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UNSTABLE HARMONIC MAPS INTO REAL
HYPERSURFACES OF A COMPLEX HOPF MANIFOLD

By

Sorin DRAGOMIR and Maria Rosaria ENEA

Abstract. Let $\phi$ : $M\rightarrow N$ be a pseudohermitian immersion ([6]) of
a compact strictly pseudoconvex $CR$ manifold $M$ into a totally
umbilical real hypersurface $N$, of nonzero mean curvature $(\Vert H\Vert\neq 0)$ ,
of a complex Hopf manifold $CH^{n}$ , tangent to the Lee field $B_{0}$ of
$CH^{n}$ . If $B_{0}$ is orthogonal to the $CR$ structure of $N$ and $E(\phi)>$

$Vol(M)/[(1+\Vert H\Vert^{2})\Vert H\Vert^{2}]$ then $\phi$ is an unstable harmonic map.

1. Introduction

By a well known result of P. F. Leung (cf. [12]) any nonconstant harmonic
map from a compact Riemannian manifold into a sphere $S^{n},$ $n\geq 3$ , is unstable.
This carries over easily to totally umbilical real hypersurfaces $N$ of a real space
form $M^{n+1}(c)$ . Precisely, if $(n-2)\Vert H\Vert^{2}+(n-1)c>0$ then any nonconstant
harmonic map of a compact Riemannian manifold into $N$ is unstable. The proof
is a verbatim transcription of the proof of Theorem 4 in [3]. Cf. also Theorem 7. 1
in [1]. Here $\Vert H\Vert$ is the mean curvature of $N\subset M^{n+1}(c)$ (a constant $a$ posteriori,
cf. Prop. 3.1 in [5], p. 49, i.e. $N=M^{n}(c+\Vert H\Vert^{2}))$ .

In the present paper we take up the following complex analogue of the
problem above: given a compact Riemannian manifold $M$, study the stability of
harmonic maps of $M$ into a totally umbilical $CR$ submanifold of a Hermitian
manifold $N_{0}$ .

By a result of $A$ . Bejancu, [4], if $N_{0}$ is a K\"ahler manifold then totally
umbilical $CR$ submanifolds may only occur in real codimension one. Even worse,
by a result of Y. Tashiro &S. Tachibana, [13], neither elliptic nor hyperbolic
complex space forms possess totally umbilical real hypersurfaces. Umbilical
submanifolds are however abundant in locally conformal K\"ahler ambient spaces
(cf. [10] and [7] for a partial classification). We obtain the following
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THEOREM 1. Let $N$ be a totally umbilical real hypersurface of the complex
Hopf manifold $CH^{n+1}$ with the Boothby metric go. Let $\phi$ : $M\rightarrow N$ be a non-
constant harmonic map of a compact Riemannian mamfold $(M, g)$ into $(N, j^{*}go)$ ,

where $j:N\subset CH^{n+1}$ . If

$\int_{M}(2n+(2n-1)\Vert H\Vert^{2}-\frac{1}{4}\Vert B\Vert^{2})\Vert d\phi\Vert^{2}v_{g}>\frac{2n-1}{4}\int_{M}\Vert\phi^{*}\omega\Vert^{2}v_{g}$ (1)

then $\emptyset$ is unstable. In particular, $lfN$ is tangent to the Lee field of $CH^{n+1}$ and

$(1+\Vert H\Vert^{2})E(\phi)>\frac{1}{8}\int_{M}\Vert\phi^{*}\omega\Vert^{2}v_{g}$ (2)

then $\phi$ is unstable.

In section 2 we recall the facts of locally conformal geometry needed
throughout the paper (cf. also [8]). Theorem 1 is proved in section 3. In section 4
we discuss the case of pseudohermitian immersions of a compact $CR$ manifold
into a real hypersurface of a complex Hopf manifold (cf. our Theorem 4). The
Authors are grateful to the referee, whose suggestions improved the original
version of the manuscript.

