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RIGID SPACES AND THE AR-PROPERTY

By

Jan Jaworowskl, Nguyen To NHu, Paul Sisson, Nguyen NHUY,
and Pham Quang TRINH

Abstract. A rigid space is a topological vector space whose endo-
morphisms are all simply scalar multiples of the identity. A rigid
space can be constructed so as to admit compact operators [14]. This
paper proves that the rigid space admitting compact operators con-
structed in [14] can be modified to be an AR, and hence is homeo-
morphic to the Hilbert space 4.

§1. Introduction

Rigid spaces, which appeared for the first time in and then in [6] [7] [14],
are among the most operator-poor of spaces in the class of linear metric spaces.
In fact, these spaces do not have any endomorphisms other than scalar multiples
of the identity map. Nevertheless, rigid spaces can share some nice topological
properties with the richest of spaces in functional analysis: Hilbert spaces. For
instance, in it was shown that a rigid space can be constructed to be ho-
meomorphic to the Hilbert space ¢,. Thus, rigid spaces may look poor from the
point of view of functional analysis, yet look rather wealthy from the point of
view of topology.

In this paper, we continue our investigation on the AR-property for rigid
spaces. The AR-propery for linear metric spaces is of special interest, since in-
finite dimensional separable complete linear metric spaces with the 4R-property
are homeomorphic to Hilbert space, see [4].

Observe that Cauty constructed a g-compact linear metric space which is
not an AR. By a theorem of Torunczyk [I5], the completion of any non-4R-linear
metric space is still a non-4 R-space. Therefore the completion of Cauty’s example
provides a separable complete linear metric space which is not an AR.
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It should also be observed that while Cauty showed the existence of non-
AR-linear metric spaces, it is difficult to use his argument to obtain an intuitive
picture of such a space. In fact, Cauty’s example is based on some rather deep
facts from infinite dimensional topology and a more self-contained example of a
non-AR-linear metric space would be much appreciated. Naturally, it is hoped
that such an example should be found among pathological objects in linear metric
spaces.

We also hope that our investigation on the 4R-property for rigid spaces will
shed light on the following question which is one of the most outstanding open
problems in infinite dimensional topology:

QUESTION. Is every compact convex set in a linear metric space an AR?
Does every compact convex set have the fixed point property? The second part
of the above question, known as “Schauder’s Conjecture”, was posed by Schauder
in early 1930’s, but is still open today.

The result obtained in this paper is much harder than the result obtained in
[11], where a similar theorem was established.

NOTATION AND CONVENTIONS. In this paper, all maps are assumed to be
continuous. By a linear metric space we mean a topological space which is met-
rizable. The zero element of X is denoted by 6. The space X will be equipped with
an F-norm [|-]| (see [13]); that is, a function ||-|| : X — [0, o) such that

(@) ||x|| =0 if and only if x =0,

(b) lbx+ Il < [lx]| + ||| for every x,y € X,

(€) ||Ax|| < ||x|| for every xe€ X and A€ R with |i] <1,
(d) ||ex|| — O whenever || — O.

Let 4 be a subset of a linear metric space X. By span 4 we mean the linear
subspace of X spanned by A4, and by conv 4 we mean the convex hull of 4 in X.
We also use the following notation:

|x — 4|l = inf{|[x — y|| : ye A} for xe X;
diam 4 = sup{||x — y|| : x,y € X}.

Let {(X,||l,)} be a collection of F-normed vector spaces, and let
X = span{X,}. For xe X, let

lx|| = inf{z [ ||, : x = Zxai;xai € Xy;ne N}.

i=1 i=1
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The F-norm ||-|| defined as above will be referred to as inf-norm {(X,, ||-|,)} and
will be used frequently throughout this paper.

For undefined notation, see and [13].

§2. A Rigid Space Admitting Compact Operators

In this section, we describe the rigid space admitting compact operators con-
structed in [14]. This space is the main object of our investigation.

Let W be a finite dimensional linear space with a basis {wy, w,,...,w,}. For
p,B € (0,1) we define an F-norm |~|0, which will be called the (p,f)-norm on W,
as follows: for xe W with x =3, x;w; € W, let

(1) X[t = Il
i=1

) P =B Il
i=1

(3) x| = inf-norm{|x|, |x|?}.

Observe that the (p, f)-norm |-|° defined by (1) (2) (3) is an F-norm, not a norm.
Now we are going to describe the rigid space which was constructed in [14].
Let V' denote the space of all finitely non-zero valued sequences. Let

(4) A4 = {e1 +en},_,U{er —en}, 2, U{er}

where e, is the sequence with a 1 in the n-th slot and zeros elsewhere. Let {a,} be
a sequence in A such that for each a € 4, a = a, for infinitely many n. Let {p,}
be a sequence of positive numbers such that

(5) O<pi<p2<---<pp<---<1 and

(6) lim p, = 1.

n-->ao0

Let {V,,} be a sequence of finite dimensional spaces of V', with dim V, = £(n),
such that

(7) Each 7, has a basis of the form {ef,..., ¢/, }
with a, = [£(n)] ' (e] + -+ + €fl)-

