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1. Introduction

The notion of wave front sets of distributions is important in the theory of
partial differential equations since it was introduced by M. Sato and L. Hérmander
in both the analytic category and the C* one. The FBI transformation, introduced
by Bros-Iagolnitzer and Sj6strand, is very useful to give their characterization in
these two categories.

On the other hand, G. B. Folland ([2]) introduced the notion of wave packet
transforms & corresponding to each member ¢ of the Schwartz space ¥ (R"). In
this context the standard FBI transformation can be viewed as the wave packet
transform corresponding to the Gaussian function e~¥’/2. In his book he devel-
oped a certain symbol calculus related to ¢ when ¢ is an arbitrary nontrivial even
function. Furthermore, as its application, he proved that if ¢ is an arbitrary
nontrivial even function, wave front sets can be characterized by the wave packet
transforms. He raised there an open question whether it is necessary to assume
that ¢ is even or not for the symbol calculus.

Our aim is to present a different type of sufficient condition on ¢. This
condition means that ¢ is not necessarily even. Furthermore, we also discuss the
H*® wave front sets in terms of wave packet transforms.

2. Wave Packet Transforms

First of all, we recall the definition of the wave front set of distributions, which
can give a precise description of the local smoothness properties of distributions.
Let Q = R" be open and u € 2'(Q). Consider a couple (xg, &) € Q x R". Here and
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in what follows, R" denotes R"\{0}. For a function f belonging to the Schwartz
space S (R"), f denotes its Fourier transformation:

FO=| e ar

DerINITION 2.1.  We will say that (xo,&y) does not belong to the wave front
set of u, denoted by WF(u), if and only if

3f € C°(Q) with f(xo) #0, 3 an open cone T 3 &
such that
VNeN, 3C>0/¥el, |fu@&)|<c(l+le)™

Next, we recall the definition of wave packet transforms, introduced by G. B.
Folland [2].

Let g and p be in R”, and let ¥ be a measurable function on R". i denotes the
imaginary unit v —1. We define the function p(p,q)f on R" by

(2.1) (p(P,9)f)(x) = 4+ UD9Pf (x + p), xeR".

It is easily verified that p(p,q) : L>(R") — L?*(R") is a unitary operator for all p
and ¢ in R” and that

p(p,9)”" = p(—p,—9)-
Given a nonzero function ¢ € ¥(R"), we set
¢4 (x) = A"Ag(412x),

and define the wave packet transform of u as
u(,€) = [u(0)e Gy =) dy = [ul o087 0) .

Using the unitary transformation [2.I), we rewrite it as

%)“u(x, é) = (u’ p(—“x’ é)¢i)

Let u be a tempered distribution on R". The FBI transformation of u is the
function on C" x [0,+00) defined by

Tu(z,4) = j W22 () dy,

where (z — y)? = > i1z yj)2 It is an entire function of the complex variable z,
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real analytic with respect to the parameter A. If u is a compactly supported dis-
tribution, it is of finite order. Thus, there exist an integer N and a constant C > 0
such that

|Tu(z, )| < C(1 4+ 4+ |Im z|)" exp{A(Im z)?/2}
for ze C" and A€ (0,00). From the simple identity

1 . 2 1 2 R _ l 2
—5(x =il —y)’ = —5lx =" +il(x - y) +3 I,

it is obvious that
2 .
e M2 Ty(x —iE, 2) = e’ix'é/szu(x, AE)
where ¢(x) is the Gaussian function e~ ¥/,
Now, we can state a characterization of the wave front set of a tempered
distribution .

THEOREM 2.2. Suppose that ¢ € S(R") satisfies
(2.2) J x*¢(x) dx # 0.

Sfor some o€ (NU{0})". Let Q be an open subset of R", let (xo,&y) be a point of
Q x R" and let u be a compactly supported distribution defined in Q. Then, (xo, &)
does not belong to the wave front set WF(u) if and only if there is a conic neigh-
borhood V of (x¢,&y) such that for all a, N > 1,

Pru(x, A < CunA™ for A>1, a 'l <|é|<a and (x,&) e V.
¢ :

REMARK 2.1. This gives a generalization of the result by G. B. Folland, who
proved the similar result under the restriction that ¢ is an even non-trivial
function.

