would like to express his sincere gratitude to Professor N. Abe
for suggesting this problem and his helpful advice and to Professor S. Yamaguchi
for his constant encouragement.

1. Preliminaries

Let N, and M; be manifolds (possibly with boundary) for u=1,...,k and
A=1,...,1. We allow the case where dim N, # dim ¥, and dim M, # dim M;
for u#vand k #1. A map $: N — M from the topological direct sum N :=
NI 1INk to M:=M;]]---1] M; is smooth if §|N, is smooth. A tangent
bundle TM of M is the direct sum TM = TM, []---][] TM,, where TM; denotes
the tangent bundle of M;. We note that a tangent bundle TM on M is not
constant rank vector bundle on M. We put T,M := T, M, for p e M;. We define
amap ng: TM — M by

ny(vp) :=p for v, e T,M;.
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A vector field V on M is a map V : M — TM such that n; o V =idy, where
id;; is the identity map on M. If V|M; : M, — TM; is smooth vector field on
each M, then V is smooth. Let I, be a closed interval in R which is a manifold
with boundary, for u=1,...,k. A map a&:I:=L]]---][lk = M is called a
curve on M if & is smooth.

- Let M, be a manifold (possibly with boundary) with a submanifold B; for
A=1,2 and y a diffeomorphism from B; to B;. A glued space M = M, Uy M,
is defined as follows: M is the quotient topological space obtained from the
topological direct sum M = M, [[ M, of M; and M, by identifying p € B; with
V(p) € B,. We allow the case where By = B, = J, My = J or M, = (&, where
 is the empty map. Let 7 : M — M be the natural projection which is defined
by n(p) = [p], where [p] is the equivalence class of p. Let N; be a manifold with
a submanifold C; (A =1,2), t: C; —» C, a difftomorphism and N =N, U, N, a
glued space. A glued smooth map ¢ : N — M on N derived from a smooth map
@ : N — M or, simply, a smooth map on N is defined by ¢ = n o . We note that
a glued smooth map on N is considered as a map on N which, possibly, take two
values at [p] (p e C;). A glued smooth map ¢ is continuous if ¢(p) = ¢(t(p))
holds for any p e C;. '

A glued tangent bundle TM of M is the glued space TM,Uy TM,, where
y, : TB — TB, is the differential map of Y. Let #: TM — TM be the natural
projection which is defined by #(v) = [v], where [v] is the equivalence class of
v. For pe M, we set T,M :=#(T,M) = {[v]e TM |ve T,M}. We define a map
iy TM — M by

nm([vp]) := [p] for v, e T,M.

We note that mony = my o#t holds. A glued vector field V: M — TM on M
derived from a vector field V on M or, simply, a vector field on M is defined by
V=nroV. A glued vector field V is called a smooth glued vector field provided
V is glued smooth. If a glued vector field ¥ on M is continuous, then we can
regard it as a cross section of TM over M; that is my o V' = idy,. Similarly, we
can define a glued vector field (or vector field) along a curve &: I .= L[| L — M.

Let T, M be the dual vector space of T,M. We put T*M = T*M; [[ T*M,,
where T*M; is the cotangent bundle of M,. For 8, (€T M), &, (eT)M)e

T*M, we define an equivalence relation ~ as follows: 6, ~ @, if and only
if &, =@, (p=q) or Gylpp =¥ (@) (PeBi,g=(p) or Bylrys =V (0)
(q € B, p = Y¥(q)), where y* is the dual map of y,. The quotient space obtained
from T*M by this equivalence relation is denoted by T*M. Let #: T*M — T*M
be the natural projection, that is, () := [#], where [#] is the equivalence class
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of §. For pe M, we set Ty M := #(T; M) and define a map [f] : T,M — R by
[6]([2]) := O(2) for @€ T, M and ¢ € T,M. Then we can regard T,"M as the dual
of T,M. We put T"5(M) := T"S(M)) [ T"*(M), where T"5(M,) is the (r,s)-
tensor bundle of M;. An (r,s)-tensor field on M is a cross section of T"*(M).
The definition of the smoothness of a tensor field on M is similar to that of a
vector field on M. Similarly, we can define the equivalence relation on T"5(M)
induced from those on TM and T*M, and denote the quotient space by 7"5(M).
Let 72 : T"S(M) — T"°(M) be the natural projection. A glued tensor field T derived
from a tensor field T on M is defined by T=#0T. A glued tensor field T

derived from a tensor field 7 on M is (glued) smooth if T is smooth.

DEFINITION 1.1. Let (M;,g;) be a Riemannian manifold with a Riemannian
submanifold B, for A = 1,2 and { an isometry from B; to B;. Let g be the metric
on M which is defined to be gp = (gl)p for pe M;. A glued Riemannian space
(M,g) = (My,91)Uy (M2,g2) is a pair of a glued space M = M, Uy, M, and a
glued metric g on M derived from § which is a glued tensor field derived from the
(0,2)-tensor field g.

We note that, for any glued smooth vector fields ¥ and W on M derived
from smooth vector fields ¥ and W on M, respectively, a map g(V,W): M — R
defined by

g(V, W)(p) = g(Vp, Wp)

is glued smooth on M derived from a smooth map §(V,W): M — R.

From now on, identifying B; with B, by ¥, we put B:= B; ~ B, and
T,B:=T,By ~T,B, for pe B and omit the symbol [] of the equivalence
class. In particular, [M;]:=n(M;) will be denoted by M;. We call a map
a: [a,to] [I[to,b] = M a glued curve derived from a curve & : [a,to)[][t0,b] = M
or, simply, a curve on M if o:[a,t)]][to,b) = M is a continuous glued
smooth map derived from & Let o:[a,t]]][t0,b] > M be a glued curve
derived from a curve &: [a, fo] [[[to,b] — M. The (glued) velocity vector field of
a is o' :=7od’. We put a'(tg —0):=70da;(to) and o'(to + 0) := 0 &;(t),
where & := &|[a, to] : [a, 2] — M and &, := &|[t,b] : [to,b] — M. We note that a
glued velocity vector field is considered as a glued vector field along & and not
generally continuous. We call « : [a,b] — M a piecewise smooth curve on M pro-
vided there is a partition a =ap < a) < - - < ax < ax+1 = b of [a,b] such that
allai-1,ait1] : [@i-1,ai] [1[ai, aiv1] — M is a glued curve. We call a; (j=1,...,k)
the break. A function A : [a, o] [][t0,b] — {1,2} is defined by
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1 !
Alt) = on [a, 0].
2 on [t,b]

For simplicity, we put A := A(¢).