(8) If a,eA4 and a, ¢ V1 +---+ V,_1, then V, = Ra,. Otherwise
9) VuN(Vi+ -+ Vio1) = Ray,.
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For any ne N, let |-|, denote the (p,,f,)-norm on V. Let
(10) E.="+-+W

and define ||-||, on E, by

(1) -l = inf-norm{(Vi, |- [)s - > (Vau |- 1)}
Let
(12) E={)E; and |-, =4I,

n=1
The space E will be equipped with the F-norm
(13) I Il = inf-norm{(E,, [-[l)}-

Observe that in the F-norm || ||, defined by was chosen to satisfy
the condition

1
Flln = 5l llay on Enes.

Therefore from (12) we get
(14) -l = 20 llo-y on Enes

Let X denote the completion of (E,||-||). It was proved in that for cer-
tain choice of sequences {p,}, {B,} satisfying conditions (5) (6) and {/(n)} < N,
the resulting space X will be a rigid space admitting compact operators. Our aim
1s to demonstrate:

THEOREM 1. X is an AR.
From and from Theorem A we obtain
MAIN THEOREM. X is homeomorphic to the Hilbert space ¢;.

§3. Some Properties of the (p,[f)-Norm

Let W be a finite dimensional linear space with a basis {wy,...,w,} equipped
with a (p, f)-norm defined by (1)—(3), where p € (0,1) and § > 0. For every x e W,
X = erfl——l XiWi, let

(15) I(x)={i: x| <Y P} and J(x) = {i:|x| > pY/0P}.
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Then I(x)UJ(x) ={1,...,m}. Let

xl = E x;w; and x?= E XiWi.
)

iel(x) ieJ(x

Then x! 4+ x? = x. We claim that
Lemma 1. |x|° = [x!|! + |x2]2, see (1) (2) (3).
For the proof of we need the following simple fact.
CLamm 1. If pe (0,1), >0, and |a| > Y377, then
x| + Bla — x| = pla|”.

ProOF. We prove the claim for a > BY/(!"?). The proof for the case a <
~,81/ (I=p) s similar. Consider the following cases:

Case 1. x> a. Then x > ﬁl/(l_"). Therefore x > fx? > fa? and the claim
follows.

CaSE 2. x < 0. Then a — x > a. Therefore

x| + Bla — x|” > Bla— x|” > pa”

and the claim follows.

CastE 3. xe€[0,a]. Consider the function
p(x) = x + fla - x)°.
Then we have
0'(x) =1—Bpla—x)""" for every xe(0,qa).
Hence
¢'(x)=0 for x=a— (Bp)/17P.
Observe that ¢ is increasing on [0,a— (ﬂp)l/ (=p )] and is decreasing on
[a— (Bp)"/"P 4]. Hence
p(x) = x + fla— x)” = p(0) = pa? for every x e [0,a— (Bp)"/!™7),
and '

p(x) = x+ Bla — x)? > p(a) = a > Ppa? for every x € [a — (ﬁp)l/(l“”),a].
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It follows that
¢(x) = x + B(a — x)? > pa? for every x e [0,q].

The claim is proved.

ProoF oF Lemma 1. By (3), |x|” <|x!|'+ |x?|2. We shall show that
%% = x|+ [x?]2
Assume to the contrary that |x|° < |x!|! + |x2|2. Then there exist y/ € W,

m
=Y "ylw, j=12, with p!+y*=x,
i=1

such that
(16) U+ 2 < xR

Then we have

(17) S+ < X el + 3 Al
i=1 iel(x) ieJ(x)
Therefore there exists at least one i, say i = 1, such that
(18) Wi+ B <Pl i ] < Y0P,
(19) i+ BRI < Blxil” i x| > O,

Observe that y} + y? = x; for every i =1,...,m. In particular, y} + y? = x;.
Consider the two cases:

Cast 1. |x;| < g7 From it follows that
il < x| < g0,
Therefore |y?| < B|y?|°. Since x; = y} +y?, we get
il < il + il < Il + Bl l?
which contradicts [(18).
CASE 2. |x] > BY/1-P) Then by Claim 1 we get

il + Blx1 — yi|? = Blx1|”.
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Since x; — y{ =y}, we have

i+ BlyilP = Blxil?

which contradicts (19). Thus, the lemma is proved.
- From Lemma 1 we get

COROLLARY 1. For every xe W, x =3, x;w;, we have

= S Il + Y Bl

iel(x) ieJ(x)

where I(x) and J(x) were defined by [15).
§4. Some Algebraic Properties

LEMMA 2. Let {V,} denote a sequence of finite dimensional linear spaces of V
satisfying conditions (7)—(9). Then for every n€ N, {an,el',i=1,...,¢/(n) — 1} is a
linearly independent subset in V, hence is a basis for V.

n)l

PrROOF. Assume that Aa, + Z Jel = 6. Then we have

£(n)—1

A n n n
m(el + ot ) Z} Aief = 0.
J=
It follows that
Z(n)—1
A A
2 et ——e = 0.
. 2 (4 63t + g =
Since {e',i=1,...,/(n)} is a basis of ¥}, we get
L—O and i-+—L—O for i=1 {(n) —1
£(n) Ytn) o '

Therefore A=0 and 4, =0 for i=1,...,/(n) — 1. The lemma is proved.
Let

oo
(21) Sp={efi=1,....,¢(k)—L,k=1,...,n} and S= ]S,

i
n=1

LemMMA 3. span SNspan{a,:ne N} = {6}.