2. A Reminder of Locally Conformal Kahler Geometry

Let $\lambda\in C,$ $0<|\lambda|<1$ , and $G_{\lambda}$ the discrete group of analytic transformations
of $C^{n}\backslash \{0\}$ generated by $z\mapsto\lambda z$ . It is well known (cf. e.g. [11], p. 137) that
$G_{\lambda}$ acts freely on $C^{n}\backslash \{0\}$ , as a properly discontinuous group of analytic trans-
formations, hence the quotient $CH^{n}=(C^{n}\backslash \{0\})/G_{\lambda}$ is a complex manifold (the
complex Hopf manifold). The complex Hopf manifold is compact (as $ CH^{n}\approx$

$S^{2n-1}\times S^{1}$ , a diffeomorphism) and its first Betti number is $b_{1}(CH^{n})=1$ , hence
admits no global K\"ahler metrics. It is known however (cf. [8], p. 22) to possess a
natural Hermitian metric, i.e. $go=|z|^{-2}\delta_{jk}dz^{j}\otimes d\overline{z}^{k},$ $|z|^{2}=\delta_{jk}z^{j}\overline{z}^{k}$ (the Boothby
metric). Moreover go is a locally conformal Kahler metric, i.e. $CH^{n}$ admits an
open cover $\{U_{\alpha}\}_{\alpha\in\Gamma}$ and a family of $ c\propto$ functions $f_{\alpha}$ : $U_{\alpha}\rightarrow R$ , so that each
(local) metric $g_{\alpha}=\exp(-f_{\alpha})g0|_{U_{\alpha}}$ is K\"ahlerian, $\alpha\in\Gamma$ . The (local) l-forms $df_{\alpha}$ glue
up to a (global) l-form $\omega_{0}$ (the Lee form of $(CH^{n},$ $g_{0})$ ) expressed locally as $\omega_{0}=$

$dIog|z|^{2}$ . The Lee form is parallel (with respect to the Levi-Civita connection of
$g_{0})$ and the local K\"ahler metrics $g_{\alpha}$ are flat. Viceversa, by a well known result
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of I. Vaisman (cf. [14]) any generalized Hopf manifold (i.e. locally conformal
K\"ahler manifold with a parallel Lee form) with flat local K\"ahler metrics is locally
analytically homothetic to $(CH^{n}, g_{0})$ . Cf. also [8], p. 56.

The Lee field is $B_{0}=\omega_{0}^{\#}$ (where $\#$ denotes raising of indices with respect to
$g_{0})$ . Note that, on a Hopf manifold, $\Vert B_{0}\Vert=2$ .

A study of submanifolds of $(CH^{n}, g_{0})$ , regarding both the geometry of their
second fundamental form and their position with respect to the ’preferential
direction’ $B_{0}$ is in act (cf. [8], p. 147-298, for an account of the research over the
last decade). If $N$ is an orientable real hypersurface in ( $CH^{n+1},$ go), we shall need
the Gauss and Weingarten formulae

$\nabla_{X}^{0}Y=\nabla_{X}^{N}Y+b(X, Y)$ (3)

$\nabla_{X}^{0}\eta=-A_{\eta}X+\nabla_{X}^{\perp}\eta$ (4)

Here $\nabla^{N},$ $b,$ $A_{\eta}$ and $\nabla^{\perp}$ are respectively the induced connection, the second
fundamental form (of the given immersion $j:N\subset CH^{n+1}$ ), the Weingarten
operator (associated with the normal section $\eta$ ), and the normal connection. Let
$\xi$ be a global unit normal field on $N$ and set $A=A_{\xi}$ . The Gauss and Codazzi
equations are

$R^{N}(X, Y)Z=(X\wedge Y)Z+g_{N}$ (A $Y,$ $Z$ )$AX-g_{N}(AX, Z)AY$

$+\frac{1}{4}\{[\omega(X)Y-\omega(Y)X]\omega(Z)$

$+[g_{N}(X, Z)\omega(Y)-gN(Y, Z)\omega(X)]B\}$ (5)

$(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{1}{4}\{\omega(Y)X-\omega(X)Y\}\omega_{0}(\xi)$ (6)

These may be obtained from (3) $-(4)$ and an explicit calculation of the curva-
ture of the Boothby metric (or as a consequence of (12.19)-(12.20) in [8], p. 152,
the Gauss and Codazzi equations of a submanifold in an arbitrary l.c.K.
manifold with flat local K\"ahler metrics). Here $\omega=j^{*}\omega_{0}$ and $B=tan(B_{0})$ is the
tangential component of the Lee field. As a straightforward consequence of (6)
one has