As for the H® wave front sets, we have

THEOREM 2.3.  Suppose that [g» #(x) dx #0 and u is a compactly supported
distribution defined in Q. Then (xo,&y) € Q x (R"\{0}) does not belong to the H*
wave front set WE(u) if and only if there is a relatively compact neighborhood
V xT of (x0,&) such that

LOO PECCREI Jr ()P )} (3E/2,48) 2 dE < oo
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Sor a smooth function Y € Cy* (V) satisfying y(x) = 1 near xo. Here, " denotes the
Fourier transform with respect to the first variables x.

THEOREM 2.4. Suppose that ¢ € S(R") satisfies

[ p(x) dx #0.

Let (x0,&0) € Q x R" and u a compactly supported distribution defined in Q. Then,
(x0,&0) does not belong to the H* wave front set WF;(u) if there is a relatively
compact neighborhood V of (xo,&y) such that

(2.3) J:ﬁ dijyi”‘“lwg;f(u)(x, AE)|? dxdé < 0.

Conversely if (xo, &) ¢ WF;(u), then there is a relatively compact neighborhood V
of (xo,&g) such that

(24) J d J A i (x, A dxdé < o
1 Vv

for all ¢ > 0.

REMARK 2.2. There is a small gap between (2.3) and (2.4). P. Gérard gave a
similar characterization of the H*® wave front set in terms of the FBI trans-
formation without this gap (¢ = 0).

REMARK 2.3. Under the more general condition on ¢, the similar con-
clusion to that of can be verified in the same manner if we allow an
additional gap.

REMARK 2.4. It is well known that p € T*(Q) does not belong to WF,(u) if
and only if there exists a function v € H5(Q) such that p ¢ WF(u — v). Therefore,
the action of a local diffeomorphism y on the H*® wave front sets follows from the
one on the usual C* wave front sets.

3. Proof of

In what follows, we shall use the notion of the wave front set of u with
respect to ¢. Namely, we say that (xp, &) € Q x R" does not belong to WFy(u) if
and only if there is a conic neighborhood V of (xg,&y) such that for all a, N > 1,

1Pl u(x,28)| < Cani™ for A21, a' <|¢| <a and (x,&)e V.
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The half of the result of is actually proved in Theorem 3.22 of
without any additional assumption on ¢.

TueOREM 3.1 ([2]). Under the same assumption as in Theorem 2.2, it holds
that

WF(u) > WFy(u).
Therefore, the essential part of is the converse relation:

THEOREM 3.2. Under the same assumption as in Theorem 2.2, it holds that
WF(u) e WF¢(u).

We introduce the lexicographic order relation in (N U{0})". Namely, let us

consider any pair « and f of (NU{0})". We say a < f if and only if there exists

¢ such that o; = §; for any 0 < j <7/ and a1 < f,;;. Let 6 be the minimum

element of all multi-indices o for which [x*@¢(x) dx # 0. Let M = (M, ..., M,)
be a vector of positive entries satisfying the inequalities

(3.1 My> > &My, Vj=1,...,n
k=j+1

For the sake of this choice, we can easily verify the following important property.

LemmA 3.3. For any o > 9, it holds that

M-a>M-J.
Let M; = M; — 1/2 and define an auxiliary function w(x, 1) as
w(x, A) = ijl_Mf'.
j=1

We are going to show an asymptotic expansion. By a translation, we may
assume that xo =0. Let & e R" and ye Ci°(Q2) be any nonnegative function
supported in a neighborhood of the origin such that y(x) =1 near 0.

PROPOSITION 3.4. Let M, > 0 be a large enough and Y € C{°(R") be a non-
negative function equal to one in a neighborhood of the origin. Then, there exists
a sequence {d,p} of positive numbers such that for any N € N,
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62 [ege D E D g ) (x, 2) d
= Dpdy pA MM (23u) (48) + O(A7Y)

as A — . Here, ®p = [pn xPP(x) dx
Proor. First, we use the following identity.
LemMma 3.5.
Pl (x,8) = (2n)"eI*Cf £, (&) = (2m)"e '/“fjf(é n)lx,(n) dn,

where

Caa(n) = €17 G(— 27 7).
Proor. This can be easily verified in view of
e VRl (x,8) = {f(0)¢* (¥ = 0} ().
Applying for f = yu, we obtain