Proor. It suffices to show that

(22) span S, Nspan{a;,i =1,...,n} = {6} for every ne N.
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We prove (22) by induction. If n=1, then #(1)=1, see (8). Therefore /(1)—1
=0 and so S) = & and span S} = {6} and the claim is true.
Assume that (22) has been proved up to n. Let

(23) X = X1 + Xy = a+ Aapy1 € span S, Nspan{ay, ..., a1}
where
x| € span S,, Xx; € span{e/*! ... ,e;’(til)_l} and aespan{a;,i=1,...,n}.

Observe that

¢(n+1)—1
-1
(24) X2 = Z ﬂi€,~"+l, Ani1 = [(nr1)] (eim +o +e;(ti1))-
i=1

From we get
(25) Xy — Aapy1 = a— xy € span(S,U{ay,...,an}) N Vip

=+ + )NV,
Then by (8) (9)

(26) X3 — AGppy = dany, for some a e R.

Hence
Xy — (A + &)an1 = 6.

Since x; € span{e{'“,...,e;(:}rl)_l} and by Lemma 2, {a,, e, i=1,...,¢(n) -1}
is linearly independent independent we have x, =0 and A+ a = 0. Therefore

(27) A+a=0 and ;=0 fori=1,...,4(n+1)—-1
Hence from and we get x = x; € span S,. Consider the two cases:

\
/]

Casg 1. a,y €span{ay,...,a,}. Then from [23) we get
X = a+ Aa,; € span S, Nspan{ay,...,a,}.

By the inductive assumption we get x = 6.
CASE 2. any1 ¢span{ay,...,an}.

Then by (8), V.1 N (V1 +---+ V,) = {6}. Therefore from we get
a =0 and so by [27), A =0. Consequently from we obtain

x € span S, Nspan{ay,...,a,}

By the inductive assumption, x = §. The lemma is proved.
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LEMMA 4. The set S defined by (21) is a linearly independent subset of V.

Proor. It suffices to show that S, is linearly independent for every ne N,
see (21). We will prove this by induction.

For n=1, we get /(1) =1, see (8). Therefore S; = J, see (21).

Assume that the claim has been proved up to n. Observe that

Spr1 =S, U{erti=1,...,¢(n+1)—1}.
Let
(28) Ast+ o+ ASm + AmatSmyr + -+ Arsie = 6
where 5=, for i=1,...,m and sie{e*,j=1,...,/(n+1)—1} for
i=m+1,...,k. We may assume that
k—m=¢((n+1)—1 and sy =€ fori=1,...,(n+1)-1.

Then

(29) 281+ 4 AmSm = —Ampreft — o — im+t’(m+1)—1€;'(:ﬂr1)_1-
Let
(30) X = —im+1ef+1 e '1’"”("“)—16;(;:4)—1'

Then xe V1N (V1 +---+ V). Therefore by (8) (9)
X = Aay+; for some A€ R.

Since by Lemma 2, {a,,H,ef“,...,e;'(j;i])_l} is linearly independent, from
we get
A=0 and A,;;=0 fori=1,...,/n+1)—1.

Consequently from we get Ays;+ -+ Amsm = 0. Since 5, € S, fori=1,...,
m, and by the inductive assumption S,, is linearly independent, we get A, = --- =
Am = 0.

The lemma is proved.

§5. X Is a Quotient of an 4R-Space

In this section we shall show that the rigid space X constructed in Section 2
is a quotient of an AR-linear metric space.

Recall that V' denotes the linear space of all finitelly non-zero valued se-
quences. Let

(31) {ul,i=1,...,¢(n),n=1,2,...}
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be a linearly independent sequence in V. Let

F,.

s

(32) Up =span{uf,... . ufy}; Fo=Ur+-+ Uy U=

n=1

Using the sequences {p,} and {f,}, see (5) (6), we define an F-norm |[|-[| on
U in the same way as the definition of the F-norm on E. In fact, first let
||, denote the (p,,B,)-norm on U, and define ||.||, on F, by the formula [T1}.
Then define ||-|| on U by (13). Observe that the spaces U and E are very
much similar. The only difference between U and F is that {u/,i=1,...,4(n),
n=1,2,...} are linearly independent, while {¢/,i=1,...,¢(n),n=1,2,...} are
not linearly independent. Let Z denote the completion of (U, ||-||). We shall
prove

THEOREM 2. Z is an AR.