THEOREM 2. Let $N$ be an orientable totally umbilical $(b=H\otimes g_{N})$ real
hypersurface of ( $CH^{n+1},$ go). Then $N$ has a parallel mean curvature vector
$(\nabla^{\perp}H=0)lf$ and only iffor any $x\in N$ either $\omega_{x}=0$ or $N$ is tangent to the Lee

field $B_{0}$ at $x$ .
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3. Proof of Theorem 1

Let $(M, g)$ and $(N, g_{N})$ be Riemannian manifolds. Assume $M$ to be m-
dimensional, compact, and orientable. A $C^{\infty}$ map $\phi$ : $M\rightarrow N$ is said to be
harmonic if it is a critical point of the energy functional

$E(\phi)=\frac{1}{2}\int_{M}\Vert d\phi\Vert^{2}v_{g}$

where $\Vert d\phi\Vert$ is the Hilbert-Schmidt norm, i.e. 1 $d\phi\Vert^{2}=trace_{g}(\phi^{*}g_{N})$ , and $v_{g}$ the
canonical volume form on $(M, g)$ . Let $\{\phi_{s,t}\}_{-\epsilon<s,t<\epsilon}$ be a 2-parameter variation of
a harmonic map $\phi(\phi_{0,0}=\phi)$ and set

$I(V, W)=\frac{\partial^{2}}{\partial s\partial t}E(\phi_{s,l})_{s=t=0}$

where $V=\partial\phi_{s,t}/\partial t|_{s=t=0}$ and $W=\partial\phi_{s,l}/\partial s|_{s=t=0}$ . Then $\phi$ is said to be stable if
$I(V, V)\geq 0$ for any $V\in\Gamma^{(r}(\phi^{-1}TN)$ .

Let $j:N\subset C^{n+1}H$ be a real hypersurface, under the hypothesis of Theorem
1. Let $N(j)\rightarrow N$ be the normal bundle of the immersion $j$ , and let $X=\iota an(X)+$

$\chi\perp$ be the decomposition of $X\in T(CH^{n+1})$ with respect to

$T_{x}(CH^{n+1})=T_{X}(N)\oplus N(j)_{x}$ , $x\in N$

Let $\{X_{j} : 1 \leq i\leq m\}$ be a (local) g-orthonormal frame on an open set $U\subseteq M$

and $\{V_{a} : 1 \leq a\leq 2n+2\}$ a (local) go-orthonormal parallel (i.e. $\nabla^{0}V_{a}=0$ ) frame
on an open set $V\subseteq CH^{n+1}$ , so that $\phi(U)\subset V$ . The frame $\{V_{a}\}$ may be obtained
by parallel translation of a $g0_{X}$ -orthonormal basis in $T_{\chi}(CH^{n+1})$ along geodesics
issueing at $x$ , in a simple and convex neighborhood $V$ of $x$ .

Let $\tilde{\nabla}=\phi^{-1}\nabla^{N}$ be the connection in $\phi^{-1}TN\rightarrow M$ , induced by $\nabla^{N}$ . Then

$\tilde{\nabla}_{X_{i}}tan(V_{a})=A_{V_{a}^{\perp}}(d\phi)X_{i}$ (7)

Indeed (by (3) $-(4)$ )

$\tilde{\nabla}_{X_{i}}tan(V_{a})=\nabla_{(d\phi)X_{i}}^{N}tan(V_{a})=tan(\nabla_{(d\phi)X_{j}}^{0}tan(V_{a}))$

$=tan(\nabla_{(d\phi)X_{i}}^{0}(V_{a}-V_{a}^{\perp}))=-tan(\nabla_{(d\phi)X_{i}}^{0}V_{a}^{\perp})=A_{V_{a}^{\perp}}(d\phi)X_{i}$

Moreover

$\sum_{a=1}^{2n+2}\sum_{i=1}^{m}\Vert\tilde{\nabla}_{X_{i}}tan(V_{a})\Vert^{2}=\Vert d\phi\Vert^{2}\Vert H\Vert^{2}$ (8)
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To prove (8) one uses (7) and $\Vert X\Vert^{2}=\sum_{a=1}^{2n+2}go(X, V_{a})^{2}$ , for any $X\in T(CH^{n+1})$ ,

and conducts the following calculation

$\Vert\tilde{\nabla}_{X_{i}}tan(V_{a})\Vert^{2}=\Vert A_{V_{a}^{\perp}}(d\phi)X_{i}\Vert^{2}=\sum_{b=1}^{2n+2}g_{0}(A_{V_{a}}\perp(d\phi)X_{i}, V_{b})^{2}$

