UNSTABLE HARMONIC MAPS INTO REAL HYPERSURFACES OF A COMPLEX HOPF MANIFOLD

By

Sorin Dragomir and Maria Rosaria Enea

Abstract. Let $\phi: M \to N$ be a pseudohermitian immersion ([6]) of a compact strictly pseudoconvex CR manifold M into a totally umbilical real hypersurface N, of nonzero mean curvature ($||H|| \neq 0$), of a complex Hopf manifold CH^n , tangent to the Lee field B_0 of CH^n . If B_0 is orthogonal to the CR structure of N and $E(\phi) > Vol(M)/[(1+||H||^2)||H||^2]$ then ϕ is an unstable harmonic map.

1. Introduction

By a well known result of P. F. Leung (cf. [12]) any nonconstant harmonic map from a compact Riemannian manifold into a sphere S^n , $n \ge 3$, is unstable. This carries over easily to totally umbilical real hypersurfaces N of a real space form $M^{n+1}(c)$. Precisely, if $(n-2)\|H\|^2 + (n-1)c > 0$ then any nonconstant harmonic map of a compact Riemannian manifold into N is unstable. The proof is a *verbatim* transcription of the proof of Theorem 4 in [3]. Cf. also Theorem 7.1 in [1]. Here $\|H\|$ is the mean curvature of $N \subset M^{n+1}(c)$ (a constant *a posteriori*, cf. Prop. 3.1 in [5], p. 49, i.e. $N = M^n(c + \|H\|^2)$).

In the present paper we take up the following complex analogue of the problem above: given a compact Riemannian manifold M, study the stability of harmonic maps of M into a totally umbilical CR submanifold of a Hermitian manifold N_0 .

By a result of A. Bejancu, [4], if N_0 is a Kähler manifold then totally umbilical CR submanifolds may only occur in real codimension one. Even worse, by a result of Y. Tashiro & S. Tachibana, [13], neither elliptic nor hyperbolic complex space forms possess totally umbilical real hypersurfaces. Umbilical submanifolds are however abundant in locally conformal Kähler ambient spaces (cf. [10] and [7] for a partial classification). We obtain the following

Received January 31, 2000. Revised November 13, 2000. THEOREM 1. Let N be a totally umbilical real hypersurface of the complex Hopf manifold CH^{n+1} with the Boothby metric g_0 . Let $\phi: M \to N$ be a nonconstant harmonic map of a compact Riemannian manifold (M,g) into (N,j^*g_0) , where $j: N \subset CH^{n+1}$. If

$$\int_{M} \left(2n + (2n-1) \|H\|^{2} - \frac{1}{4} \|B\|^{2} \right) \|d\phi\|^{2} v_{g} > \frac{2n-1}{4} \int_{M} \|\phi^{*}\omega\|^{2} v_{g}$$
 (1)

then ϕ is unstable. In particular, if N is tangent to the Lee field of $\mathbb{C}H^{n+1}$ and

$$(1 + ||H||^2)E(\phi) > \frac{1}{8} \int_{M} ||\phi^*\omega||^2 v_g$$
 (2)

then ϕ is unstable.

In section 2 we recall the facts of locally conformal geometry needed throughout the paper (cf. also [8]). Theorem 1 is proved in section 3. In section 4 we discuss the case of pseudohermitian immersions of a compact CR manifold into a real hypersurface of a complex Hopf manifold (cf. our Theorem 4). The Authors are grateful to the referee, whose suggestions improved the original version of the manuscript.