(3.3) e-“/zw%i(xu)(x,ié):,1‘"/4J e G~ Py)Fa(AE — 1) dn

YR je—fx'i'fé(—z'/%)@uz _in)d

According to the Taylor theorem, we have the following expansion:

G4y - = Y 5“A)(lé)+z

lal<N al |o}=N

- (@3¢ - i)

for some 0 < 6 < 1.
In view of the identity

(_}“77) ae—ix-itr] — (1 ax> e—ix-}.r],

1

an integration by parts in x implies that
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LEMMA 3.6.

(3.5 2y “!_1(5275)(15)Je"i""”!ﬁ(X)eiw(x’“¢5( A1) (=2n)* dxdn

la|<N

n/4 Z 27[) (a )J(i@x)“{l//(x)e"w(x"l)}qy(/ll/zx) dox.

la|<N

PrROOF. We see that
(36) /13n/4le(x)eiw(x,l)e—ix-lqé( 1/2;7)( i’ ) dxdn
1 n . a iw(x, A —ix:
= A8 [(i0n) e e g =317 dd

— = @)1 [(i0,) ()P} F3 ) di

At the last equality, we have used a consequence of the Fourier inversion formula:

g2 dn = (2m) 30 007", m

Since Y(x) € & is equal to one near the origin, it holds that for any N > 1,

Jxﬁl//(x) B(AY2x) dx = J xP3(AV2x) dx + 0(A~N)

and

(3.7) xPo%y(x)g(A2x) = 0(47N), V|| > 0.
Thus, it is seen that

(3.8) (11/2ax)aeiw(r1/2x,x) _ l-|oc|l—M~oceiw(,1_l/2x,l)
and |

n
. -1/2 —M 1/2
etw(/l X,A) I Ietx],t — I I

j=1 j=1k;

Inserting it into (3.5), we arrive at the formal expansion as in the statement of
IProposition 3.4 because the corresponding terms in the right hand side of
when |a| > 0 is rapidly decreasing as A — oo.

To complete the proof, it suffices to estimate the remainder terms.
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LemMa 3.7. Let ue H°(R") for some s€ R and let g(x) a function on R"
belonging to C§ (R") and equal to one in a neighborhood of the origin. Set

Fa(:,z)-—-jg(xm) i) (312 (3%5) (AE — OAr) dixdy

with 0 < @ < 1. Then, for any compact subset K of R", there exists a positive

number ¢,

sup |Fy(&, 4)] = O(AMo~e)
ek )

for some real number My which is independent of o.

Proor. We note that there exist a real numbers m, and m; such that

(A& — On))| < CA™ (1 + 7)™

for all £ in any compact subset of R" and for all 0 < 8 < 1. It holds that
(3.9 Fu(&4) = J(aa“{g(x)e""'<*~*)}e—"”"&(—a”%)(agﬁ)u(é ~ On)) dxd.

In view of and [3.8), we arrive at the conclusion of [Lemma 3.7 if we take
a positive number ¢ such that ¢ < min{M;}. Indeed, if supp y Nsupp Vg = &,
then we can use

(=B /|x = Op|2) Vit dn = mit-anin

Hence, an integration by parts in # shows that

sup
xesupp(l—g)

|[darmeimiviteon i)y dyan| = 0. O

Now, we are in a position to prove WF(u) =« WF4(u) (Theorem 3.2). We
assume that for some sp € R and a positive number A,

sup |xu(A&)| = O(A™).
EeBy(&)

Thus, it is seen that

sup |(97xu)(AS)| = O(A™).
&eBy(&o)
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Let (xo,&p) be in the complement of WF;(u) and J the minimum element of all
multi-indices o for which [ x*@(x) dx 0.
Let y be chosen so that its support is small enough such that

supp y Nsupp(l — ) = .

Then from and [Proposition 3.4] it follows that if & is in a neigh-
borhood of &,

(3:10) | Y7 AT Mo B () (a27a) (3¢)

|| <N

1/2
< OV + C{J [%A(Xu)(x, 28)|? dx} , VYN >1.

supp ¥

Here, f,(1) denotes the function

S Opdpa M,
{B:M p<N—M o}

so that
fulA) = @5 4+ O(A7F), > 0.