If M is a glued Riemannian space such that (M,g) = (M1,g1) Uy (M2,92),
then let Q, (M, M3; B) =: Q,, (t € (a,b)) be the set of all piecewise smooth curves
a: [a,b] — M such that a(%) € B, a([a, th]) = M, and a([to,b]) = M,. The pro-
jection from T,M; to T,B is denoted by tan. Let D* be Levi-Civita connection
of Riemannian manifold M, (A =1,2). A curve ae€Q, is a B-geodesic if a
satisfies the following conditions:

(1.1) o|[a,to] and a|[to,b] are geodesics, that is DXa’ =0,
on M; and M;, respectively,

(1.2) tan a’(fo — 0) = tan o'(z + 0),

(1.3) g1(o(to — 0),a'(to — 0)) = g2(a'(t0 + 0), &' (0 + 0)).

We assume that geodesics and B-geodesics are parametrized by arclength.

Let ge B, ue T;M; and ve T,M, with |jul|; =|/v|,, tanu=tanv and v ¢
T;B. We define a linear map Q,, : T,B @ Span{nor; u} — T,B @ Span{nor; v}
as

Qu,(w) =<w-— __—gl(w,non u) nor; u +____gl(w,nor1 u) nor; v
’ g1(u,nory u) g1(u,nor; u)

for any we T,B @ Span{nor; u}, where nor, : T,M, — T,B* is the projection.
The following hold:

Quv(x) =x for any xe T,;B.
Qu,v(norl u) = nor; v.
92(Qu,s(W), x) = g1(w, x)

for any x e T,B and w e T;B@® Span{nor; u}.

92(Qu (W), Qu s (W) = g1(w, W)

for any we T,B @® Span{nor; u}. Let y € Q, be a B-geodesic with y'(z + 0) ¢

T,)B. Then we have

Oy (15-0),7'(to+0) (¥ (fo — 0)) = ¥'(to + 0).
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REMARK. Let ge B, ue T,M; and ve T,M, with |ju||, =|v||,, tanu=
tanv and v¢ T,;B. If we define a linear map Q,,: T,B @ Span{nor; v} —
T,B @ Span{nor; u} as

0u ulz) = ,_glznony) o gznon )
’ g2(v, nor; v) g2 (v, nor; v)

for any z e T;B @ Span{nor; v}. The following hold:
Qu,v o Qv,u = ld, Qv,u o Qu,v - ld,
92(Qu,s(W), 2) = g1(w, Qv,u(2))

for w e T,B @® Span{nor, «} and z € T,B @® Span{nor; v}.

If yeQ, is a B-geodesic with y'(f + 0) ¢ T,(,,)B, the set T,Q, consists of
all vector fields Y along y which satisfy the following condition:

(1.4) Q' (10-0),7(1+0) (Y (f0 = 0)) = Y (20 + 0).

Let p and g be points of M; and M> such that y(a) = p and y(b) = q. A subspace
T,Q,(p,q) in T,Q, is defined by

T, (p,q) = {¥ € T, | Y(a) = 0, Y(b) = 0}.

For A=1,2, let R* be the Riemannian curvature tensor of a Riemannian
manifold M, defined as

RYX,Y)W := DyD4W — D4D4W — Dly W,

for any vector field X, Y and W on M;, and S% the shape operator of B < M;
defined as

Si(V) := —tan D} Z,

for any vector field V tangent to B and Z normal to B. Especially, if B = {p}, we
have that S% = 0 for Z € T,M;. A vector field Y along a piecewise smooth curve
o:la,b] » M is a tangent to a if Y = fa’ for some function f on [a,b] and
perpendicular to « if g;(Y,a’) = 0. If ||a'[|; # 0, then each tangent space T,)M;
has a direct sum decomposition Ro’ + {«’}*. Hence each vector field Y along
a has a unique expression ¥ = Y7 4+ Y1, where Y7 is tangent to « and Y+ is
perpendicular to o, that is,
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Y.o
__gfl( 70‘)0(/

Yt=Y .
gl(a,’ O(’)

If o is a B-geodesic, then (¥YT) = (Y")T and (Y+) = (Y")*.
Let ge B and ve T,M; (A=1,2) is not tangent to B. A linear operator
P? : T,B ® Span{nor, v} — T,B is defined by

g,(w,nor, v)

P =w—
3 (W) e g.(v,nor; v)

for any we T;B @ Span{nor; v} (cT,M;). We note that P} is surjective and
P?(v) =0.

Let ge B, ue T,M; and ve T,M, with |u|, =|v|,, tanu=tanv and
v¢ T,B. We define a symmetric linear map A, , : T,B @ Span{nor; v} —» T,B®
Span{nor, v} as

92((Srior1 u_ Sr%orz u)(PZD(W))7 v)
g>(v, nor; v)

Ay o(W) = (Skor w — S2or, o) (PF (W) — nor, v

for any w € T,B @ Span{nor; v}. We call this map 4, , a passage endomorphism.
The following hold:

Ayp(w) Lv and A4,,(v) =0.
The index form I,: T,Q, x T,Q, — R of a B-geodesic y € Q, is the sym-

metric bilinear form defined as

L(Y, W)= Jto{gl(Y”, W) —gi(R(Y, Y)Y, W)} dt

a

b
+j (g2(Y, W) — g (RX(Y,¥')y', W)} d

)
+ 92(4y(10-0), y(10+0) (Y (80 + 0)), W (2o + 0)),
for all Y, W e T,Q,. It follows that
L(Y,W)=L(Y+,W") for all Y,W e T,Q,.
Thus there is no loss of information in restricting the index form I, to
T Q, :={YeT,Q,|Y Ly}

We write I} for this restriction. We put
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T;-Q,, (y(a), (b)) == {Y € T,Q,(y(a),7(6)) | Y L'}

and write 1>+ for the restriction of the index form I, to this.
Let pr!: T, M) — T,4,)B @ Span{nor; y'(to — 0)} and pr?: Ty, M2 —
Ty,)B @ Span{nor; y'(# + 0)} be orthogonal projections. The following holds:

LemMA 1.2 ([T1]). Let y € Q,(p,q) be a B-geodesic with y'(ty + 0) ¢ T, B.
If Y and W € T,Q,,(p, q) have breaks a1 < --- <ty =a; < --- < ax, then we have
that

lo
L(Y, W)= —{ J g (YY" + RY(Y,y")y, Wt) dt

a

b
+j gz(Y.LII +R2(Y,'y,)y’, W.L) dt}

o

+ g2( Ay (19-0), 7' (1+0) (Y (0 + 0)), W (2o + 0))
+g1(pr' (Y (8 — 0)), W (10 — 0))
— g2(pr*(Y* (o + 0)), W (10 + 0))

j-1 k
+ Zgl(Aai Yl,v W-L(al')) + Z g2(Aai YJJ: W-L(ai))

i=1 i=j+1
+g2(YY (), WH(B)) — g1(YH (a), WH(a)).
Let y e Q, be a B-geodesic with y'(fp + 0) ¢ Tp,)B. If Y € T,Q,, satisfies
(1.5) Y +RYY,y)y'=0 on M; (A=1,2),
(1.6) — Ay (15-0),y'(t0+0) (Y (20 + 0))
= Qy(1-0),y(0+0)(Pr' (Y'(to = 0))) — pr*(Y' (2 + 0)),
and
(1.7) g1(Y'(t0 — 0),7'(to — 0)) = g2(Y"(t0 + 0), (20 + 0)),

then Y is called a B-Jacobi field along y. Let #, be the set of all B-Jacobi fields
along y. A B-Jacobi field Y along y is perpendicular if Y is perpendicular to y.
Let jyl be the set of all perpendicular B-Jacobi fields along y. Let jyo be the set
of all B-Jacobi field such that Y(a) =0.
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If Y is a B-Jacobi field along y, then we have that

(1.8) L(Y,Y) = g:(YY(b), Y*(8)) — g1 (Y (a), Y*(a)).