2. A Reminder of Locally Conformal Kähler Geometry

Let $\lambda \in C$, $0 < |\lambda| < 1$, and G_{λ} the discrete group of analytic transformations of $C^n \setminus \{0\}$ generated by $z \mapsto \lambda z$. It is well known (cf. e.g. [11], p. 137) that G_{λ} acts freely on $C^n \setminus \{0\}$, as a properly discontinuous group of analytic transformations, hence the quotient $CH^n = (C^n \setminus \{0\})/G_{\lambda}$ is a complex manifold (the complex Hopf manifold). The complex Hopf manifold is compact (as $CH^n \approx S^{2n-1} \times S^1$, a diffeomorphism) and its first Betti number is $b_1(CH^n) = 1$, hence admits no global Kähler metrics. It is known however (cf. [8], p. 22) to possess a natural Hermitian metric, i.e. $g_0 = |z|^{-2} \delta_{jk} dz^j \otimes d\bar{z}^k$, $|z|^2 = \delta_{jk} z^j \bar{z}^k$ (the Boothby metric). Moreover g_0 is a locally conformal Kähler metric, i.e. CH^n admits an open cover $\{U_{\alpha}\}_{\alpha \in \Gamma}$ and a family of C^{∞} functions $f_{\alpha}: U_{\alpha} \to R$, so that each (local) metric $g_{\alpha} = \exp(-f_{\alpha})g_0|_{U_{\alpha}}$ is Kählerian, $\alpha \in \Gamma$. The (local) 1-forms df_{α} glue up to a (global) 1-form ω_0 (the Lee form of (CH^n, g_0)) expressed locally as $\omega_0 = d\log|z|^2$. The Lee form is parallel (with respect to the Levi-Civita connection of g_0) and the local Kähler metrics g_{α} are flat. Viceversa, by a well known result

of I. Vaisman (cf. [14]) any generalized Hopf manifold (i.e. locally conformal Kähler manifold with a parallel Lee form) with flat local Kähler metrics is locally analytically homothetic to (CH^n, g_0) . Cf. also [8], p. 56.

The Lee field is $B_0 = \omega_0^{\sharp}$ (where \sharp denotes raising of indices with respect to g_0). Note that, on a Hopf manifold, $||B_0|| = 2$.

A study of submanifolds of (CH^n, g_0) , regarding both the geometry of their second fundamental form and their position with respect to the 'preferential direction' B_0 is in act (cf. [8], p. 147–298, for an account of the research over the last decade). If N is an orientable real hypersurface in (CH^{n+1}, g_0) , we shall need the Gauss and Weingarten formulae

$$\nabla_X^0 Y = \nabla_X^N Y + b(X, Y) \tag{3}$$

$$\nabla_X^0 \eta = -A_{\eta} X + \nabla_X^{\perp} \eta \tag{4}$$

Here ∇^N , b, A_{η} and ∇^{\perp} are respectively the induced connection, the second fundamental form (of the given immersion $j:N\subset CH^{n+1}$), the Weingarten operator (associated with the normal section η), and the normal connection. Let ξ be a global unit normal field on N and set $A=A_{\xi}$. The Gauss and Codazzi equations are

$$R^{N}(X,Y)Z = (X \wedge Y)Z + g_{N}(AY,Z)AX - g_{N}(AX,Z)AY$$

$$+ \frac{1}{4} \{ [\omega(X)Y - \omega(Y)X]\omega(Z)$$

$$+ [g_{N}(X,Z)\omega(Y) - g_{N}(Y,Z)\omega(X)]B \}$$
(5)

$$(\nabla_X A) Y - (\nabla_Y A) X = \frac{1}{4} \{ \omega(Y) X - \omega(X) Y \} \omega_0(\xi)$$
 (6)

These may be obtained from (3)–(4) and an explicit calculation of the curvature of the Boothby metric (or as a consequence of (12.19)–(12.20) in [8], p. 152, the Gauss and Codazzi equations of a submanifold in an arbitrary l.c.K. manifold with flat local Kähler metrics). Here $\omega = j^*\omega_0$ and $B = tan(B_0)$ is the tangential component of the Lee field. As a straightforward consequence of (6) one has

THEOREM 2. Let N be an orientable totally umbilical $(b = H \otimes g_N)$ real hypersurface of (CH^{n+1}, g_0) . Then N has a parallel mean curvature vector $(\nabla^{\perp} H = 0)$ if and only if for any $x \in N$ either $\omega_x = 0$ or N is tangent to the Lee field B_0 at x.