$=\sum_{b=1}^{2n+2}g_{N}(A_{V_{a}^{\perp}}(d\phi)X_{j}, tan(V_{b}))^{2}=\sum_{b=1}^{2n+2}g_{0}(b((d\phi)X_{j}, tan(V_{b})),$ $V_{a}^{\perp})^{2}$

Next, as $N$ is totally umbilical

$\Vert\tilde{\nabla}_{X_{i}}tan(V_{a})\Vert^{2}=\sum_{b=1}^{2n+2}g_{N}((d\phi)X_{i}, tan(V_{b}))^{2}g_{0}(H, V_{a}^{\perp})^{2}$

$=\Vert(d\phi)X_{i}\Vert^{2}go(H, V_{a}^{\perp})^{2}$

which leads to (8). Again by the umbilicity assumption, the Gauss equation (5)
becomes

$R^{N}(X, Y)Z=(1+\Vert H\Vert^{2})\{g_{N}(Y, Z)X-g_{N}(X, Z)Y\}$

$+\frac{1}{4}\{[\omega(X)Y-\omega(Y)X]\omega(Z)+[g_{N}(X, Z)\omega(Y)-g_{N}(Y, Z)\omega(X)]B\}$

Therefore

$g_{N}(R^{N}(X, Y)Y,$ $X$ ) $=(1+\Vert H\Vert^{2})\{\Vert X\Vert^{2}\Vert Y\Vert^{2}-g_{N}(X, Y)^{2}\}$

$-\frac{1}{4}\{\omega(X)^{2}\Vert Y\Vert^{2}-2\omega(X)_{\omega}(Y)gN(X, Y)+\omega(Y)^{2}\Vert X\Vert^{2}\}$

for any $X,$ $Y\in T(N)$ . Using

$\sum_{a=1}^{2n+2}\Vert V_{a}^{\perp}\Vert^{2}=1$ , $\sum_{a=1}^{2n+2}\Vert tan(V_{a})\Vert^{2}=2n+1$

$\sum_{a=1}^{2n+2}\omega(tan(V_{a}))V_{a}=B$

we may conduct the following calculation
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$\sum_{a=1}^{2n+2}\sum_{i=1}^{m}gN(R^{N}(tan(V_{a}), (d\phi)X_{i})(d\phi)X_{i},$ $tan(V_{a}))$

$=(1+\Vert H\Vert^{2})\sum_{a=1}^{2n+2}\{\Vert tan(V_{a})\Vert^{2}\Vert d\phi\Vert^{2}-\sum_{i=1}^{m}$ go $((d\phi)X_{i}, V_{a})^{2}\}$

$-\frac{1}{4}\sum_{a=1}^{2n+2}\{\omega(tan(V_{a}))^{2}\Vert d\phi\Vert^{2}+\Vert\phi^{*}\omega\Vert^{2}\Vert tan(V_{a})\Vert^{2}\}$

$+\frac{1}{2}\sum_{a=1}^{2n+2}\omega(tan(V_{a}))g0(V_{a},$ $\sum_{i=1}^{m}\omega((d\phi)X_{i})(d\phi)X_{i})$

$=2n(1+\Vert H\Vert^{2})\Vert d\phi\Vert^{2}-\frac{1}{4}\{\Vert B\Vert^{2}\Vert d\phi\Vert^{2}+(2n+1)\Vert\phi^{*}\omega\Vert^{2}\}$

$+\frac{1}{2}g_{N}(B, (d\phi)(\phi^{*}\omega)^{\#})$

where $\#$ denotes raising of indices with respect to $g$ . Next

$g_{N}(B, (d\phi)(\phi^{*}\omega)^{\#})=\sum_{i=1}^{m}\omega((d\phi)X_{i})^{2}=\Vert\phi^{*}\omega\Vert^{2}$

hence

$\sum_{a=1}^{2n+2}\sum_{i=1}^{m}g_{N}(R^{N}(tan(V_{a}), (d\phi)X_{i})(d\phi)X_{j},$ $tan(V_{a}))$