Lemma 1.3 ([T]). Let yeQ, be a B-geodesic with y'(to +0) ¢ T, ,,)B. Then
Y € T;Qu(y(a), y(b)) is an element of the nullspace of I>* if and only if Y is a
B-Jacobi field along +y. :

Let y € Q,, be a B-geodesic with y'(# + 0) ¢ T,,,)B, and Y a B-Jacobi field.
We say that Y is strong if it holds

91(Y'(to — 0),nor; y'(¢p — 0))
g91(7'(fo — 0),nor; y'(f — 0))

nor; Y'(z —0) = nor; y'(t — 0),

and

g2(Y'(to + 0),nor; y'(t + 0))
g2(y'(to + 0),norz y'(to + 0))

nor; Y'(tp +0) = nor; y'(tp + 0).

Let ys’ be the set of all strong B-Jacobi fields. jys’ forms a real vector
space. We note that if dim M; = dim M, = dim B+ 1, then all B-Jacobi fields
are strong. ’

LemMa 1.4 ([T]). Let yeQ, be a B-geodesic with y'(ty +0) ¢ T,)B, and Y
a B-Jacobi field. Then there exist a strong B-Jacobi field W with W(ty —0) =
Y(to — 0), tan W’(Io - 0) = tan Y’(t() — 0) and gl(W'(to - 0),1101‘1 yl(to - 0)) =
91(Y'(to — 0),nor; y'(tp — 0)), and a B-Jacobi field V with V(ty — 0) = 0 such that
Y(t) = W(t) + V(). And this decomposition is unique.

gives the direct sum decomposition

};zjyst‘kfa;Mth-
Elements of ij"MZ are called (M, M,)-Jacobi fields. Then we have that

M\, M, _ g M, M
fyl 2_}}}1_}_1})2,

where ij‘ is the set of all (M1, M>)-Jacobi fields which is identically zero on M,
(4 # p). The resulting projections pr, : £, — jys’ and prou, ) * S — /;“"MZ are
obviously R-linear. For Y € #, we put pr,(Y) =: Y' and priy, »,)(Y) =: Y2
Let yeQ, be a B-geodesic with y'(to +0) ¢ T, )B. We say that y(z)
(t2 € (a,b]) is a B-conjugate point to y(t;) (t; € [a,b),t; < t;) along y if there
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exists a B-Jacobi field Y along y such that Y(5)) =0, Y(2) =0 and Y |[#, 1]
is nontrivial.

LeMMA 1.5 ([T]). Let y€ S, be a B-geodesic with y'(ty +0) ¢ T,,)B. We
assume that y(ty) and y(b) are not B-conjugate points to y(a). Then, for any v, €
TyM and v; € Tp)M>, there is a unique Y € ¢, with Y(a) = v, and Y(b) = v,.

LemMA 1.6 ([T]). Let y € Q,, be a B-geodesic with y'(ty + 0) ¢ Ty,)B. If y(t1)
(t1 € (to,b]) is not a B-conjugate point to y(a) and also y(t;) (1 € (a,to]) is not a
conjugate point to y(a), then, for any Y € T,Q,, with Y (a) = 0, there exist a unique
B-Jacobi field J e fyo such that J(b) = Y (b) and

L(J,J) < L(Y,Y).

In particular, the equality holds if and only if J* = Y.

LemMmA 1.7 ([T])). Let ye Q. be a B-geodesic with y'(to + 0) ¢ T, B. The
following are equivalent:
(1) y(t1) (¢ € (to,b]) is not a B-conjugate point to y(a) and also y(t)
(t1 € (a, b)) is not a conjugate point to y(a).
(2) I>+ is positive definite.

We define the function pg : [a,b] — R and fx : [a,b] — R by

(t if K=0
1
— tan VKt if K>0
px(t) = 1 vK
1
tanh v—-Kr if K<0
\ vV—K
and
( t if K=0
Lsin\/it if K>0
fK(t)=< \/E ’

1
sinh vV—-Kt if K<0
\ vV—K

respectively. We put T(y’) := Ty B® Span{nor; (10 + 0)}, T3(y):=
{ve€T2(y') | g2(v,7'(to + 0)) = 0} and A := Ay(i-0),y(0+0) | T3 (¥')-
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Lemma 1.8 (The passage equation [T]). Let M, and M, be Riemannian
manifolds of constant curvature K, and K,, respectively. Let y : [a,b] — M be a
B-geodesic with y(ty) € B and y'(to + 0) ¢ T,(,,)B. If y(b) is the first B-conjugate
point to y(a), then we get that fx,(t—a) >0 for te(a,ty] and

-1 -1

Iy = +
T k(o —a) b 1)

when fx,(b— 1) > 0,
where 14 is a minimal eigenvalue of A.

2. Comparison Theorems on Glued Riemannian Spaces

Let (M;,g,) (resp. (M;,3;)) be Riemannian manifold with Riemannian sub-
manifold B; (resp. B;) for A= 1,2, and y (resp. ¥) isometry from B to B, (resp.
B to BZ) Let (M,g) = (Mlvgl) Uy (M3,92) and (M’g) = (Hlagl) U./—, (MZ’gZ)
be glued Riemannian spaces. We put B:= By~ B, and B:=B; ~ B, and
assume that dim B > 0 if dim B > 0. Let y : [a,b] — M (resp. 7 : [a,b] — M) be a
B-geodesic (resp. B-geodesic) such that y(f) € B (resp. 7(%) € B) and y'(tp + 0) ¢
Tyu)B (resp. 7'(fo +0) ¢ Ty)B). For A=1,2, let R* (resp. R*) be the Rie-
mannian curvature tensor of Riemannian manifold M, (resp. M;). We define

operators R} : {y'()}" — {y'(0}" and R} : {7'(N}" — {¥'()}" by
Rlv=R*(v,y'()y'(1) for ve {y'(}"

and
Rlo = R*o,7(1)7' (1) for se{7(n)}",

where {y'(1)}" := {ve T,y My | ga(v,'(1)) = 0} and {7'(1)}" := {p e Ty M; |
g,(0,7'(t)) = 0}. Similarly, a bar is used to distinguish objects in M from the
corresponding objects in M.