In conclusion, there exists a positive number x such that

(B11)  pa(El< Y, GATMHagm(ag)|

O<|aj<N-1

+ C sup |%’1(Xu)(x, if)|),"/4+M'5 + 0(1—N+n/4+so+1\"4-6)
xesupp ¥

if £ is in a neighborhood I' of &,.
C.)n' the? other hand, from the stability property (@ of #/(u) under
multiplication (u +— yu), it follows that if 0 <r' <r and ' < T,

sup | () (x,48)| = 0(A7Y), YN > 1

[x—xo|<r’,EeT’
since

sup | P (u)(x,A8)| = 0(A7"), VN> 1.

|x—xo|<r,éeT

Finally, we obtain
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ZEGE < Y G TMHozu(E)| + 0(A7Y), VYN =21, feT.
O<|a|<N-1

We would like to use an iteration procedure to conclude that
u(AE)| = 0(a™Y), VYN >1

while £ is in a neighborhood of ¢&,.

To make use of the iteration process, we require the analogue of the local
stability of wave front set.

LemMMA 3.8. Let T be a cone of R", let s, Noe R and let ue H-™(R").
Suppose that for all closed conic sets T' =T,

sup |(1 + |€])°a(&)] < oo.
rl

Then, for any { e C{(R") and any closed conic T' < T,

sup (1 + €1 Cu(@)] < oo.

ProoF. Choose & > 0 so small that £ —n e " when ¢ eI’ and || < ¢|£]. We
write

(3.12) (zn>"«:?4(:>=j Emya(E — ) dn+[ Emya(E ) dn

|ml <&l |n| = &l¢]
=L+ D.
When |n| < ¢|¢|, there exist positive constants C and C’ such that

C'{&E> =2 & —n) = CL&.
Thus, for eI,

L] < Cy j En)ICE = >~ dn < c;v<é>-~*j|c‘<n>| dn.

Inl<elc]

On the other hand, |i(n)| < C{y)X for some K, and when |5| > &|¢| we have
(& —n> < C<{n). Therefore, if s >0, then

(3.13) L) < c<c>—'s1j B (e <rd)ME — )X dn

|7l =el¢|

< c¢ey j )<y d.
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If s <0, then

(3.14) B < CE j EmI(E =X dn < C<é>‘sJ|5(n)|<n>K dn. O

lnl = &l¢]
Similarly,
LemMMaA 3.9. Let V x T be a relatively compact neighborhood of (xy, &) of R”,
let s, No € R and let ue HNo(R"). Suppose that for all closed set V' x ' T,

sup Ms%’l(u)(x, AE)| < o0.
V/xr’

Then, for any { € C°(R") and any closed set V' xT'' =T,

sup |A°2} (Cu)(x, A8)| < oo.
V'!xT'

PRrOOF.

(2m)"e~ (PP (u) (x, &) = jéw) Je-"y'@-")u(y)q?*’(y — x) dydn

We divide the above integral in # into two parts as in the proof of the previous
lemma. The same reasoning arrive at the conclusion. O

We now continue the proof of Theorem 3.2. We note that
(3.15) (0z7)(A8) = (¥*x(»)u(¥))" (4&).

Now, we choose M,, M,_1,...,M; so small that e > M - — |6|/2 > 0 for any
Bl # 0.

Applying Lemma 3.8 to [(3.15), we see that the inequality (3.11) implies

sup Ifﬁ(ﬂf)l — @(imax{so——x, —N+n/4+so+M-(5})
£e By(So)

We repeat this procedure /7 times to arrive at the conclusion

sup |)’(17( Mf)| = 0 Amax{x—fx,—N+n/4+s0+1\~1.§}).
&eBy(&o)

This completes the proof of [Theorem 3.2l
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4. Proof of

In what follows if a function f(4) defined in (1,00) satisfies that for all
N > 1 there exists a positive constant Cy such that

If] < CnaA™, Vi>1,

then we use the notation f = O(A~).
The key lemma to deal with H® wave front sets is given by

LEMMA 4.1. Let x,y € C{° be supported in a sufficiently small neighborhood
of (x0,&p) such that

(4.1) supp(1 — ¥(x)) Nsupp x = .
Then, there exist neighborhoods Vi, (V- <= V < V%) of (xo,&y) such that
0720 [ de [ ()2 ) (2O de < € [ 1)) e + 007)
v Vi

and

jV d«:j () () (v, 2E)|? dx = €A j @GO e+ ().

