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UNSTABLE HARMONIC MAPS INTO REAL
HYPERSURFACES OF A COMPLEX HOPF MANIFOLD

By

Sorin DrRAGOMIR and Maria Rosaria ENEA

Abstract. Let ¢ : M — N be a pseudohermitian immersion ([6]) of
a compact strictly pseudoconvex CR manifold M into a totally
umbilical real hypersurface N, of nonzero mean curvature (||H|| # 0),
of a complex Hopf manifold CH”, tangent to the Lee field By of
CH". If By is orthogonal to the CR structure of N and FE(¢) >
Vol(M)/[(1+ ||H||*)||H||?] then ¢ is an unstable harmonic map.

1. Introduction

By a well known result of P. F. Leung (cf. [12]) any nonconstant harmonic
map from a compact Riemannian manifold into a sphere S”, n > 3, is unstable.
This carries over easily to totally umbilical real hypersurfaces N of a real space
form M"*'(c). Precisely, if (n—2)||H||*+ (n—1)c >0 then any nonconstant
harmonic map of a compact Riemannian manifold into N is unstable. The proof
1s a verbatim transcription of the proof of in [3]. Cf. also Theorem 7.1
in [1]. Here ||H|| is the mean curvature of N = M"*!(c) (a constant a posteriori,
cf. Prop. 3.1 in [5], p. 49, i.e. N = M"(c+ | H ).

In the present paper we take up the following complex analogue of the
problem above: given a compact Riemannian manifold M, study the stability of
harmonic maps of M into a totally umbilical CR submanifold of a Hermitian
manifold Ny.

By a result of 4. Bejancu, [4], if Ny is a Kahler manifold then totally
umbilical CR submanifolds may only occur in real codimension one. Even worse,
by a result of Y. Tashiro & S. Tachibana, [13], neither elliptic nor hyperbolic
complex space forms possess totally umbilical real hypersurfaces. Umbilical
submanifolds are however abundant in locally conformal Kédhler ambient spaces
(cf. and for a partial classification). We obtain the following
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THEOREM 1. Let N be a totally umbilical real hypersurface of the complex
Hopf manifold CH"*' with the Boothby metric go. Let ¢ : M — N be a non-
constant harmonic map of a compact Riemannian manifold (M,g) into (N, j*go),
where j: N c CH". If

1 2n—1 .
J 2n+ (2n = DIH|? -7 11BI* ) lldgl|*v, > ——J 1" l|*vg (1)
M 4 4 Iu
then ¢ is unstable. In particular, if N is tangent to the Lee field of CH""! and
L[ ..
A+ IHDED >5[ 140l @

then ¢ is unstable.

In section 2 we recall the facts of locally conformal geometry needed
throughout the paper (cf. also [8]). is proved in section 3. In section 4
we discuss the case of pseudohermitian immersions of a compact CR manifold
into a real hypersurface of a complex Hopf manifold (cf. our [Theorem 4). The
Authors are grateful to the referee, whose suggestions improved the original
version of the manuscript.

2. A Reminder of Locally Conformal Kihler Geometry

Let Ae C, 0 < |A| < 1, and G, the discrete group of analytic transformations
of C"\{0} generated by z+ Az. It is well known (cf. e.g. [11], p. 137) that
G; acts freely on C"\{0}, as a properly discontinuous group of analytic trans-
formations, hence the quotient CH" = (C"\{0})/G, is a complex manifold (the
complex Hopf manifold). The complex Hopf manifold is compact (as CH" =
S2n=1 % S!. a diffeomorphism) and its first Betti number is b;(CH") = 1, hence
admits no global Kihler metrics. It is known however (cf. [8], p. 22) to possess a
natural Hermitian metric, i.e. go = |z|'25,~k dz) ® dz*, |z|* = dyz/z% (the Boothby
metric). Moreover go is a locally conformal Kdhler metric, i.e. CH" admits an
open cover {Uy},.r and a family of C* functions f,: U, — R, so that each
(local) metric g, = exp(— f,)goly, is Kéhlerian, o € I'. The (local) 1-forms df, glue
up to a (global) 1-form wq (the Lee form of (CH", go)) expressed locally as wo =
dlog|z|>. The Lee form is parallel (with respect to the Levi-Civita connection of
go) and the local Kédhler metrics g, are flat. Viceversa, by a well known result
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of I. Vaisman (cf. [14]) any generalized Hopf manifold (i.e. locally conformal
Kihler manifold with a parallel Lee form) with flat local Kédhler metrics is locally
analytically homothetic to (CH",go). Cf. also [8], p. 56.

The Lee field is By = cug (where f denotes raising of indices with respect to
go). Note that, on a Hopf manifold, ||By| = 2.