We assume that dim M) > 2 and dim M; > 2. Then, the following assertion
holds and is proved in Section 3:

THEOREM 2.1. We assume that the following conditions hold:
(1) For any te€ [a,b],

(the maximal eigenvalue of R}) < (the minimal eigenvalue of R})
(2) If dim B > 0, then

(the minimal eigenvalue of 4) > (the maximal eigenvalue of A4),

where A := A}”(to—()),y'(to+0) l FZ'L(})’) and 14- = 1‘171(,0_0),}7/(,0_;{_0) I I:j]“()_)/)
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(3) #(t) (te(a,t0]) is not a conjugate point to 7(a) and also ¥(¢)
(t € (t,b]) is not a B-conjugate point to ¥(a).
Then y(t) (t € (a,t)]) is not a conjugate point to y(a) and also y(t) (t € (to,b]) is
not a B-conjugate point to y(a). Moreover, if a perpendicular B-Jacobi field J with
J(a) =0 and a perpendicular strong B-Jacobi field J with J(a) =0 satisfy
17 (@), = 1T (@)l then

@l = 1@, on [a,b].
In particular, if there is d € (a,b] such that ||J(d)|; = |J(d)||;, then

IOl = IO, on [a,d].
The condition that dim B > 0 if dim B > 0 is necessary. We give an example

which shows this;

ExaMPLE 1. Let M = M;U;; M, be a glued Riemannian space which con-
sists of the following two surfaces in the Euclidean space E3 and B a boundary
(submanifold) of M; (1=1,2):

My ={(x,y,2)|x* +y*+ 2" =1,y 2 0},
MZ = {(x,y,z)|x2+y2+zz = 17y SO},
B ={(x,0,2) | x? + 22 = 1},

and g;, A= 1,2, are Riemannian metrics induced from the natural Euclidean
metric of E>. We defined a B-geodesic y: [0,7] — M by

y(t) = (0, cos ¢,sin ?).

Then Y(z) = (sin ¢)U; is a B-Jacobi field along y, where U, := d/dx, U, := d/dy
and Us := 0/0z is a natural frame field on E*. Hence y(n) is a B-conjugate point
to y(0).

Let M = M,U;; M, be a glued Riemannian space which consists of the
following two surfaces in the Euclidean space E* and B a submanifold of
1‘_4 yl (/1 = 1,2)1

M, = Sz(l) = {(x,»,2) |x2 +y2 +22 = 1},
My={(x,»,2)|x*+(y+2)* +22 =1},
B={(0,—1,0)},
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and g;, A= 1,2, are Riemannian metrics induced from the natural Euclidean
metric of E*. We defined a B-geodesic 7: [0,7] — M by

.« [ (0,cos(t + =/2),sin(t +n/2)) on [0,7/2]
(6 = { (0,cos(t — m/2) — 2,sin(t — /2)) on [r/2,7]

Then, for any te (0,n], 7(¢) are not B-conjugate points to 7(0).

THEOREM 2.2. We assume that the conditions (1), (2) and (3) in Theorem 2.1
hold. If dim M, = dim B+ 1 (A = 1,2) and a perpendicular B-Jacobi field J with
J(@) =0 and a perpendicular B-Jacobi field J with J(a) =0 satisfy ||J'(a)|l; =
17" (@)l;, then

IOl = TN, on [a,b].

In particular, if there is d € (a,b] such that ||J(d)||, = |J(d)||;, then

@l =IO, on [a,d].

Proor. If dim M; = dim B + 1, then any B-Jacobi fields are strong. Hence,
by (Theorem 2.1, the assertion holds. O

The condition that J is strong in and dim M; =dim B+ 1
(A=1,2) in is necessary. We give an example which shows this:

ExampLE 2. Let S3(1) be the 3-spheré of constant curvature 1 and y a geo-
desic on S3(1). Let (e1(),ex(£),7'(f)) be a parallel orthonormal frame along y. Let
7 be the geodesic through y(0) with 7/(0) = ¢;(0). We put M, := §3(1) (A =1,2),
B:={t(t)|teR}, y =idg and M = M; Uy M,. Then y:[-n/2,n/2] - M is a
B-geodesic. Let J(t) = (cos t)e;(¢) and

= [ (cost)ei(t) on [-=m/2,0]
1) = {(cos nei(t) + (sin f)ex(t) on [0,7/2]

Then J and J are both perpendicular B-Jacobi fields along y such that
J(-n/2) =0 and J(—=n/2) =0. We set a:=—n/2, to:=0 and b e (t,n/2).
J'(==/2)|| = ||J'(==/2)||, and (1), (2) and (3) in hold trivially,
but ||J(2)| < ||J(2)] for ty <t < b. '
We say the Jacobi equation splits along y relative to B if the curvature
transformation R, := R!(-,y'(¢))y’(¢) preserve the parallel translates of T ,,B @
Span{nor; y'(to — 0)} along y|[a, t), and the curvature transformation R? :=
R(-,y'(2))y'(¢) preserve the parallel translates of T,,)B @ Span{nor; y'(to + 0)}
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along y|[t,b]. We note that if dim M; =dim M, =dim B+ 1 or M; (A=1,2)
has constant curvature, then the Jacobi equation always splits along y rela-
tive to B. We say that y(t;) (, €[a,b]) is a strong B-conjugate point to y(t)
(t1 € [a,b], 11 # ;) along y provided there exists a nontrivial strong B-Jacobi
field along y which vanishes at 7; and ¢,.

The following assertions hold and are proved in Section 3:

LEMMA 2.3. Suppose the Jacobi equation splits along y relative to B. Let J
be a B-Jacobi field and let J = J' + J? be the decomposition of Lemma 1.4. This
decomposition is orthogonal, that is, g;(J'(t),J*(t)) = 0.

THEOREM 2.4. We assume that the Jacobi equation splits along 7 relative to B,
the conditions (1), (2) in Theorem 2.1 hold and any %(t) (t € (a,b]) are not strong
B-conjugate points to y(a). If a perpendicular B-Jacobi field J with J(a) =0 and
a perpendicular strong B-Jacobi field J with J(a) = 0 satisfy ||J'(a)||, = |T'(@)|l;,
then

@O, = 1T, on [a,8].
- In particular, if there is d € (a,b] such that |J(d)|; = ||J(d)|l,, then
IO =IT@ll; on [a,d].
COROLLARY 2.5. We assume that the Jacobi equation splits along 7 relative
to B, the conditions (1), (2) in Theorem 2.1 hold and any %(t) (t € (a,b)]) are not
strong B-conjugate points to y(a). If a perpendicular B-Jacobi field J with J(a) = 0

and a perpendicular B-Jacobi field J with J(a) =0 satisfy ||J'(a)|, = |[J'(a)]l,
then

WOl = 1Tl on [a, 2]
and
IOl = IOl = 172(@)ll,  on [t,8].
In particular, if equality occurs for some d, then equality holds on |a,d].
Proor. By W@l = 17 @), for telabl. But [T, =