$=\{2n(1+\Vert H\Vert^{2})-\frac{1}{4}\Vert B\Vert^{2}\}\Vert d\phi\Vert^{2}-\frac{2n-1}{4}\Vert\phi^{*}\omega\Vert^{2}$ (9)

By the second variation formula (cf. e.g. [9]), for any harmonic map $\phi$ of $(M, g)$

into $(N, g_{N})$

$I(V, W)=\sum_{i=1}^{m}\int_{M}\{g_{N}(\tilde{\nabla}_{X_{i}}V,\tilde{\nabla}_{X_{i}}W)-g_{N}(R^{N}(V, (d\phi)X_{i})(d\phi)X_{i}, W)\}v_{g}$

Then (by (8) $-(9)$ and our assumption (1))

$\sum_{a=1}^{2n+2}I(tan(V_{a}), tan( V_{a}))$

$=-\int_{M}\{2n+(2n-1)\Vert H\Vert^{2}-\frac{1}{4}\Vert B\Vert^{2}\}\Vert d\phi\Vert^{2}v_{g}+\frac{2n-1}{4}\int_{M}\Vert\phi^{*}\omega\Vert^{2}v_{g}<0$
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hence $\phi$ is unstable. If $B^{\perp}=0$ then (by Theorem 2) $N$ has constant mean
curvature; also, if this is the case, then $\Vert B\Vert=2$ hence

$\int_{M}(2n+(2n-1)\Vert H\Vert^{2}-\frac{1}{4}\Vert B\Vert^{2})\Vert d\phi\Vert^{2}v_{g}=2(2n-1)(1+\Vert H\Vert^{2})E(\phi)$ ,

i.e. (1) assumes the simpler form (2).

4. Unstable Pseudohermitian Immersions

Let $(M, T_{1,0}(M))$ be a $CR$ manifold (of hypersurface type), of $CR$ dimension
$p$ , and $H(M)=Re\{T_{1,0}(M)\oplus\overline{T_{1,0}(M)}\}$ its Levi (or maximally complex) dis-
tribution. A pseudohermitian structure on $M$ is a nonzero global section $\theta_{M}$ in
the conormal bundle $H(M)^{\perp}\subset T^{*}(M)$ . Given a pseudohermitian structure $\theta_{M}$ ,

the Levi form is given by

$G_{\theta_{M}}(X, Y)=(d\theta_{M})(X, J_{M}Y)$ , $X,$ $Y\in H(M)$ ,

where $J_{M}(Z+\overline{Z})=\sqrt{-1}(Z-\overline{Z}),$ $Z\in T_{1,0}(M)$ , is the complex structure in
$H(M)$ . The $CR$ manifold $M$ is nondegenerate if the Levi form $G_{\theta_{M}}$ is non-
degenerate for some pseudohermitian structure $\theta_{M}$ (and thus for all). If this is the
case then $\theta_{M}$ is a contact form on $M$, i.e. $\theta_{M}\wedge(d\theta_{M})^{p}$ is a volume form on $M$.
A $CR$ manifold $(M, T_{1,0}(M))$ is strictly pseudoconvex if the Levi form $G_{\theta_{M}}$ is
positive definite, for some pseudohermitian structure $\theta_{M}$ on $M$.

Let $(M, T_{1,0}(M))$ be a nondegenerate $CR$ manifold and $\theta_{M}$ a contact form
on $M$. Under the mild additional assumption that $M$ be orientable, there is a
nonzero tangent vector field $T$ on $M$ (the characteristic direction of $(M,$ $\theta_{M})$ ),
uniquely determined by

$\theta_{M}(T)=1$ , $T\rfloor d\theta_{M}=0$ .

As $T(M)=H(M)\oplus RT$ , this may be used to extend the Levi form $G_{\theta_{M}}$ to a
(semi-Riemannian, in general) metric on the whole of $T(M)$ , by requesting that $T$

be orthogonal to $H(M)$ and assigning to $T$ a fixed length, i.e. let $g\theta_{M}$ be defined
by setting

$g\theta_{M}(X, Y)=G_{\theta_{M}}(X, Y)$ ,

$g\theta_{M}(X, T)=0$ , $g_{\theta_{M}}(T, T)=1$ ,

for any $X,$ $Y\in H(M)$ . This is referred to as the Webster metric of $(M, \theta_{M})$

(compare to (2.18) in [15], p. 34). If $M$ is strictly pseudoconvex and a contact
form $\theta_{M}$ is chosen so that $G_{\theta_{M}}$ be positive definite, then $g\theta_{M}$ is a Riemannian
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metric on $M$ . Note that $g\theta_{M}(X, T)=\theta_{M}(X)$ , for any $X\in T(M)$ . In particular
$\Vert\theta_{M}\Vert=1$ .