A study of submanifolds of (CH™", gy), regarding both the geometry of their
second fundamental form and their position with respect to the ‘preferential
direction’ By is in act (cf. [8], p. 147-298, for an account of the research over the
last decade). If NV is an orientable real hypersurface in (CH"*!, go), we shall need
the Gauss and Weingarten formulae

VeY =VYY +b(X,Y) (3)

Vi = —4,X + Vyn (4)

Here V¥V, b, A, and V1 are respectively the induced connection, the second
fundamental form (of the given immersion j: N < CH"™), the Weingarten
operator (associated with the normal section #), and the normal connection. Let
& be a global unit normal field on N and set 4 = 4:. The Gauss and Codazzi
equations are

RYX,Y)Z=(X AY)Z+gn(AY,Z)AX — gn(AX,Z)AY
+ 3 {le(X) Y - o(Y)X]w(Z)
+[gv (X, Z)o(Y) — gn (Y, Z)w(X)| B} (5)

(VxA)Y = (VyA)X = j{o(Y)X — o(X)Y}wo({) (6)

These may be obtained from (3)-(4) and an explicit calculation of the curva-
ture of the Boothby metric (or as a consequence of (12.19)—(12.20) in [8], p. 152,
the Gauss and Codazzi equations of a submanifold in an arbitrary lc.K.
manifold with flat local Kéhler metrics). Here w = j*wo and B = tan(By) is the
tangential component of the Lee field. As a straightforward consequence of (6)
one has

THEOREM 2. Let N be an orientable totally umbilical (b= H ® gn) real
hypersurface of (CH"*!,go). Then N has a parallel mean curvature vector
(VEH = 0) if and only if for any x € N either w, =0 or N is tangent to the Lee
field By at x.
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3. Proof of

Let (M,g) and (N,gn) be Riemannian manifolds. Assume M to be m-
dimensional, compact, and orientable. A C* map ¢: M — N is said to be
harmonic if it is a critical point of the energy functional

E@) =3 1o,

where ||dg|| is the Hilbert-Schmidt norm, i.e. ||d¢||> = trace,(¢*gn), and v, the
canonical volume form on (M,g). Let {¢,,} ., . be a 2-parameter variation of
a harmonic map ¢ (¢, = ¢) and set
02
W)=——
I( V’ ) asat E(¢s,t)s=t=0
where V = 0¢; ,/0t|,_,_o and W = ¢, ,/0s|,_,_o. Then ¢ is said to be stable if
I(V,V) =0 for any V e (¢ 'TN).
Let j: N = C""'H be a real hypersurface, under the hypothesis of Theorem
1. Let N(j) — N be the normal bundle of the immersion j, and let X = tan(X) +
X' be the decomposition of X € T(CH"™!) with respect to

T.(CH"') = T.(N)® N(j),, xeN

Let {X;:1 <i<m} be a (local) g-orthonormal frame on an open set U = M
and {V,: 1 <a <2n+2} a (local) go-orthonormal parallel (i.e. V'V, = 0) frame
on an open set ¥V < CH"t!, so that ¢(U) = V. The frame {¥,} may be obtained
by parallel translation of a gy ,-orthonormal basis in T,(CH"*!) along geodesics
issueing at x, in a simple and convex neighborhood V of x.

Let V=¢"'V" be the connection in ¢~'TN — M, induced by VV. Then

Vy, tan(V;) = Ay, (dg) X; (7)
Indeed (by (3)—(4))
Vy tan(V;) = V(1:/1¢)X,- tan(V,) = tan(V?d@Xi tan(V,))
= 1an(Viyy x,(Va — V")) = —tan(Viyyx, V') = Ay (d9) X;

Moreover

[

|Vx, tan(Va)||* = ||dg||* | H || (8)

n+2 m
=1

a=1 i
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To prove (8) one uses (7) and || X||? = 212 go(X, V)%, for any X € T(CH™'),
and conducts the following calculation

2n+2

1V, tan(V)|1* = || dy: (dB)Xill> =D go(Ay: (d9) X, Vs)®
b=1

2n+2 2n+2 5
= gn(Ay(d) X, tan(V})) Z go(b((dP) X;, tan(V3)), V)
b=1

Next, as N is totally umbilical

2n+2

|V, tan(¥, ZgN ((dg)X;, tan(V5))*go(H, V;+)?
b=

= |[(d¢) X;||*go(H, V;*)?

which leads to (8). Again by the umbilicity assumption, the Gauss equation (5)
becomes