The proof of will be given in the last section.
Our aim is to show that the space X constructed in Section 2 is a quotient
space of Z. First we prove

Lemma 5. If xe (J,_, Ex, say x € E,, then

lllx[lt = inf{Z4k'1|xk|k - xk e Vk,Zxk = x}.
k=1

k=1

Proor. First observe that for any x¥ e Vi, k =1,...n, with x! 4+ ... + x" =
x we have [|x|| < S7_, 4¥7!|x*|,. We shall prove that for every ¢ > 0 there exists
an expression x = x! + ..+ x" such that [|x|| > S_7_, 457 1x*|, — &

We need the following fact:

CrLamM 2. Let x € E,, n > 2. Then for every ¢ > 0 there exist x"~! € E,_; and
x" e ¥, such that x" ! + x" = x and

0L, > ™ My + 477 "], — .
PrOOF. Let x € E,, n > 2. By the definition of inf-norm for every ¢ > 0 there
exist x;e V;, i=1,...,n, such that x; +---+ x, = x and
lixlll, = 4" Ml > 477 (xaly + -+ fxal,) — e
Let x"!=x;+---+x,-1 and x" = x,. Then x" ! + x" = x and

X1l + -+ Xty 2 17 ]z
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Therefore
-1 —
x> 4" (" oy + 1x"],) —
i i R L PR
> 472y + 4, —
= 1" ey + 4" X", — e
The claim is proved.
CLamm 3. For every ne N and for every &> 0, there exist xi € Ej,
k=1,...,n, such that x; +---+ x, = x, and
Mxlll > Mxally + M2l + - - -+ lllxalll,, —27"-
ProOF. Observe that, given n e N, and ¢ > 0, by the definition of ||.|| there
exist x, € Ex, k=1,...,m, such that x; +---+ x,, = x, and '

el > Moxallly + 2l + - -+ [xmll, — 27"

Therefore if m < n, then the claim is proved. Assume that m > n. Since x € E,

and n <m—1 we have x,, = x — (x; + -+ + Xpu—1) € Ep—1. Therefore, from
we get

m
x> > il — 27"
k=1

m—2

= > el + M=t llpseg + Wmallly — 27"
k=1

m—2

D el + Wt lll—y + 2%l g — 27"
k=1

Y

m—2

D Moaillle + Mem=tlln—y + WXmllly — 27"
k=1

\%

m—2

D el + lxm—1 4+ Xmllly—y — 27"
k=1

v

m—1
= Myl — 27,
k=1
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where yy =x; for k=1,... , m—2 and yp_; = X1 + Xm. Consequently, the claim
is proved by induction.

Now we are able to complete the proof of Lemma 3. By Claim 3,
(33) Ml > Mxallly + xallly + - + lixalll, — 277

By Claim 2 for every k = 2,...,n there exist xf € V;, and y*~! € E;_; such that
y* 1+ xF = x; and

e > Wy* oy + 457 el — 272"
Applying Claim 2 again for y*~! and for 27?"¢, so on, we obtain
el > M2l + 457216 ey + 457 x| =272 e
> e
> (19l + 4lxgly + 4%1xRls + - - + 45 x| = 27"
= |xply + 4lxZl, + 43X + - 44T x| = 27

1=y1).

(where x
Therefore from we get
el > fxeallly + e2lllz + - - - + lilxall, — 27"
> |xily + (IxF], + 41X —27") + -
+ (Ixfly +4lx3 ] + -+ 4" g, — 27
= (Ixily + Ixfl + -+ x)
+ 41315 + 13|y + - A X))+

+ 4n—2(!x::11 n—1 + |xr'tl—1 |nA1) + 4n—1 Ixrr”n - nz_"g,
Let

xl=xj+xt+- +xfeWn;

3
X =x34+x5 4+ x5 €V
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Then we have
llxlll > 1x!]y + 4|y + - + 472", + 47 X, — e

The lemma is proved.

COROLLARY 2. For every xe Z, x =Y > x", x" € U,, we have

0

-1
Xl =47 x"],
n=1
Proor. Since {u",i=1,...,4(n),n=1,2,...} are linearly independent, for
every x € Z, the expresion x =)~ x", x"e U, is unique and the assertion
follows.

From Corollaries 1 and 2 we get

COROLLARY 3. For every X€Z, x =, 12,{’(”1 xf'u', we have

0

xll =>4 > X+ Z Bl |,

n=1 iel(x) ieJu(x)
where
L(x)={i: |x" < pV/0=P)} and  J,(x) = {i: |x"| > pl/1-Pn)},

Proor. For every xeZ, x=3 ", x", x" € U,. From we get

o)
llxll =~ 4",
n=1

Observe that
£(n)
x" —-Zx e € U, for every ne N.

Therefore the assertion follows from |Corollary 1.

Now we define g: U — E to be the “natural” projection from U onto E,
that is
£(n) oo £(n)

g(x) = f: le.”ei” for every x = Z Zx”u,” eU,

(with only finitely many x! are non-zero).
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From and from we get
llgOlll < llixlll  for every xe U.

Therefore g can be extended to a continuous linear map, which is still
denoted by g, from Z into X. We claim that

PROPOSITION 1.  The quotient map g*:Z/g~'(0) — X is an isometric embedding.

The proof of will be given in the next section.

By g*(Z/g~1(0)) is complete. Since g*(Z/g~'(0)) o E, and since
E is dense in X, we have g*(Z/g~'(0)) = X. It follows that g(Z) = g*(Z/g~'(0))
=X. :

Consequently, X is a quotient space of Z and the assertion is established.

§6. The Kernel of g and Proof of Proposition 1

In main result of this section, [Lemma 6, describes the kernel g=1(6) of the

map g defined in Section 5. This fact will be used in the proofs of
and Theorem 1.