Let $(M, T_{1,0}(M))$ and $(A, T_{1,0}(A))$ be strictly pseudoconvex $CR$ manifolds.
Let $\phi$ : $M\rightarrow A$ be a $CR$ immersion, i.e. a $C^{\infty}$ immersion and a $CR$ map (i.e.
$(d_{x}\phi)T_{1,0}(M)_{x}\subseteq T_{1,0}(A)_{\phi(x)},$ $x\in M$). If $\theta_{M}$ and $\theta_{A}$ are contact forms, on $M$ and
$A$ respectively, so that $G_{\theta_{M}}$ and $G_{\theta_{A}}$ be positive-definite, then $\phi^{*}\theta_{A}=\lambda\theta_{M}$ , for
some $C^{\infty}$ function $\lambda$ : $M\rightarrow(O, +\infty)$ . If $\lambda\equiv 1$ then $\phi$ is said to be isopseudo-
hermitian. An isopseudohermitian $CR$ immersion $\phi$ : $M\rightarrow A$ is said to be a
pseudohermitian immersion if $\phi(M)$ is tangent to the characteristic direction of
$(A, \theta_{A})$ . A theory of pseudohermitian immersions has been started in [6] and [2].
We recall (cf. Theorem 7 in [6], p. 189)

THEOREM 3. Any pseudohermitian immersion between two strictly pseudo-
convex $CR$ manifolds is a minimal isometric (with respect to the Webster metrics)
immersion.

Set $ U=-J\xi$ and $\theta(X)=g_{N}(X, U)$ , for any $X\in T(N)$ . We establish

THEOREM 4. Let $N$ be an orientable real hypersurface of the complex Hopf
manifold $CH^{n+1}$ , tangent to the Lee field $B_{0}$ . Assume that $N$ is totally umbilical of
nonzero mean curvature $(\Vert H\Vert\neq 0)$ . Let $\phi:M\rightarrow N$ be a pseudohermitian immer-
sion of a compact strictly pseudoconvex $CR$ mamfold $M$ into $N$, thought of as a
map of $(M, \theta_{M})$ into $(N,\hat{\theta})$ , where $\hat{\theta}=g_{0}(H, \xi)\theta$ . If the Lee field of $CH^{n+1}$ is
orthogonal to the $CR$ structure of $N$ and

$E(\phi)>\frac{Vol(M)}{2(1+||H||^{2})\Vert H\Vert^{2}}$ (10)

then $\phi$ is an unstable harmonic map.

The source manifold $M$ carries the Webster metric $g=g\theta_{M}$ , while $N$ is
endowed with the induced metric $gN=j^{*}g0$ . Also $N$ carries the induced $CR$

structure

$T_{1,0}(N)=T^{1,0}(CH^{n+1})\cap[T(N)\otimes C]$

( $T^{1,0}(CH^{n+1})$ is the holomorphic tangent bundle over $CH^{n+1}$ ). The Levi form of
$N$ is

$G_{\theta}(X, Y)=(d\theta)(X, JY)$

for any $X,$ $Y\in H(N)=Ker(\theta)$ . We need
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LEMMA 1. Let $N$ be a totally umbilical real hypersurface of the complex Hopf

mamfold If $H+\frac{1}{2}B^{\perp}\neq 0$ everywhere on $N$ then $(N, T_{1,0}(N))$ is a strictly pseudo-
convex $CR$ mamfold.