3. Proof of Theorem 1

Let (M,g) and (N,g_N) be Riemannian manifolds. Assume M to be m-dimensional, compact, and orientable. A C^{∞} map $\phi: M \to N$ is said to be harmonic if it is a critical point of the energy functional

$$E(\phi) = \frac{1}{2} \int_{M} \|d\phi\|^2 v_g$$

where $||d\phi||$ is the Hilbert-Schmidt norm, i.e. $||d\phi||^2 = trace_g(\phi^*g_N)$, and v_g the canonical volume form on (M,g). Let $\{\phi_{s,t}\}_{-\varepsilon < s,\, t < \varepsilon}$ be a 2-parameter variation of a harmonic map ϕ $(\phi_{0,0} = \phi)$ and set

$$I(V, W) = \frac{\partial^2}{\partial s \partial t} E(\phi_{s,t})_{s=t=0}$$

where $V = \partial \phi_{s,t}/\partial t|_{s=t=0}$ and $W = \partial \phi_{s,t}/\partial s|_{s=t=0}$. Then ϕ is said to be *stable* if $I(V, V) \ge 0$ for any $V \in \Gamma^{\infty}(\phi^{-1}TN)$.

Let $j: N \subset \mathbb{C}^{n+1}H$ be a real hypersurface, under the hypothesis of Theorem 1. Let $N(j) \to N$ be the normal bundle of the immersion j, and let $X = tan(X) + X^{\perp}$ be the decomposition of $X \in T(\mathbb{C}H^{n+1})$ with respect to

$$T_x(CH^{n+1}) = T_x(N) \oplus N(j)_x, \quad x \in N$$

Let $\{X_i: 1 \le i \le m\}$ be a (local) g-orthonormal frame on an open set $U \subseteq M$ and $\{V_a: 1 \le a \le 2n+2\}$ a (local) g₀-orthonormal parallel (i.e. $\nabla^0 V_a = 0$) frame on an open set $V \subseteq CH^{n+1}$, so that $\phi(U) \subset V$. The frame $\{V_a\}$ may be obtained by parallel translation of a $g_{0,x}$ -orthonormal basis in $T_x(CH^{n+1})$ along geodesics issueing at x, in a simple and convex neighborhood V of x.

Let $\tilde{\nabla} = \phi^{-1} \nabla^N$ be the connection in $\phi^{-1} TN \to M$, induced by ∇^N . Then

$$\tilde{\nabla}_{X_i} \tan(V_a) = A_{V_a^{\perp}}(d\phi) X_i \tag{7}$$

Indeed (by (3)-(4))

$$\begin{split} \tilde{\nabla}_{X_i} \tan(V_a) &= \nabla^N_{(d\phi)X_i} \tan(V_a) = \tan(\nabla^0_{(d\phi)X_i} \tan(V_a)) \\ &= \tan(\nabla^0_{(d\phi)X_i} (V_a - V_a^{\perp})) = -\tan(\nabla^0_{(d\phi)X_i} V_a^{\perp}) = A_{V_a^{\perp}} (d\phi) X_i \end{split}$$

Moreover

$$\sum_{a=1}^{2n+2} \sum_{i=1}^{m} \|\tilde{\nabla}_{X_i} \tan(V_a)\|^2 = \|d\phi\|^2 \|H\|^2$$
 (8)

To prove (8) one uses (7) and $||X||^2 = \sum_{a=1}^{2n+2} g_0(X, V_a)^2$, for any $X \in T(CH^{n+1})$, and conducts the following calculation

$$\begin{split} \|\tilde{\nabla}_{X_i} \tan(V_a)\|^2 &= \|A_{V_a^{\perp}}(d\phi)X_i\|^2 = \sum_{b=1}^{2n+2} g_0(A_{V_a^{\perp}}(d\phi)X_i, V_b)^2 \\ &= \sum_{b=1}^{2n+2} g_N(A_{V_a^{\perp}}(d\phi)X_i, \tan(V_b))^2 = \sum_{b=1}^{2n+2} g_0(b((d\phi)X_i, \tan(V_b)), V_a^{\perp})^2 \end{split}$$

Next, as N is totally umbilical

$$\|\tilde{\nabla}_{X_i} \tan(V_a)\|^2 = \sum_{b=1}^{2n+2} g_N((d\phi)X_i, \tan(V_b))^2 g_0(H, V_a^{\perp})^2$$
$$= \|(d\phi)X_i\|^2 g_0(H, V_a^{\perp})^2$$

which leads to (8). Again by the umbilicity assumption, the Gauss equation (5) becomes

$$R^{N}(X, Y)Z = (1 + ||H||^{2})\{g_{N}(Y, Z)X - g_{N}(X, Z)Y\}$$
$$+ \frac{1}{4}\{[\omega(X)Y - \omega(Y)X]\omega(Z) + [g_{N}(X, Z)\omega(Y) - g_{N}(Y, Z)\omega(X)]B\}$$