First we define the sequence {bi};—, ={ax}.—, as follows. Let b; =a;. Assume
that by,...,b;_; have been selected. Let n € N denote the smallest number such
that a, ¢ Vi +--- + Vi_1. We define by = a,.

For each k € N, denote

(34) Nk)={n:ay, = by}.

Then by the definition of {a,}, N(k) is infinite for every k € N, and

NKk)NN(k'y=¢ for k #k’ and GN(k)zN.

n=1

Let
Fr = span{a, : ne N(k)}.

(35) By = {u, :ne N(k)}, where u, = [/(n)]—l(u{' o U)
(36) Gk={11un(1)+ e +/1pu,,(p):n(i) eNk)),i=1,...,p and A1 +--- +ip=O}.

e 0}
(37) G=@P G Z.
k=1

Then we get
FyNF = {0} for every k #k'.
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We prove
LEMMA 6. g~ 1(0) =G

PrOOF. We first claim that
(38) Gr = g~1(6) for every ke N.

In fact if x € G, then

i=1

? ?
X = Zﬂ.iun(i), where u,;) € By, see (35), i=1,...,p and Zl,- = 0.
i=1

Then we have

P p
g(x) = Z’Iian(i) = (Z )4) b =0 by =0.
i=1 i=1

Therefore x € g~!(#) and the claim is proved.
From (38) we get G = g~1(8). To prove g~'(0) = G, let x € U such that
g(x) = 6. Then we have

oC
(39) x = Z x/u] (with only finitely many x]' are non-zero).
n=1 i=1
Write
£(n) £(n) £(n)—1
Doxul =Y Xl + Y (xF = xf) uf
i=1 i=1 i=1
Let
(40) In=1¢(n)xp,) and y!=x—xp,, i=1,....¢(n)—1

Then we get, see (35)

£(n) £(n)—1
xM'ul = Aguy + Z yiul.
i=1

i=1
Therefore
£(n) 0 o £(n)—1

x:in;’ui"z Dnttn + Y yrul,

n=1 i=1 n=1 n=1 i=1
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(with only finitely many x” and 4, are non-zero). Hence

n=1

£(n) £(n)—1

0 0
x?a;lzzina”+z Z yl z’

=1 n=1 n=1

~.

(with only finitely many x/' and 4, are non-zero). Since g(x) = 8 from Lemma 3
we get

o0 o0 {'(n)—l
> nan=-=>_ Y yrel espan SNspan{a,} = {6},
n=1 n=1 i=1

(with only finitely many x and A, are non-zero). Thus

w £(n)—1

Zzl,,a,,—ﬁ and ZZJ/ = 0.

i=1
(with only finitely many x and A, are non-zero). By we get

yi=0 foreveryi=1,....¢/n+1)-1,n=172,...

Consequently
o [ce]
X = Z Inup and g(x) = Z AnQy.
n=1 n=1
Write
0 o0
X = Z Z Anun and g(x) = 2 Z AnGy.
k=1 neN(k) k=1 ne N(k)
(41) Xe= D Jutly and ye= Y inap.
ne N(k) - neN(k)

We claim that y;, = 6 for every k € N. In fact, if it is not the case, let Ke N
denote the largest number such that yx # 6. (By (39) only finitely many yx
are non-zero.) From we get yx = (3_,cnk) An)bk. Observe that
g(x) =y1+---+ yk. Since g(x) =60 we get yge V1 +---+ Vk_1. Since yx # 0
we have >,y k) An # 0. Therefore

bk = ( Z A) ykeWVi+--+ Vk_1.

neN(k)

This contradicts the definition of bk, and the claim is proved.



Rigid Spaces and the AR-Property 429

Observe that

mykm:inf{ S Waall,: Y- xnan:yk}
neN(k) n

eN(k)

=inf{ S Wbl = D> Anbk:yk}

neN(k) neN(k)

neN(k) neN(k)

zinf{ S Waaill s 3 inbk=yk}
(since n =k, |||, = 2l lll, see
zinf{ Z Zn) b Z inbk=yk},
k

neN(k) neN(k)
Since yx = 0 we get >, nu) 4 = 0. Hence by
xx € Gy for every ke N.

Consequently

Hence ¢~ ()N U = G. Since U is dense in Z, it follows that g~!(6) = G. The
lemma is proved
PROOF OF PROPOSITION 1. We have to prove that
llgGll = llx + G| for every x € Z,
which is quivalent to
inf{[lx = yll : y € G} = llg(x)ll| for every x e Z.
It suffices to show that
inf{[lx —yll : ye GNU} = [lgx)ll| for every xe U.
Observe that for any xe U and ye GNU we have

e o]
x = x'u! (with only finitely many x are non-zero),
i y i

0
y= Z y'u? (with only finitely many y; are non-zero).
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Since ye GN U,

oo £(n)

ZZ x _yz a —g(X)
n=1 i=l1

Therefore
o | £(n)
gl < > 1D (xF = yhay
n=1 | i=1
o | £(n)
=) 1) = yhur| = llx =yl
n=1 | i=1

It follows that

gl < llx =yl for every ye GNU.
Consequently

lg)Il < lx+ GNUJ|| for every xe U.