W), — IT*(2)|l,, since g,(J'(¢),J*(¢)) =0 along . Moreover, since any 7(¢)
(t € (a,t)) are not conjugate points, it holds that J2(z) =0 for t€[a,t). [
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Some of the most useful comparison spaces are the manifolds of constant
curvature. By using (passage equation) and [Theorem 2.1, the fol-
lowing corollary holds:

COROLLARY 2.6. Let a, ty and K, be any real numbers such that a < ty and
Sk, (t —a) > 0 for any t € (a,t)] (fx, is defined in Section 1). Let 6 and K, be any
real numbers such that K| = K, if 6 =0. Let by (>ty) be the smallest solution of

P S
Pi,(to—a)  pg,(t—t)’

by (>ty) the smallest value which satisfies fk,(t —t)) =0 and b := min{b;,b>}.
Assume that dim B > 0,

(the maximal eigenvalue of R}) < K; for any te€ [a,b],
and

(the minimal eigenvalue of A4) >4,

where A := Ay,(,o_o)’yl(,ﬁo)|F§L(y’). Then there are no conjugate points along
7| [a, to] and no B-conjugate points along y|[a,b) to y(a).

Proor. If 6#0, we put 0 := (K —K,—-06%)/(-28) and 6,:=
(K1 — Ky 4 6%)/(=26). If 6 =0, we put §; = J,. Choose a complete Riemannian
manifold M; (A =1,2) of dim > 2 and with constant curvature K;, p, € M;, a
unit vector v; in T, M; and totally umbilic hypersurface B; in M, through p;
such that dim M; = dim M,, v, € T,,B} and all the eigenvalues of the shape
operator S! (resp. 52) are equal to &, (resp. &2). Then B, has constant curva-
ture K; +0; and K; + 87 = K, + 0. Hence there exists a neighborhood B; (<B;)
of p, such that B, is isometric to B,. Let  : B — B, be the isometry such
that Y(p1) = p>. Let 7 be a B-geodesic such that 7(z) = pa, 7'(fo —0) = v; and
7' (to +0) = v2. Since 8; — 3, =6, Ap,,,,(W) =0w for we I5-(y'). Comparing M
with M, assumptions (1) and (2) of are hold. Also, by Lemma 1.8,
(3) holds. O

3. Proofs of Comparison Theorems

Let V be a m-dimensional vector space (m > 0) with an inner product
{y), €1,...,en a basis of V, |w|| a norm of we V and R,: V — V (¢t € [a,b])
a self-adjoint linear transformation such that 7+ R, is continuous. Let @(V)
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be the set of all piecewise smooth curves in V defined on [a,b]. For Y(¢) =
Sor yi(eie®(V), we put Y'(£) =317, (dy'/dt)(t)e;. A curve Y e ®(V) that
satisfies Y”(¢) + R, Y(t) =0 is called a (V,R,)-Jacobi field. A point t, of [a,b]
is a (V, R,)-conjugate point to t; (#t2), t € [a,b], provided there is a nontrivial
(V, R,)-Jacobi field J with J(z;) =0 and J(#;) =0. We put ve V and assume
that Rv =0 and R,w € {v}* for any we V', where {v}* := {we V|{w,v) = 0}.
A (V,R,)-Jacobi field Y is a perpendicular (V,R,)-Jacobi field if Y is perpen-
dicular to v, that is, {Y(#),v> = 0. In general, when V is a vector space with an
inner product and W is a subspace of V, let pry, y : V' — W be an orthogonal
projection from V to W. We put X1 := Pry () (X) for X e ®(V). The index
form I:0O(V) x O(V) — R is defined by

b

I(X,Y):=I(X,Y):= j {(XY, Y'Yy — (RX, YD} dt,

a
for any X,Y e ©(V). For two triplex ¥ := (V,v,R,) and ¥ := (V,d,R,), we
assume that if dim ¥V =1, then v =0, and if dim ¥V =1, then » = 0. Then, the
following comparison theorem is shown as usual:

Comparison theorem. We assume that the following conditions (1) and (2) hold:
(1) For any t € [a,b],

(the maximal eigenvalue of R,|{v}") < (the minimal eigenvalue of R/|{i}").

(2) Any t € (a,b] are not ¥ -conjugate points to a.
Then any te€ (a,b] are not ¥ -conjugate points to a. Moreover, if a perpen-
dicular ¥"-Jacobi field J with J(a) = 0 and a perpendicular ¥ -Jacobi field J with
J(a) = 0 satisfy ||J'(a)|| = ||J'(a)||, then

7O = 1Tl on [a,b].
In particular, if there is d € (a,b] such that ||J(d)| = ||J(d)||, then
IO =1I@I on [a,d].

Let V; (A=1,2) be a m;-dimensional vector space (m; > 0) with an inner
product <-,->; and W, a subspace of ¥, such that there is a linear isometry
Y : Wi — Wa. Let ||v||; be the norm of ve V). We put v, € V; such that ||v||, =
llv2ll, and Y(pry, w;(v1)) = pry, w,(v2). Let R} : V1 — Vi (resp. R?: V2 — 13)
be a self-adjoint linear transformation for any € [a, 1] (resp. t€ [to,b]). We
assume that ¢+ R} is continuous, R}v; =0 and R}w e {v;}*, where {v;}"* :=
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{we V)| <w,v;>, =0}. We set I'(v;) := W + Span{v,} = W, @ Z,, where Z; is an
orthogonal complement of W, in I'(v;). Let 4 : I'(v2) — I'(v2) be a self-adjoint lin-
ear map such that 4(v;) = 0 and A(w) e I'* () for all w e ['(v;), where T+ (1) :=
{weTl(v)]|{w,v12), =0}. For a ten-tuple (V;,Va; W, Wa;¥;v1,02; R}, R?; A),
we denote it by ¥ = (Wi, Va; Wi, Wa; y;v1,v2; R, R?; 4). Fix a ten-tuple ¥ =
(N, Va; Wi, Wz;l/l;vl,vz;Rtl,th;A). Let Q:= Q.1 :I'(v1) = I'(v2) be a linear
map such that Q|W; =y and Q(v;) = v2. Let O(W, Va; Wi, Wa;yr;v1,v2) be the
set of all pair Y := (¥}, Y;) such that Y;:[a,2] — ¥} and Y, : [ty,b] — V, are
piecewise smooth curves, Yj(#) € I'(v;) and Y>(#) = Q(Y1(%)). A element Y of
O, Vo, W1, Was vy, 07) is called a ¥ -Jacobi field if it satisfies that

(3.1) Y (1) + R}Y; (1) =0 for tela,b]

(32) A(Y2(t0)) = Pry, r(e,)(¥3(20)) — Q(Pry;, r(w) (¥ (0))),
and

(3.3) Y (t0), v1 51 = <X, (t0), 02>

Let Y =(Y;,Y,) be a ¥-Jacobi field. We say that Y is strong if it holds
perml(Yl’(to)) eZ, for A1=1,2.