Therefore

$$g_N(R^N(X, Y)Y, X) = (1 + ||H||^2)\{||X||^2 ||Y||^2 - g_N(X, Y)^2\}$$
$$-\frac{1}{4}\{\omega(X)^2 ||Y||^2 - 2\omega(X)_{\omega}(Y)g_N(X, Y) + \omega(Y)^2 ||X||^2\}$$

for any $X, Y \in T(N)$. Using

$$\sum_{a=1}^{2n+2} \|V_a^{\perp}\|^2 = 1, \quad \sum_{a=1}^{2n+2} \|tan(V_a)\|^2 = 2n+1$$

$$\sum_{a=1}^{2n+2} \omega(tan(V_a)) V_a = B$$

we may conduct the following calculation

$$\begin{split} \sum_{a=1}^{2n+2} \sum_{i=1}^{m} g_{N}(R^{N}(tan(V_{a}), (d\phi)X_{i})(d\phi)X_{i}, tan(V_{a})) \\ &= (1 + \|H\|^{2}) \sum_{a=1}^{2n+2} \left\{ \|tan(V_{a})\|^{2} \|d\phi\|^{2} - \sum_{i=1}^{m} g_{0}((d\phi)X_{i}, V_{a})^{2} \right\} \\ &- \frac{1}{4} \sum_{a=1}^{2n+2} \left\{ \omega(tan(V_{a}))^{2} \|d\phi\|^{2} + \|\phi^{*}\omega\|^{2} \|tan(V_{a})\|^{2} \right\} \\ &+ \frac{1}{2} \sum_{a=1}^{2n+2} \omega(tan(V_{a})) g_{0} \left(V_{a}, \sum_{i=1}^{m} \omega((d\phi)X_{i})(d\phi)X_{i} \right) \\ &= 2n(1 + \|H\|^{2}) \|d\phi\|^{2} - \frac{1}{4} \left\{ \|B\|^{2} \|d\phi\|^{2} + (2n+1) \|\phi^{*}\omega\|^{2} \right\} \\ &+ \frac{1}{2} g_{N}(B, (d\phi)(\phi^{*}\omega)^{\sharp}) \end{split}$$

where \sharp denotes raising of indices with respect to g. Next

$$g_N(B, (d\phi)(\phi^*\omega)^{\sharp}) = \sum_{i=1}^m \omega((d\phi)X_i)^2 = \|\phi^*\omega\|^2$$

hence

$$\sum_{a=1}^{2n+2} \sum_{i=1}^{m} g_N(R^N(tan(V_a), (d\phi)X_i)(d\phi)X_i, tan(V_a))$$

$$= \left\{ 2n(1 + ||H||^2) - \frac{1}{4}||B||^2 \right\} ||d\phi||^2 - \frac{2n-1}{4}||\phi^*\omega||^2$$
(9)

By the second variation formula (cf. e.g. [9]), for any harmonic map ϕ of (M, g) into (N, g_N)

$$I(V, W) = \sum_{i=1}^{m} \int_{M} \{g_{N}(\tilde{\nabla}_{X_{i}}V, \tilde{\nabla}_{X_{i}}W) - g_{N}(R^{N}(V, (d\phi)X_{i})(d\phi)X_{i}, W)\} v_{g}$$

Then (by (8)–(9) and our assumption (1))

$$\begin{split} \sum_{a=1}^{2n+2} I(tan(V_a), tan(V_a)) \\ &= -\int_{M} \left\{ 2n + (2n-1) \|H\|^2 - \frac{1}{4} \|B\|^2 \right\} \|d\phi\|^2 v_g + \frac{2n-1}{4} \int_{M} \|\phi^* \omega\|^2 v_g < 0 \end{split}$$

hence ϕ is unstable. If $B^{\perp} = 0$ then (by Theorem 2) N has constant mean curvature; also, if this is the case, then ||B|| = 2 hence

$$\int_{M} \left(2n + (2n-1) \|H\|^{2} - \frac{1}{4} \|B\|^{2} \right) \|d\phi\|^{2} v_{g} = 2(2n-1)(1 + \|H\|^{2}) E(\phi),$$

i.e. (1) assumes the simpler form (2).