To prove that the above inequality must be an equality, we assume on the
contrary that there exists x € U such that ||g(x)|| < ||x+ GN U|||. By

there exist x’ e R, i=1,...,¢ (n) n e N (with only finitely many x are non-zero)
such that g(x) =>_,~, E/(" and

o | £(n)

S D xtaf| <lix+Gnuj.

n=1 | i=1 n

Denote y = > | Zfi"l) x"u € U. Then we have ye x+ GNU, and

n=1

¢(n)

§ n, n
xl ul

i=1

0

IS

n=1

£(n)
n

xa,-

< |lx+ GNU||

i=1

a contradiction. Consequently Proposition I is proved.

§7. Proof of the Main Result
Let

o0 O
(42) Y:{xzz/l,,u,,ez:2|,1,,u,,|n<oo},
n=1 n=1

where {u, :ne N} was defined by [35)
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Observe that, see

|inunL1::

£(n)
Ialt )T
i=1

Since |-|, is the (p,,B,)-norm on U,, from we get

At = || if ] < £(m)BY/ (=P
T ) B A (] > £(m)BL O,

n

(43)

PROPOSITION 2. For certain choice of {p,} satisfying condition (5), Y is a
locally convex linear subspace of Z.

For the proof of [Proposition 2, we need the following fact established in [11].
Let {p,} be a sequence of positive numbers satisfying condition (5). Let Z({p,})
denote the space of all sequences x = {x,} such that

o0
X[l =D Jxal " < 0.
n=1

LEMMA 7. [11] There exists a sequence {p°} satisfying condition (5) such that
for any sequence {p,} satisfying condition (5) with p, > p® for n e N, the resulting
space £({p,}) is locally convex.

In fact, it was proved in that for any ¢ >0 and for any x’ = {x!},
i=1,...,m, with

e o]
Ix =) Ixij <e fori=1,...,m
n=1

and for any o; >0, i=1,...,m, with >.”, a; =1, we have

m
E oix!
i=1

Let us observe that the proof given in also shows that for any sequence {c,}
of positive numbers and for any x' = {x}, i=1,...,m, with

< 3e.

(44) x!

w . . w .
S xiun X =D calxi <6, i=1,....m,
n=1 n=1
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and for any o; >0, i=1,...,m, with > «; =1, we have

m
E o;x!
i=1

Now using the above observation we are able to complete the proof of
Proposition 2. We shall prove that, under the above situation, the space Y will
be a locally convex space. First observe that the F-norm on Y is given by [43).

(45) < 3e.

Let x' e Y with ||x/|| <e for i=1,...,m. Then we have
(46) el = D~ 4" lpa(e)l + caldin(xe)1”] < e,
n=1

where ¢, = f,[/(n)]' ", see [43), and

x i x| < ¢(m)By/ 7P
(pn(x): . 1/(1=pn)
0 if |x| > ¢(m)B,/ ",

and
v () = 0 if |x] < £(n)By/ P,

" x if |x| > £(n)pL/(0=m).
It follows that
(47) Y4 Mg, (xp)l <e and Y 4" ey, (x| < e

n=1 n=1
for every i =1,...,m. Hence from we get
© m Pn

(48) > a7l Y a,(xn)| <3

n=1 i=1

for any «; >0, i=1,...,m and > ;”,o; = 1. Since o; €[0,1] for i=1,...,m,
from (47) we get

<e.

o0
Soar
n=1

Hence from we obtain

e @] o0
Z ax'||| < 24”’1 (
i=1

n=1

m .
Z ai¢n(xrlt)
i=1

m

Z o‘l"/’n (xrlz)

i=1

+ cn

m .
Z %@y (xrll)
i=1

)

< e+ 3¢ = 4e.

Consequently Y is locally convex and [Proposition 2 is proved.




Rigid Spaces and the AR-Property 433

Since G is a linear subspace of Y, see (36) [37) [42), from [Proposition 2|
we get

COROLLARY 4. Under the assumption of Proposition 2, G is a locally convex
linear subspace of Z.

ProOF OF THEOREM 1. By [Lemma 6, g~'(f) = G. By [Corollary 4, G is a

locally convex linear subspace of Z, by Michael’s selection theorem, see for in-
stance, [1], Proposition 7-1, p. 87, there exists a continuous map 4 : X — Z such
that A(x) € g~'(x) for every x € X. By [Theorem 2, Z is an AR. Consequently X is
an AR and is proved.

§8. Proof of Theorem 2

We use the following characterization of 4NR-spaces to be found in [8]: Let
{%,} be a sequence of open covers of a metric space X. For a given cover #%,, let

mesh(%,) = sup{diam U : U € %, }.

We say that {#,} is a zero sequence if mesh(#,) — 0 as n — 0.
For a given cover % of X, let A" (%) denote the nerve of %. Let

o0
=) and K@) =) NUUUns)

n=1 n=1

and for o€ A (%), write
n(c) =max{neN :6€ N (UnUUn1)}-

The following characterization of 4NR-spaces was established in [8], see also [9]

10].

THEOREM 3. A metric space with no isolated points is an ANR if and only if
there exists a zero sequence {U,} of open covers of X and a map g: A (U) — X
such that g|% — X is a selection; i.e. g(U) € U for every U € %, and for any se-
quence of simplices {o} in A" (W) with n(ox) — oo and g(o)) — xo € X, we have
g(ox) — xo, here a,? represents the vertices of oy.