Similarly to we have the following. Let Y = (Y}, Y;) be a ¥-
Jacobi field. Then there exist a strong ¥ -Jacobi field X = (Xi, X>) with X)(#) =
Yi(to), pry;, wi (X{(0)) = Pry, w, (¥{(t0)) and pry; z,(X{(t0)) = pry; z,(¥{ (1)), and
a ¥"-Jacobi field J = (J;,J2) with Ji(2) = 0 such that Y;(7) = X;(¢) + J,(¢). And
this decomposition is unique.

For points #; and #, on [a,b] with t; < t;, 1, is a ¥ -conjugate point to t
provided there is a 7#"-Jacobi field J which satisfies one of the following con-
ditions. -

(1) If t; € [a, t()) and ©, € (t(),b], then J; (tl) =0, Jz(tz) =0 and, J; | [tl,to] or

J> | {to, t2] are nontrivial.

(2) If # € (a, )], then Ji(t;) =0, Ji(t;) =0 and J; | [tl, tz] is nontrivial.
(3) If #; € [to,b], then Jo(t;) =0, Jo(t) =0 and J,|[t1, ;] is nontrivial.
For we ¥, let w' be the perpendicular component to v, that is,

wh = pr,,b{m}l(w).

Jacobi fields are perpendicular provided they are equal to their perpen-
dicular' component to v;. The index form 1I:O(Vi, Va; Wi, Way;v1,02) X
(W, Va; Wi, Was;v1,v2) — R is defined to be
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I(X,Y):=I2(X,Y) = [°(X1, Y1) + I2(X2, Y2) + {A(X2(t0)), Ya2(t0) >,

fo
- j (X, Y5y = CRXG, Yidy} dt

b
+ j (KX, Y5, — CR2Xy, Yado} dit + CA(Xa(t0)), Ya(to) D

o

for X=(X1,X2), Y=(Y],Yz)G@(V],Vz;VVl,VVz;lﬁ;U],vz). We put Yt .=
(YL, Y34 for Y = (W, Y2) e ®W, Va; Wi, Wa s v1,02) and @+ (W, Va; Wh, Wi;
y;o,0) = {Y = (11, Y2) € O(N, Va; Wi, Wa; Y501, 02) | (Y3, 03); = 0}. Tt follows
immediately that I(X,Y) = I(X1, Y1) for all X,Y € (W, Va; Wq, Was s 01, 02).
We set It :=1|0 (W, Vo; Wi, Woss01,12). If X =(X1,Xa), Y= (1, Ta)e
O(W, Va; Wi, Way;v1,v2) and X is a ¥ -Jacobi field, then we have that

I(X,Y) = <X3'(b), Y3 (b)), — <X{"(a), Yi' (@)>,

and, in particular,

(3.4) I(X, X) = <X3"(b), X5 (b)>, — <X{"(a), Xj (a),

= SR XO40) — <X XD @),
We put
O (W, Va; Wi, Wa; Y501, 12)
={Y = (11, Y2) € ®(W, Va; Wi, Wa; §;01,12) | Yi(a) =0 and Y,(b) = 0},
O (W, Va; Wi, Wa; s 01, 02)

= @ (W, Va; Wi, Was ¥ 01, 02) N@° (W, Va; WA, Was ¥ 01, 12)

and
1%L = 1|10%L (W, Va; W1, Was s 01, 02).

Then, similarly to Lemma 1.3, we have the following:

LemMma 3.1. Y=(1,Yr)e ®°’J‘(V1, Vo, Wi, Was i, 01,02) is an element of
the nullspace of I%* if and only if Y is a ¥ -Jacobi field.

Similarly to [Lemma 1.6, we have the following:

LemMMa 3.2. If any te (a,ty] are not (Wi, R})-conjugate points to a and also
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any te (t,b] are not ¥ -conjugate points to a, then, for any Y = (Y, Y,) €
O, Va; Wi, Was g, v1,v2) with Yi(a) =0, there exist a unique ¥ -Jacobi field
J = (J1,J2) € O(W, Va; Wy, Was 01, 02) such that Ji(a) =0, Jr(b) = Y(b) and

1(J,J) <I(Y,Y).

In particular, the equality holds if and only if Jt = Y.
Similarly to Lemma 1.7, we have the following:

LemMMA 3.3. The followings are equivalent.

(1) Any t e (a,t] are not (V;, R})-conjugate points to a and also any t € (ty, b)
are not ¥ -conjugate points to a. '

(2) I%+ is positive definite.

For two ten-tuples ¥~ = (W1, Va; Wi, Wa; 501,02, R}, R?, A) and ¥ = (W, Py,
Wi, Wa;; 01, 02; R}, R2; A), we assume that dim{v;}* >0 and dim{#;}* >0
for A=1,2. We put m;:=dim V;, m; :=dim ¥}, n:=dimI*(v;) and 7:=
dim Tl(ﬁl). From now on, we shall assume that 77 > 0 if n > 0, and, dim ¥}, > 2
for A=1,2. Then, by using [Lemma 3.3, the following assertion holds:

LEMMA 3.4. We assume that the following conditions hold.
(1) For any te€ [a,b],
(the maximal eigenvalue of R}|{v;}*)
< (the minimal eigenvalue of R}|{i;}").
(2) If n> 0, then
(the minimal eigenvalue of A | (vy))
> (the maximal eigenvalue of A |T(,)).

(3) Any t € (a,to] are not (Vi, R})-conjugate points to a and also any t € (o, b]
are not ¥ -conjugate points to a.
Then any t € (a, ty) is not (Vi, R})-conjugate points to a.and also any t € (t,b] are
not ¥ -conjugate points to a.

Proor. We will show that any ¢ e (#,b] are not ¥-conjugate points to a
if any ¢ € (a,t] is not (¥}, R!)-conjugate points to a and also any ¢ € (t9,b] are
not ¥ -conjugate points to a.
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1. Case where m; +1 <m; and my + 1 <m; and n < n. We assume that a point
d € (%, b] is a ¥-conjugate point to a. Then there is a nontrivial ¥"-Jacobi field
Y := (Y, Y5) e @5 (W, Va; Wy, Wa; 501, 03) such that Yj(a) =0 and Ys(d) = 0.
We define Y := (1}, Y2) € @L(W, Va; Wi, Wa; s 01,02) by Yi(t) = Yi(f) and

Y(t), te[to,d]
Y2(1) = .
2(1) {o, te(d,b]
Since I4(Y,Y) =0 holds, we have
I(Y,Y)=I%Y,Y)+ I:(Y,, V) = 0.