4. Unstable Pseudohermitian Immersions

Let $(M, T_{1,0}(M))$ be a CR manifold (of hypersurface type), of CR dimension p, and $H(M) = Re\{T_{1,0}(M) \oplus \overline{T_{1,0}(M)}\}$ its Levi (or maximally complex) distribution. A pseudohermitian structure on M is a nonzero global section θ_M in the conormal bundle $H(M)^{\perp} \subset T^*(M)$. Given a pseudohermitian structure θ_M , the Levi form is given by

$$G_{\theta_M}(X, Y) = (d\theta_M)(X, J_M Y), \quad X, Y \in H(M),$$

where $J_M(Z+\bar{Z})=\sqrt{-1}(Z-\bar{Z}),\ Z\in T_{1,0}(M),$ is the complex structure in H(M). The CR manifold M is nondegenerate if the Levi form G_{θ_M} is nondegenerate for some pseudohermitian structure θ_M (and thus for all). If this is the case then θ_M is a contact form on M, i.e. $\theta_M \wedge (d\theta_M)^p$ is a volume form on M. A CR manifold $(M,T_{1,0}(M))$ is strictly pseudoconvex if the Levi form G_{θ_M} is positive definite, for some pseudohermitian structure θ_M on M.

Let $(M, T_{1,0}(M))$ be a nondegenerate CR manifold and θ_M a contact form on M. Under the mild additional assumption that M be orientable, there is a nonzero tangent vector field T on M (the *characteristic direction* of (M, θ_M)), uniquely determined by

$$\theta_M(T) = 1$$
, $T \mid d\theta_M = 0$.

As $T(M) = H(M) \oplus RT$, this may be used to extend the Levi form G_{θ_M} to a (semi-Riemannian, in general) metric on the whole of T(M), by requesting that T be orthogonal to H(M) and assigning to T a fixed length, i.e. let g_{θ_M} be defined by setting

$$\begin{split} g_{\theta_M}(X,\,Y) &= G_{\theta_M}(X,\,Y), \\ g_{\theta_M}(X,\,T) &= 0, \quad g_{\theta_M}(T,\,T) &= 1, \end{split}$$

for any $X, Y \in H(M)$. This is referred to as the Webster metric of (M, θ_M) (compare to (2.18) in [15], p. 34). If M is strictly pseudoconvex and a contact form θ_M is chosen so that G_{θ_M} be positive definite, then g_{θ_M} is a Riemannian

metric on M. Note that $g_{\theta_M}(X,T) = \theta_M(X)$, for any $X \in T(M)$. In particular $\|\theta_M\| = 1$.

Let $(M, T_{1,0}(M))$ and $(A, T_{1,0}(A))$ be strictly pseudoconvex CR manifolds. Let $\phi: M \to A$ be a CR immersion, i.e. a C^{∞} immersion and a CR map (i.e. $(d_x\phi)T_{1,0}(M)_x \subseteq T_{1,0}(A)_{\phi(x)}, \ x \in M$). If θ_M and θ_A are contact forms, on M and A respectively, so that G_{θ_M} and G_{θ_A} be positive-definite, then $\phi^*\theta_A = \lambda\theta_M$, for some C^{∞} function $\lambda: M \to (0, +\infty)$. If $\lambda \equiv 1$ then ϕ is said to be isopseudohermitian. An isopseudohermitian CR immersion $\phi: M \to A$ is said to be a pseudohermitian immersion if $\phi(M)$ is tangent to the characteristic direction of (A, θ_A) . A theory of pseudohermitian immersions has been started in [6] and [2]. We recall (cf. Theorem 7 in [6], p. 189)

THEOREM 3. Any pseudohermitian immersion between two strictly pseudo-convex CR manifolds is a minimal isometric (with respect to the Webster metrics) immersion.