ProoF. Plancherel’s theorem implies

(4.2)

i j ()2 (a) (x, 28) P dlx = j dn

2
Je_"ix"’/zx(x)%’l(lpu)(x, AE) dx| dx.

We split the last integral in # into two parts.
Jdn{-.-}:J |---|2dn+J |-« VPdnp=1+1.
ln—¢|=A"° lp—¢|<A™®
Suppose that 0 < o < 1/2. Since

e_ijx.,,/z%l(wu)(x, AE) = o—iMx(n=9)/2 Je—ily-é(p(y — x)Yy(y)u(y) dy,

it is easily verified that for any compact set K of R"

(4.3) sup |11(&)| = O(A™).
éekK



A note on the wave packet transforms 395

To see this, use integration by parts in x with aid of
a)occefi/lx-(q—f_)/Z = (—il(y — é)/z)laie—ﬂx-(n—é)ﬂ

and
024" (v — x) = A2 ((=0:)*¢") (y — x).

Applying Leibniz’s rule to 6*{y(x)¢*(y — x)}, we arrive at if supp VyNy =
.

On the other hand, since

2

’

L= J dnl J dxy(x)e”*¥ 1=/ J e Yy — x)(y)u(y) dy
n—¢l <~

it follows from that

2

L= (<2n>"r"/4>’-j dn‘ J doy(x)e™ P 2702 G512y (g — ¢) de

ln—¢l <A™
Note

4.4)
| [ orgue - i ava
- J Jx<x>e‘“*<"-é+2”‘<>/2@wé == 207'0)/2+ Aln + &)/2)$(~27V/%) ddC.
We shall use the Taylor expansions of @ at A(n+¢)/2 and the relation
(A& —n— 2/{—10}ae—ilx~(r7—€+2/1“C)/2 _ (2iax)ae—iix.(ﬂ‘é-i—Zi“lC)/z.

It is seen that
(4.5) Jﬂziax)“e-f“'<"—f+2”‘0 Y () bu(A(n + &) /2)$(—27V2) dxdg

= )" A" Fu(An + &)/2) j (=2i0,)* {x(x)#(A12x)} dx.

Thus, after performing the same procedure as before for the terms arising
from the remainder in the Taylor expansion, we get

L < caren P (A + 1) /2))> + 0(27)
-7 < g
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for any N > 1. Thus, for any relatively compact neighborhood V of &, there
exists another neighborhood ¥ = V such that

(4.6) J nde<ci JV Gu(7E)|? dé + ().

We shall use the property that for any relatively compact neighborhood U of &,
there exists a positive constant C and conic neighborhoods I'y of &; such that

@n o] emPas | a4 mwoordesc| P

for all v(n) € L*(T'y). Thus [4.6) and [4.7) give the second part of the result in
since we can take o to be any close number to 1/2.

Now we are going to prove the first part of Theorem 2.4 We must estimate
L, from below.

12=J |"'|2d’7+J |- |*dy = Iy + I = Iy,
|&—n) <pa~'/? pA P <)E—n| <70

which is equal to

2

Ly = (275)2”—"/1 Jx(/l—1/2x)¢T)c)e_i(ll/2/z)(”‘f)'x dxyu(iE)| dn+0(~).

|&—n| <pi=!/?

If |¢| < pA~"? and p > 0 is small enough, then there exists a positive constant Cy
independent of A such that

} 237V 2) fl)e 2 dx‘ = 1§(=2"PL/2) + 0] = Gy

for the sake of our assumption $(0) # 0. Therefore, if we shrink the support of ¥
so small that (4.1) is fulfilled, then there exists a neighborhood V_ of (x¢, &) and
a positive constant C such that

J b dfzr"cj Gu(3E)? dé — 0(~)
Vv V.

in the same manner as in the previous section. From the identity (4.2) and the
property [4.7), we arrive at the conclusion. O
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