R¥(X,V)Z = (L+ [ HIP){gn(Y, 2)X — gn(X,2)Y)
30X Y — o(V)X]0(Z) + on(X, Z)0(¥) - gx(Y, Z)o(X)|B)
Therefore
av(RY(X, 1) ¥, X) = (L+ [HID XY = g (X, ¥)?)
)Y~ 20(X),(V)gn(X, V) + o1 X|1)

for any X, Y € T(N). Using

2n+2 2n+2

SoIHIE=1 Y an(V))* =2n+1
a=1 a=1

2n+2

Z w(tan(V))V, = B

a=1

we may conduct the following calculation
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I M+

i Y(tan(V.), (d)X;)(d)Xi, tan(V,))

2n+2

(1+1H]?) Z{Iltan I ldg)? —Zgo (dg)X )}

a=1

2n+2

Z{w (tan(¥:))?||dg]1” + | ¢*wl* [lcan(¥2)|I*}

2n+2 m
+3 Z (tan V))go<a,zw<(d¢)x,->(d¢m)
i=1
= 2n(1 + | H|)*)ll49]* - ;}{anzud«fuz +(2n+ Dl¢* o)’}

+3n (B, ([d)(#"0))

where §f denotes raising of indices with respect to g. Next

gn (B, (dg)(¢"®)") =) o((dg)X)* = |4 w||®
i=1

hence

2n+2 m

ZZ (R" (tan(V,), (d4)X;)(d¢) X;, tan(Vs))
=1 i=1

"ol® ©)

= Lont 1) —§|;B||2}||d¢| :

By the second variation formula (cf. e.g. [9]), for any harmonic map ¢ of (M, g)
into (N’gN)

m

1. w) =3 [ {an(Ta V. 9x) = g (RY (V. (dh) X) (d) Xi, W)},
i=1

Then (by (8)-(9) and our assumption (1))
2n+2

Z I(tan(V;), tan(V;))

a=1

1 2n —1 .
=—j {2n+<2n—1>||H||2—Z|usr||2}||d¢||2ug+———4 j l¢*ll*y < 0
M M
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hence ¢ is unstable. If B* =0 then (by Theorem 2) N has constant mean
curvature; also, if this is the case, then ||B|| =2 hence

1
[| (20 o= 0P = G181 ) kg1, = 2620 = 1)1+ I E(D)
i.e. (1) assumes the simpler form (2).

4. Unstable Pseudohermitian Immersions

Let (M, T;,0(M)) be a CR manifold (of hypersurface type), of CR dimension
p, and H(M) = Re{T; o(M)® T, o(M)} its Levi (or maximally complex) dis-
tribution. A pseudohermitian structure on M is a nonzero global section 6y, in
the conormal bundle H(M)* = T*(M). Given a pseudohermitian structure 6y,
the Levi form is given by

GHM(Xv Y):(dHM)(XaJMY)a X,Y e H(M),

where Jy(Z+Z)=v—-1(Z—-2Z), Ze T o(M), is the complex structure in
H(M). The CR manifold M is nondegenerate if the Levi form Gy, is non-
degenerate for some pseudohermitian structure 8y, (and thus for all). If this is the
case then 6, is a contact form on M, i.e. Oy A (dy)? is a volume form on M.
A CR manifold (M, T 0(M)) is strictly pseudoconvex if the Levi form Gy, is
positive definite, for some pseudohermitian structure 0 on M.

Let (M, T 0(M)) be a nondegenerate CR manifold and 63 a contact form
on M. Under the mild additional assumption that M be orientable, there is a
nonzero tangent vector field 7 on M (the characteristic direction of (M, 0,r)),
uniquely determined by

Op(T) =1, T |dOy =0.

As T(M)= H(M)® RT, this may be used to extend the Levi form Gy, to a
(semi-Riemannian, in general) metric on the whole of T(M), by requesting that T
be orthogonal to H(M) and assigning to T a fixed length, i.e. let gy, be defined
by setting

goM(X’ Y) = GGM(X’ Y)?
ggM(X,T)IO, gQM(T?T):I’

for any X,Y € H(M). This is referred to as the Webster metric of (M,0y)
(compare to (2.18) in [I5], p. 34). If M is strictly pseudoconvex and a contact
form 6, is chosen so that Gy, be positive definite, then gy, is a Riemannian
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metric on M. Note that gy, (X, T) = 0pm(X), for any X € T(M). In particular
1621l = 1.