Set
$$U = -J\xi$$
 and $\theta(X) = g_N(X, U)$, for any $X \in T(N)$. We establish

THEOREM 4. Let N be an orientable real hypersurface of the complex Hopf manifold CH^{n+1} , tangent to the Lee field B_0 . Assume that N is totally umbilical of nonzero mean curvature ($||H|| \neq 0$). Let $\phi: M \to N$ be a pseudohermitian immersion of a compact strictly pseudoconvex CR manifold M into N, thought of as a map of (M, θ_M) into $(N, \hat{\theta})$, where $\hat{\theta} = g_0(H, \xi)\theta$. If the Lee field of CH^{n+1} is orthogonal to the CR structure of N and

$$E(\phi) > \frac{Vol(M)}{2(1 + ||H||^2)||H||^2}$$
 (10)

then ϕ is an unstable harmonic map.

The source manifold M carries the Webster metric $g = g_{\theta_M}$, while N is endowed with the induced metric $g_N = j^*g_0$. Also N carries the induced CR structure

$$T_{1,0}(N) = T^{1,0}(CH^{n+1}) \cap [T(N) \otimes C]$$

 $(T^{1,0}(CH^{n+1}))$ is the holomorphic tangent bundle over CH^{n+1} . The Levi form of N is

$$G_{\theta}(X, Y) = (d\theta)(X, JY)$$

for any $X, Y \in H(N) = Ker(\theta)$. We need

LEMMA 1. Let N be a totally umbilical real hypersurface of the complex Hopf manifold. If $H + \frac{1}{2}B^{\perp} \neq 0$ everywhere on N then $(N, T_{1,0}(N))$ is a strictly pseudoconvex CR manifold.

We recall (cf. Corollary 1.1 in [8], p. 4) that

$$\nabla_X^0 JY = J\nabla_X^0 Y + \frac{1}{2} \{\omega_0(JY)X - \omega_0(Y)JX + g_0(X,Y)JB_0 - g_0(X,JY)B_0\}$$

for any $X, Y \in T(CH^{n+1})$. Then (as $\nabla^{\perp} \xi = 0$)

$$\begin{split} (\nabla_X^N \theta) Y &= g_N(Y, \nabla_X^N U) = -g_0(Y, \nabla_X^0 J \xi) \\ &= g_N(PAX, Y) + \frac{1}{2} \{ \omega(U) g_N(X, Y) + \omega_0(\xi) g_N(PX, Y) - \theta(X) \omega(Y) \} \end{split}$$

for any $X, Y \in T(N)$. Here PX = tan(JX). Next, using

$$2(d\theta)(X, Y) = (\nabla_X^N \theta) Y - (\nabla_Y^N \theta) X$$

we get

$$2(d\theta)(X,Y) = g_N((PA + AP)X,Y) + g_N(PX,Y)\omega_0(\xi) - (\theta \wedge \omega)(X,Y)$$
 (11)

hence the Levi form of N is expressed by

$$G_{\theta}(X,Y) = \frac{1}{2} \{ g_0(b(X,Y) + b(JX,JY), \xi) + g_N(X,Y)\omega_0(\xi) \}$$
 (12)

for any $X, Y \in H(N)$. Assume from now on that $b = H \otimes g_N$. Then (12) becomes

$$G_{ heta}(X, Y) = g_0(H + \frac{1}{2}B^{\perp}, \xi)g_N(X, Y)$$

hence either G_{θ} or $G_{-\theta}$ is positive definite.

LEMMA 2. Let N be a real hypersurface of CH^{n+1} , under the hypothesis of Lemma 1. If additionally $B^{\perp} = 0$ then $f := g_0(H, \xi) = const.$ and (by replacing θ by $-\theta$ if necessary) one may assume f > 0. Moreover, if B is orthogonal to $T_{1,0}(N)$ then the induced metric $g_N = j^*g_0$ and the Webster metric $g_{f\theta}$ are homothetic.

To prove Lemma 2 assume that $B^{\perp} = 0$. Set $f = g_0(H, \xi) \in C^{\infty}(N)$. By Theorem 2, f = const. (indeed, $\nabla^{\perp} H = 0$ yields $f^2 = ||H||^2 = const.$).