Let ef,..., e, be an orthonormal basis of ¥} and ef,...,e} an orthonormal
basis of ¥, such that e],...,e, is an orthonormal basis of I''(v)), ef,... e} is
an orthonormal basis of I'*(v;) and Q(e;) = ¢} for i =1,...,n. (Such ortho-
normal basis ef,...,e, and e,...,e} are called orthonormal basis of ¥} and
V, adapted to Q, T'*(v,) and I'*(v;).) We can denote Y(¢) by

Vi) = 3ori(0er, e fa
i=1
and
Y2(t) = iyi(t)ef, t € [to, b).
i=1

Since Y € @ (W, Va; Wi, Wa;y;u1,02), it holds that y(f) =yi(s) for i=
1,...,n, and, y"(%y) =0 and y2(t) =0 for iy =n+1,...,m; (A=1,2). Let
é,...,e; and &,...,&f be orthonormal basis of Vi and V7, adapted to
['“(5;) and T*(5;) such that &; = o1/||t1]l, and &7 = ba/||0all, if &1 # 0. If we
put

Yi(r)=>_y (e, tela, ]
i=1
and

?Z(t) = Z yi(t)éi-k’ Le [to,b],

then it holds that ¥ = (¥}, Y2) € @ (¥, Va; Wy, Wa;y; by, 2), since

L)er =3 ¥ (1) D(e) = B(Fi(t).
i=1

o
~~
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Furthermore, by the definition, we have that || Y;(¢)||; = || Ya(¢)||, and || Y} (2)||, =
| Y/(2)|l,- Hence, from the assumption (1) and (2), we get

(RIYA(D), Ya())) < (R}MYL(), Ta()Ds

and

CA(Y2(10)), Y2(10) 2 = <A(Y2(%0)), Y2(0) 5.

Then we have that

I(Y,Y)>I(Y,Y).
Since I(Y,Y) =0, it holds that I(Y, ¥) < 0. But, by the definition of Y, ¥ is
a nontrivial. Since any ¢e€ (a,t9] are not (7, R!)-conjugate points to a and
any t € (t,b] are not ¥ -conjugate points to a, from Lemma 3.3, we have that
I(Y,Y) > 0. Hence t€ (t,b] is not a ¥ -conjugate point to a.

2. Case where my +1>my or my+1>my or n > n. By using the case 1, we
can prove the assertion. By the assumption, 7 >0 if n > 0. Hence, we have
that 7 # 0. Let &*(z) be the minimal eigenvalue of R}|{#;}", # the maximal
exgenvalue of A|TL(#,), Vy:= V, ® R™, R} := R} @ g*(¢) idgm, W, := W, @ R™,
Y=y @idgm, 9, =0, ®0 and 4 := A @ # idgm, where m := max{m;, + 1 —m,
my + 1 —my,n —n} and idg= : R™ — R™ is the identity map. Then V, is a vec-
tor space with an inner product, I'(3;) = I'(5;) ® R™, T(3;) = T1(3;) ® R™,
0= O@idgm, iy :=dim V, =m, +m>m, +(m;+1 —m;) =m; +1 and 7 :=
d1m I’l(vl) =#A+m>n+ (n—n)=n. Comparing a ten-tuple ¥~ with a ten-tuple
= (W, Va; Wi, I’Vy_,l/l,vl,vz,R R,,A) assumptions (1) and (2) of this lemma
are hold. Furthermore if dim n > 0, then dim 72 > 0. By case 1, if any ¢ € (a, )
are not (¥;, R!)-conjugate points to a and also any ¢ € (ty, b] are not # -conjugate
points to a, then any fe (%,b] are not ¥ -conjugate points to a. We will
show that any 7e (1,b] are not # -conjugate points to a. Let ¥ = (¥, 13) €
G)(V;, Va, Wi, Wi l/;;ﬁl, 2) be a # -Jacobi field such that f’l(a) =0 and f’z(d) =
(d € (to,b]). Since V; is a direct sum, ¥; have a form ¥; = ¥, ® (¥},..., ™),
where Y := (Y}, Ya) € (W, Va; Wy, Wa;¥;01,52) and Y := (¥}, ¥})) e O(R,R;
R, R;idR;0,0). We put # := (R, R; R, R;idg;0,0; a'(¢) idg, z%(¢) idg; % idg). Then
Y is a 7 -Jacobi field such that ¥,(a) =0 and Y>(d) =0, and Y’ is a #-Jacobi
field such that ¥{(a) =0 and Yj(d) = 0. Since, by the hypothesis, there is not
a point € (f,b] which is a ¥ -conjugate point to a, Y is trivial. Furthermore,
comparing a ten-tuple # with ¥", we see that any point €. (f,b] are not
A-conjugate points to a by the case 1. Hence Y’ is trivial and Y is also. [
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Using and we can prove the following:

LEMMA 3.5. For two ten-tuple ¥~ and ¥, we assume that the conditions (1),
(2), (3) in Lemma 3.4. If a perpendicular ¥"-Jacobi field J = (Jy,J,) with Ji(a) =0
and a perpendicular strong ¥ -Jacobi field J = (J\,J;) with Ji(a) =0 satisfy
i@y = 17/(@)l,, then

a0l = L@, on [a,b].
In particular, if there is d € (a,b] such that ||J;(d)|, = ||J1(d)||;, then
I = (@), on [a,d].
To show this lemma it is necessary to prove the following lemma:

LemMA 3.6. Let f:|a,b] = R and f :[a,b] — R be piecewise smooth func-
tions which are smooth except at ty € (a,b) and satisfies the following conditions:

(1) (1), £(t) >0 for any te (a,b).

(@) lm(£()/F(1) = 1.

3) (f'0)/f(0) = (f'(1)/f(2)) except at a and 1.
Then, for any tela,b], f(¢)=f(t). In particular, if there is de (a,b] with
f(d) =f(d), then f(t)=f(t) for any te€|a,d].

ProoF. We put F(¢) :=f(f)/f(f). By the assumption (1) and (3), we get

FOF@ —FOF (0} = F(o) {fT(({)l _ -f((—t’))} >0,

_
f(2)?

except at a and ty. Moreover, it is obtained that

F'(2)

lim F(z) = 1,

from the assumption (2). Since F(¢) is continuous, F(¢) > 1 for any ¢ € (a,b]. If
there is d € (a,b] with F(¢) =1, then F(¢) =1 for any t € [a,d]|. This completes
the proof. O

Proor orF LEMMA 3.5. For a perpendicular ¥"-Jacobi field J = (J;,J2) with
Ji(a) =0 and a perpendicular strong ¥ -Jacobi field J = (J;,J;) with Jj(a) = 0,
we set

F(O) := ), i)y, and  f(1) == <Ta(e), a(2) s
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We will show that f and f satisfy the assumption of [Lemma 3.6. Then the proof
will be complete.