We are going to prove [Theorem 2. Our aim is to verify the conditions of
MTheorem 3.
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First we define two functions

if x| < gY/(1=Pn).
(49) () = 1 =B ™
|x|Po(x) if |x| > gy,

f < l/(]"Pn).
(50) )=, sk
x|'7Pra(x) if |x| > gL/,

where

5(x)={1 ffoO;
-1 ifx<O.

Let {%} be a sequence of open covers of Z. Let % =|J,_, %« and
Jo: U — Z be a selection.

We shall extend fo to a map f: A (%) — Z as follows: For any simplex
o={U,...,Unye X (U), Ue for j=1,...,m. Since fo(U;) € Z,

For any x € o,

=SS0, 420 =1 amd S,
j=1 /=1

we define

AL
(51) e =ZZ°‘Z<

m

/ljoz,,(xj"_')) e/,
1

n=1 i=1 j=

where «, and o were defined by [49) and [50) respectively.
Observe that for every U € %, we have

~

(n

Nald

o0
L) =3 anan(x])ul
n=1 i=1
w £(n)
=2 D _xiel =)
n=1 i=1

Therefore f|, = fo.
Now assume that {o;} be a sequence of simplices in 4 (%) with n(ox) — 0,
such that f(c?) — xo€ Z as k — oo. We need to show that

f(ox) = xo as k — oo.
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Since xy € Z,

£(n)

e8]
. n,,n
—E xu.

n=1 i=1

~.

Let o = <U1k,...,Ur’;(k)>. Then we have

o £(n)

[k = ZZx}}(k)u{’, for j=1,...,m(k).

For every xj € oy,

m(k) m(k)

xk_Zz Uf, 24k)=0, j=1,...,mk) and > k)=
j=1

we have

oo Z(n) m(k)
(5) fo =3 a(z (K)an(x (k)))u:’-

n=1 i=1 j=1
We will show that given ¢ > 0 there exists K € N such that
(53) lf (xx) — xol| < 66 for any xx € oy and k > K.
Since fo(a?) — xo,

max{[|f(U;) = xoll,j=1,...,m(k)} =0 as k— .

It follows that, see [Corollary 3,

(54) max{izt"—‘( S ) = w1+ S Bulxpe) - f’|""):
n=1

i€ I,(k) ieJ,(k)
Jj= 1,...,m(k)} —0 as k— oo,

where

(55) L(k) = {i: |xj(k) — xP| < B,/077) for j=1,...,m(k)},
(56) Tn(k) = {i : |xj(k) — x7| > B,/77) for j=1,...,m(k)}.

435
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First we take Ny e N such that

(57) max{iw‘ ( SRR ﬁ,,qx;xk)—x:'v'")
n=1

iel,(k) ieJy(k)

jzl,...,m(k)} <e

for every k > Nj.

Observe that by [Corollary 3

(58) lxolll =) 4! (Z x| + meﬂ”") < o0
n=1

iel, ied,

where
(59) L={i:|x"| <Y} and J,={i:|x}| > B/}

Take N; € N so that

(60) i 4"—1<Z |x}’|+Zﬁn|x{’|p") <e
1

n=N+ iely i€y
Let

N, () w_  n)
(61) xo(N) =D xMuf; and xo(Ni,00) = Y > xfuf;

n=1 i=1 n=N+1 i=1

N ¢(n) o £(n)
(62)  xf(N) =1 xp(ku; and xf(Ni,o0)= D > xu.

n=1 i=1 n=N,+1 i=1

Then we have
xo(N1) + xo(Ny, 00) = xo,
and
x;‘(Nl) +x}‘(N1, o0) =f(Ujk) for j=1,...,m(k).

From we get
llxk(N1) = xo(NDIl < L (UF) = xolll < &



Rigid Spaces and the A4R-Property 437

for every j=1,...,m(k) and k > Nj. Observe that
lIxF (N1, 00) = xo(N1, 00)[I| = 1A (UF) = xf (N1) = x0 + xo(N1)
< (I (UF) = xoll + (V1) = xo (NIl
<e+ée=2e

for every j=1,...,m(k) and k > Nj.
By [60), |[xo(N1,00)|| < &. Therefore

(63) lxf (N1, 00) | < [llf (N1, 90) = x0 (N1, 00)[[| + [lx0(N1, o0)l
<2+¢e=3¢
for every j=1,...,m(k) and k > Nj.
We claim that
CLAM 4. There exists an N, € N such that for every j=1,...,m(k) and
k > N, we have
(@) |xPl < By if and only if |x2(k)| < B/,
(i) [x7] > B,/ if and only if |x:(k)| > B,/ 7).