Assume now that $B \perp T_{1,0}(N)$. In particular $B \perp H(N)$ (i.e. $Ker(\omega) = H(N)$, hence ω and θ are proportional). As N is umbilical and tangent to B_0 the equation (11) becomes

$$(d\theta)(X, Y) = fg_N(PX, Y)$$

for any $X, Y \in T(N)$. Then PU = 0 yields $U \rfloor d\theta = 0$, i.e. U is the characteristic direction of (N, θ) . Set $\hat{\theta} = f\theta$ and let $g_{\hat{\theta}}$ be the corresponding Webster metric (of $(N, \hat{\theta})$) (a Riemannian metric on N). Then

$$g_{\hat{\theta}} = \|H\|^2 g_N$$

and Lemma 2 is proved. By Theorem 3, ϕ is harmonic, as a map of (M, g) into $(N, g_{\hat{\theta}})$, i.e. ϕ is a critical point of the energy functional

$$E_{ heta}(\phi) = rac{1}{2} \int_{M} trace_{g}(\phi^{*}g_{\hat{ heta}})v_{g}$$

Yet $E_{\theta}(\phi) = f^2 E(\phi)$ hence ϕ is harmonic as a map of (M, g) into (N, g_N) . On the other hand

$$\omega = \theta(\mathbf{B})\theta\tag{13}$$

Note that (13) yields $|\theta(B)| = 2$ (indeed $\theta(B)^2 = \omega(B) = ||B||^2 = ||B_0||^2 = 4$) hence

$$\int_{M} \|\phi^{*}\omega\|^{2} v_{g} = \frac{4}{f^{2}} \int_{M} \|\theta_{M}\|^{2} v_{g} = 4 \frac{Vol(M)}{\|H\|^{2}}$$

(as $\phi^*\hat{\theta} = \theta_M$). Therefore, the assumption (10) is equivalent to (2), and (by Theorem 1) ϕ must be unstable.

References

- [1] M. Ara, Geometry of F-harmonic maps, Kodai Math. J., (2) 22 (1999), 243-263.
- [2] E. Barletta & S. Dragomir, Pseudohermitian immersions, pseudo-Einstein structures, and the Lee class of a *CR* manifold, Kodai Mathem. J., 19 (1996), 62-86.
- [3] E. Barletta & S. Dragomir & H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, to appear in Indiana Univ. Mathem. J., 2001.
- [4] A. Bejancu, Umbilical CR submanifolds of a complex space form, Rendiconti di Matem., (3) 15 (1980), 431-446.
- [5] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc., New York, 1973.
- [6] S. Dragomir, On pseudohermitian immersions between strictly pseudoconvex CR manifolds, American J. Math., (1) 117 (1995), 169-202.
- [7] S. Dragomir & R. Grimaldi, A classification of totally umbilical *CR* submanifolds of a generalized Hopf manifold, Boll. U.M.I., (7) 9-A (1995), 557-568.
- [8] S. Dragomir & L. Ornea, Locally conformal Kähler geometry, Progress in Mathematics, Vol. 155, Birkhäuser, Boston-Basel-Berlin, 1998.
- [9] J. Eells & L. Lemaire, Selected topics in harmonic maps, Regional Conf. Ser. in Math., No. 50, 1983.
- [10] S. Ianus & L. Ornea & K. Matsumoto, Immersions sphériques dans une varietè de Hopf généralisée, C. R. Acad. Sci. Paris, Sér. I Math., 316 (1993), 63-66.
- [11] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. II, Interscience Publishers, New York, 1969.

- [12] P. F. Leung, On the stability of harmonic maps, Lecture Notes in Math., Vol. 949, Springer-Verlag, 1982, 122–129.
- [13] Y. Tashiro & S. Tachibana, On Fubinian and C-Fubinian manifolds, Kodai Math. Sem. Rep., 15 (1963), 176–183.
- [14] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rendiconti di Matem., 12 (1979), 263–284.
- [15] S. Webster, Pseudohermitian structures on a real hypersurface, J. Differential Geometry, 13 (1978), 25-41.

Università degli Studi della Basilicata Dipartimento di Matematica Via N. Sauro 85 85100 Potenza, Italia e-mail: DRAGOMIR@UNIBAS.IT