By Lemma 3.4, there are no (¥}, R})-conjugate points to a on (a, t) and
¥ -conjugate points to a on (fy,b]. Since J is strong, if J{(a) =0 and J{(a) =
then J; =0, J; =0 and J, = 0. This shows that lemma is true. If ||Jl(a)||1 =
|J{(a)|l; # O, then we get Jy(¢) # 0 and J,;(¢t) #0 for any ¢ e (a,b]. Hence we
have that f and f are piecewise smooth and smooth except at #,. The assump-
tion (1) of holds. We can prove the assumption (2) of
as follows:

L0 i L0 1)
Gl f(e) =afr) e fr(r)

i ST T2 = @), R _ @I _
t~a (JI(0), (O — < (0, R\ 1T (a)))?

Finally, we shall show that the assumption (3) of Lemma 3.6.

1. Case where my +1<m;, my+1<my and n<n. Fix a point c € (t,b].
We define Y = (N, Y2) €@ (W, Vo; W1, Was¥501,10) and Y= (Y, 1r)e
@ (7, Va3 W, Wa;¥; 01, 02) by

Yi()) = —29D_ and Fy(e) o= 20

12l I72(o)ll,°

respectively. Then Y is a perpendicular ¥ -Jacobi field and Y is a perpendicular
¥ -Jacobi field. Hence, from [3.4), we have that

fi (o)
3.5 If(Y,Y Y,, Y
( ) a( ) < 2 2>2( ) Zﬁ(C)
and
e v T f2(c)
(4
(36) a(Ya Y) <Y2,Y>2( ) 2f(C)

Let ef = Y>(c),ed, ._..,ej;,z (resp. & = Ya(c),&5,...,€5 ) be an orthonormal
basis of V; (resp. Vz) such that &; =d/|lo2ll, if 52#0, ef,...,ef
(1<i<---<i,<my) is an orthonormal bas1s of I'(v;) and &r,...,e are
elements of Fl(vz). Let ef,...,e, (resp.ér,..., ,7,1) be an orthonormal basis of

V1 (resp. ¥1) such that &; = o1/||o1]l, if 52 # 0, and, Q(e;;) = ¢f and Q(e;) =&
for a =1,...,n. We can denote Y(¢) b
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N =S yi(er, telan]
i=1
and
my .
()= yi(0ef, teln,b.
i=1

Since Y=(Y1a YZ)GGJ‘(I/])VZ; Wi, WZ;'p;vl,UZ), yE(tO) :y-tk(tO) for a=1,...,n
We define Z = (Z,,2Z,) € © (W, Va; Wi, Wa;§;61,02) by

m
Zi(n=)_y (e, telan]
i=1
and
— m2 .
Za(t) =) yi(0et, tet,b).
i=1
In fact,

Zato) = 3 vE(0)e} = 3 v (0)D(E]) = B(Zi ().
a=1

a=1

Since Y>(c) =ef, Z»(c) =& = Ya(c). Therefore, from Lemma 3.2, we obtain
that :

IZ,2) = I4(Y, 7).
Moreover, for any € (a,d, | (), = IZa()ll; and | ¥ @)]l, = | Z5()]l; bold.
Hence we have that
INY,Y)=I{2Z,2Z)
from the condition (1) and (2). Then we get

(3.7) I{(Y,Y) 2 I{Y, 7).

By 3.5), [3.6) and [3.7), f and f satisfy the assumption (3) of for
any t € (t,b]. We can prove the case of ¢ € (a,#)] as usual.

2. Case where m;y+1>m; or my+1>my; or n>n. Let # be as in proof
of We put % := (R™,R™;R™,R"™;idgn=;0,0; &' (¢) idgm, @>(¢) idgm;
7j idgm). A strong # -Jacobi field J = (J;,J2) such that J;(a) = 0 and W@, =
Il7{(a)|l; have a form J; = J @ J, where J = (J;,J,) is a strong ¥ -Jacobi field



An extension of Rauch comparison theorem 337

with Ji(a@) =0 and J = (J},J5) is a %-Jacobi field with J;(a) = 0. If ten-tuples
¥ and ¥  satisfy the assumption (1), (2) and (3) of then it is
reduced to the case 1. Since (1) and (2) is true, we may prove (3). We assume
that c e (t,b] is a # -conjugate point to a. If J = (J1,J) is a # -Jacobi field
with the decomposition J; = J; @ J; such that Ji(a) = 0 and J,(c) = 0, then we
get Ji(a) =0, Ji(a) =0, Jo(c) =0 and J>(c) = 0. By the hypothesis, we have
that J, is trivial on [a,c]. Moreover, since % and ¥ satisfy the assumption of

Jy is trivial on [a,c]. O

and show that holds.

We say the Jacobi equation splits relative to T'(v;) if R} preserve I'(v;). We
say that 1, € [a,b] is a strong ¥ -conjugate point to t| € [a,b] (t; # t,) if there
exists a nontrivial strong ¥ -Jacobi field which vanishes at #; and t,.

Suppose the Jacobi equation splits relative to I'(v;). Then R} preserves I'(v;).
Since R} is self-adjoint, it also preserves I'(v;)'. Let R}':= R}|I'(v;) and
R} .= R*|T'(v;)*. Then R} = R’ @ R*? and the following holds:

LemMa 3.7. Suppose the Jacobi equation splits relative to T'(v;). Let Y =
(Y1, Y2) be a ¥ -Jacobi field and let Y, = Y}! + Y, where Y! eT'(v;) and Y} e
T(v;)". Then Y':= (Y}, Y}) and Y2 := (Y2, Y}2) are ¥ -Jacobi field and Jacobi
equation becomes

()" +RANY) =0 and (YD) +RM(Y}) =0.

Moreover Y! is a strong ¥ -Jacobi field and Y? is a ¥ -Jacobi field with
YZ(to) = 0. In particular, if Y is a strong ¥ -Jacobi field, then ¥ = Y.

This lemma shows that holds.
The following assertion holds:

LemMMA 3.8. We assume that the Jacobi equation splits relative to T'(v,), the
conditions (1), (2) in Lemma 3.4 hold and any t € (a, b| are not strong ¥ -conjugate
point to a. If a perpendicular ¥ -Jacobi field J := (J1,J2) with Ji(a) =0 and a
perpendicular strong ¥ -Jacobi field J := (Jy,J>) with Jy(a) = 0 satisfy ||J{(a)|, =
1@, then

IOl = 172D, on [a,b].

In particular, if there is d € (a,b] such that ||J;(d)||; = ||J1(d)||;, then
1L, = 1T, on [a,d].
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ProOF. Let V;:=T(5y), Wy:= Wy, Y :=y, o,:=0;, R}:=R'|T(v;) and
A:= A. Then IA“(fu) =TI'(9;) and 0=0. We put # := (171, Vo, WA, Wz;ll;;ﬁl,ﬁz;
R!,R?; A). The assumption that there are no strong ¥ -conjugate points to a
on (a,b] means that there are no # -conjugate points to a on (a,b]. Since J is
a strong ¥ -Jacobi field, J is a # -Jacobi field. By Lemma 3.5, we obtain the

consequence. O
This lemma shows that holds.
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