Let (M, T, o(M)) and (4,7, 0(A4)) be strictly pseudoconvex CR manifolds.
Let ¢ : M — 4 be a CR immersion, i.e. a C* immersion and a CR map (i.e.
(dx@)T1,0(M), = T1,0(4)yx)> x € M). If Oy and 6, are contact forms, on M and
A respectively, so that Gy, and Gy, be positive-definite, then ¢*04 = A6,,, for
some C® function 4: M — (0,+00). If A=1 then ¢ is said to be isopseudo-
hermitian. An isopseudohermitian CR immersion ¢: M — A is said to be a
pseudohermitian immersion if ¢(M) is tangent to the characteristic direction of
(A,04). A theory of pseudohermitian immersions has been started in [6] and [2].
We recall (cf. Theorem 7 in [6], p. 189)

THEOREM 3. Any pseudohermitian immersion between two strictly pseudo-
convex CR manifolds is a minimal isometric (with respect to the Webster metrics)
immersion.

Set U= —J¢ and 0(X) =gn(X,U), for any X € T(N). We establish

THEOREM 4. Let N be an orientable real hypersurface of the complex Hopf
manifold CH"*!, tangent to the Lee field By. Assume that N is totally umbilical of
nonzero mean curvature (|H|| #0). Let ¢ : M — N be a pseudohermitian immer-
sion of a compact strictly pseudoconvex CR manifold M into N, thought of as a
map of (M,0)) into (N,é), where ézgo(H, EO. If the Lee field of CH™ ! is
orthogonal to the CR structure of N and

Vol(M)

E
MR RITT

(10)
then ¢ is an unstable harmonic map.

The source manifold M carries the Webster metric g = gg,,, While N is
endowed with the induced metric gy = j*go. Also N carries the induced CR
structure

Tio(N) =T ' (CH™ YN [T(N) ® C]

(THO(CH"*!) is the holomorphic tangent bundle over CH"*!). The Levi form of
N is

Go(X,Y) = (d6)(X,JY)
for any X, Y € H(N) = Ker(0). We need
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LEMMA 1. Let N be a totally umbilical real hypersurface of the complex Hopf
manifold. If H + 1B # 0 everywhere on N then (N, T o(N)) is a strictly pseudo-
convex CR manifold.

We recall (cf. Corollary 1.1 in [8], p. 4) that

VIIY = JVYY + Hawo(JY)X — wo(Y)IX + go(X, Y)JBy — go(X,JY)Bo}
for any X, Y e T(CH"!). Then (as V'¢ = 0)

(V¥O)Y = gn(Y,VYU) = —go(Y,V3JE)
— gn(PAX, Y) + H{o(U)gn(X, Y) + 0o(E)gn(PX, ¥) — 0(X)oo(Y)}
for any X, Y € T(N). Here PX = tan(JX). Next, using
2(dO)(X,Y) = (VYO Y — (VIO)X
we get
2(dO)(X,Y) = gn((PA+ AP)X, Y) + gn(PX, Y)wo(&) — (0 A 0)(X,Y) (11)
hence the Levi form of N is expressed by
Go(X,Y) =3{g0(b(X, Y) + b(JX,JY),&) + gn(X, Y)ewo($)} (12)
for any X, Y € H(N). Assume from now on that b = H ® gn. Then (12) becomes
Go(X,Y) =go(H + 1B+, &)gn (X, Y)

hence either Gy or G_y is positive definite.

LEMMA 2. Let N be a real hypersurface of CH™ !, under the hypothesis of
Lemma 1. If additionally B* =0 then f := go(H,¢) = const. and (by replacing 0
by —0 if necessary) one may assume f > 0. Moreover, if B is orthogonal to T o(N)
then the induced metric gy = j*go and the Webster metric grg are homothetic.

To prove assume that B+ =0. Set f =go(H,&) e C°(N). By
MTheorem 2, f = const. (indeed, V*H = 0 yields 12 = |H||* = const.).

Assume now that B L T o(N). In particular B L H(N) (i.e. Ker(w) = H(N),
hence w and @ are proportional). As N is umbilical and tangent to Bj the

equation becomes
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for any X, Y € T(N). Then PU =0 yields U|df =0, i.e. U is the characteristic
direction of (N, 8). Set § = f6 and let g; be the corresponding Webster metric (of
(N,0)) (a Riemannian metric on N). Then

2
9 = |lH||“gn

and Lemma 2 is proved. By Theorem 3, ¢ is harmonic, as a map of (M, g) into
(N,g;), i.e. ¢ is a critical point of the energy functional

Eu¢>=§jwnmwa¢vw%

Yet E4(¢) = f2E(¢) hence ¢ is harmonic as a map of (M, g) into (N,gy). On the
other hand

w = 6(B)f (13)
Note that [13) yields |#(B)| = 2 (indeed 8(B)*> = w(B) = ||B||* = ||Bo||* = 4) hence

4

* Vol(M
| ol = 25| owlis, = 42200
M S Im

2
IHl

(as ¢*0 = 0y). Therefore, the assumption is equivalent to (2), and (by
Theorem 1) ¢ must be unstable.
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