Proor. From we get

Jim 3=l =o.

iel,

Therefore from (54) we get (i). Observe that (ii) also follows from (54) and the
claim is proved.
Let

m(k
(64) (Zl )on (X )
Then from Claim 4 we get, see (59)
(65  Ly={i:|BI(k)| <p/"P} and J,={i:|B}(k)|> B}

for every k > N;. Let

o £(n)

(66) xk(Nl)—ZZB” kyuls xi(Nj,0)= > > Bl (kuf

n=1 i= n=N;+1 i=1
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Then xx(N)) + xk(Ny, 00) = f(xx), see [52). We claim that
(67) llxx (N1, 0)|| < 3¢, for every k > max{Noy, N2}.
In fact, from (62) (63) (65) we get

fllxk (N1, 00)||| = Z (Z |B? (k)| + ZﬁnlB” |pn)

n=N;+1 iel, ieJy,

m(k m(k)
<Y (Zzl(kl + S (k)l"">
ie, j=1

n=N|+ iel, j= J
m(k)

=S 4 S 4 (ZI (k) + 3 Balxi(k) |"")
j=1 n=N+1 iel, ieJy,

m(k) m(k)
=" Ll)lIxF (N, o)l < D 4(k)3e = 3e.
=1 =1
The claim is proved. We show

CramM 5. For each n=1,..., N, there exists K, € N such that, see [64)
B (k) — x]| < 47" 27 (¢ () ] /P

for every i=1,...,/(n) and k > K,.
Proor. Consider three cases:

Case 1. |x]| < ﬂ:/ (1=P)  Then from (54) there exists Ki(n) € N such that
)l < B,/P) and  |xfi(k) — xP| < 47274 (m) ] e
for every j=1,...,m(k) and k > K;(n). Therefore from we get

on(x;(k)) = xjj(k) for j=1,...,m(k) and k > ki(n);
and
m(k)
Zl(k on(x(k)) < B, for k > Ky(n).

Hence from (50) we have

(ZA(k)a,, xh( ) Zi(k xh(
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for every k > K;(n). Therefore

m(k)
Zl xj; (k) — x{

(k)
< Q) Aik)|xj(k) — x7|

|B}'(k

3

~.
L

m(k)
<D 4RATHRT ()T Bl
j=1

= 47 (e () e P
for every K > Kj(n).

Case 2. |[x}| > ﬁ},/ (1=P)  Them from (54) there exists K»(n) € N such that
x2 (k)| > By/ 7P for j=1,...,m(k) and k> K;(n).
Then we get
o (D) =[x (k) [Pr > el Cp)

for j=1,...,m(k) and k > K;(n). Observe that x/ and x}(k), j=1,...,m(k),
are of the same signs. Therefore

m(k)

> Ak (xp(k))

J=1

> /(=P for every k > Ky(n).

Consequently

m(k)
%, (Z ij(k)dn(xﬁ(k))>
=1

By the continuity of a, and o} there exists 6 > 0 such that

> (per/A=ph\lipn — g1/(A=Pn)  for every k > Ka(n).

m(k)
(67) |B}'(k) — x[| = aZ(Z ij(k)otn(xjf}(k))) -
j=1
< 4—n+1[2—n(/(n))—18]1/1’n
whenever

max{|x;(k) — x7|,j=1,...,m(k)} <4/
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Since, see (54)
max{|x;(k) — x| : j=1,...,m(k)} -0 as k — oo,

there exists K3(n) € N such that

max{|xj(k) — x| : j=1,...,m(k)} <d] for any k > K3(n).
Consequently holds true for k > Kz(n).

Case 3. |x]| —ﬁ,‘,/““”"). We shall prove the claim for x = g)/(!"7") The
case x!' = Bl/ (1=Px) js similar. From (54) we get
max{|o,(xj(k)) —x[|: j=1,... ,m(k)}

= max{|a,(x}(k)) = B/ j=1,...,m(k)} -0 as k — .

It follows that

m(k)

> dilk)an(x(k)) — By 7P as k — 0.

Jj=1

Therefore there exists K4(n) € N such that

(Z}“ (k) ) —ﬂrln/(l—p")

for every k > K4(n). Finally, letting

|B"(k —x < 4—n+1[2—n(/(n))—18]1/p,,

K, = max{K,(n), Ks(n), K3(n), K4(n)}
we get
|BI(k) — x| < 47" 27" (£ (n)) " e) /P

for every i =1,...,/(n) and k > K,. The claim is proved.
Now we are already in the position to complete the proof of Theorem 2. Let

K = max{No, N2, K1,...,Kn, }.
Then by Claim 5 we get

|B(k) — x| < 47" [27"(£(n))"e] /P for every k > K.
Let

I(k) = (i B (k) — x7) < Y075 J,(K) = {i: |BI (k) — x| > B0},
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Then card(/,(k)) < #(n) and card(J,(k)) < /(n). Therefore, see (61)

IIIJCzc(J\’1)~9€o(N1)III='—Z4"1 D IBIK) = X[+ > BB (k) — x|

iel, iely,

N
< > 4r Y (card(L, (k)4 27" (¢ (n) e/
n=1
+ card(J,,(k))B,47"127"(¢(n)) e)
Ny

D2 (m) e+ £(m)27 (¢ () e]

n=1

=Zz (2e) <2az.2 n=2

for every k > K. Consequently from (63) we get
If (ki) = xolll = lllXk (V1) + Xk (N1, 00) — x0(N1) — x0(N1, o0)]

< [llex (N1) = xolll + lllex (N1, 20)[| + [l X0 (N1, o0)

IA

< 2e+ 3e+ & = 6g,

for every k > K and x; € ox and so is proved.
Accordingly, f(ox) — xo as k — oco. The proof of is complete.
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