We recall (cf. Corollary 1.1 in [8], p. 4) that

$\nabla_{X}^{0}JY=J\nabla_{X}^{0}Y+\frac{1}{2}\{\omega_{0}(JY)X-\omega_{0}(Y)JX+g_{0}(X, Y)JB_{0}-g_{0}(X, JY)B_{0}\}$

for any $X,$ $Y\in T(CH^{n+1})$ . Then (as $\nabla^{\perp}\xi=0$)

$(\nabla_{X}^{N}\theta)Y=g_{N}(Y, \nabla_{X}^{N}U)=-go(Y, \nabla_{X}^{0}J\xi)$

$=g_{N}$ (PAX, $Y$ ) $+\frac{1}{2}\{\omega(U)g_{N}(X, Y)+\omega_{0}(\xi)gN(PX, Y)-\theta(X)\omega(Y)\}$

for any $X,$ $Y\in T(N)$ . Here $PX=tan(JX)$ . Next, using

$2(d\theta)(X, Y)=(\nabla_{X}^{N}\theta)Y-(\nabla_{Y}^{N}\theta)X$

we get

$2(d\theta)(X, Y)=g_{N}((PA+AP)X, Y)+g_{N}(PX, Y)\omega_{0}(\xi)-(\theta\wedge\omega)(X, Y)$ (11)

hence the Levi form of $N$ is expressed by

$G_{\theta}(X, Y)=\frac{1}{2}\{g_{0}(b(X, Y)+b(JX, JY), \xi)+g_{N}(X, Y)\omega_{0}(\xi)\}$ (12)

for any $X,$ $Y\in H(N)$ . Assume from now on that $b=H\otimes g_{N}$ . Then (12) becomes

$G_{\theta}(X, Y)=g0(H+\frac{1}{2}B^{\perp}, \xi)g_{N}(X, Y)$

hence either $G_{\theta}$ or $G_{-\theta}$ is positive definite.

LEMMA 2. Let $N$ be a real hypersurface of $CH^{n+1}$ , under the hypothesis of
Lemma 1. If additionally $B^{\perp}=0$ then $f:=g_{0}(H, \xi)=const$ . and (by replacing $\theta$

$by-\theta_{l}f$ necessary) one may assume $f>0$ . Moreover, $lfB$ is orthogonal to $T_{1,0}(N)$

then the induced metric $g_{N}=j^{*}g_{0}$ and the Webster metric $ gf\theta$ are homothetic.

To prove Lemma 2 assume that $B^{\perp}=0$ . Set $f=g0(H, \xi)\in C^{\infty}(N)$ . By
Theorem 2, $f=const$ . (indeed, $\nabla^{\perp}H=0$ yields $f^{2}=\Vert H\Vert^{2}=const.$ ).

Assume now that $B\perp T_{1,0}(N)$ . In particular $B\perp H(N)$ (i.e. $Ker(\omega)=H(N)$ ,
hence $\omega$ and $\theta$ are proportional). As $N$ is umbilical and tangent to $B_{0}$ the
equation (11) becomes

$(d\theta)(X, Y)=fg_{N}(PX, Y)$
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for any $X,$ $Y\in T(N)$ . Then $PU=0$ yields $U\rfloor d\theta=0$ , i.e. $U$ is the characteristic
direction of $(N, \theta)$ . Set $\hat{\theta}=f\theta$ and let $g_{\hat{\theta}}$ be the corresponding Webster metric (of
$(N,\hat{\theta}))$ (a Riemannian metric on $N$ ). Then

$g_{\hat{\theta}}=\Vert H\Vert^{2}gN$

and Lemma 2 is proved. By Theorem 3, $\phi$ is harmonic, as a map of $(M, g)$ into
$(N, g_{\hat{\theta}})$ , i.e. $\phi$ is a critical point of the energy functional

$E_{\theta}(\phi)=\frac{1}{2}\int_{M}trace_{g}(\phi^{*}g_{\hat{\theta}})v_{g}$

Yet $E_{\theta}(\phi)=f^{2}E(\phi)$ hence $\phi$ is harmonic as a map of $(M, g)$ into $(N, g_{N})$ . On the
other hand

$\omega=\theta(B)\theta$ (13)

Note that (13) yields $|\theta(B)|=2$ (indeed $\theta(B)^{2}=\omega(B)=\Vert B\Vert^{2}=\Vert B_{0}\Vert^{2}=4$) hence

$\int_{M}\Vert\phi^{*}\omega\Vert^{2}v_{g}=\frac{4}{f^{2}}\int_{M}\Vert\theta_{M}\Vert^{2}v_{g}=4\frac{Vol(M)}{||H\Vert^{2}}$

(as $\phi^{*}\hat{\theta}=\theta_{M}$ ). Therefore, the assumption (10) is equivalent to (2), and (by
Theorem 1) $\phi$ must be unstable.
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