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Introduction

In [9] K. Kajitani proved that the Cauchy problem for nonlinear weakly
hyperbolic equations is locally well posed in Gevrey classes G with 1 <o <
r/(r — 1), r the largest multiplicity of the characteristic roots, without any further
condition as in the linear case.

On the other hand, D. Gourdin in [6] and the authors in [3] obtained the well
posedness in C® for some classes of nonlinear hyperbolic equations with constant
multiplicity under Levi conditions on the linearized operator.

Here we treat the same topics in classes G with o > r/(r — 1) considering
the generalized Levi condition (L,) introduced by V. Ya. Ivrii in for linear
equations and imposing a further Levi condition (L,) of nonlinear type.

Conditions (L,) and (L,) are empty for 1 <o <r/(r—1) whereas (L,)
reduces to the usual Levi condition as ¢ — +o0, so the results of this paper fit the

ones of [9] and [3].

Concerning well posedness in Gevrey classes for nonlinear equations we quote
also Leray-Ohya [15].

1. Main Results
We shall study the well posedness in Gevrey classes for the quasilinear problem:
> au(t,x, D™ u)Diu = f(t,x,D™ u)
(1.1) laj<m
Dlwg=g;, 0<j<m
where (1,x) e [-To, To] x R" and D™u := (DX u;|a| <m'), m' <m. The func-
tions a,(¢,x,w) and f(¢,x,w) are defined in [—Ty, To] x R" x Wy, where W, is a

neighborhood in R’ of the set {Dfg;(x);x e R", j+ || <m’}, ¢ the number of
the multi-indices « € Z"' with length |a| < m'.
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Since one can expect only local regular solutions, we can assume that g; and
f(t,x,DPg;) have compact supports.
To state our main result we need to introduce the following notations: for
A >0 and o > 1 let us denote by G7 := GJ(R") the space of all functions f
satisfying
Ifllgs == sup [D*f(x)| A" < o0
xeR"”
acZl
and by GAC"l = GA""(R" x Wp), Wy an open set in R’ the space of all functions
f(x,w) such that

”f”GA“ = sup |D;D£f(x, w)|A_|°‘|—|ﬂ||a|!—a|ﬂ|!—1 < o0:

(x,w)eR"x W,
(,B)eZ"xZ’

so0 G°:= | ) Gf and G%':= | ) G' are Gevrey spaces.
A>0 A>0
Finally, we write C¥(—T, T; G?) for the space of all functions of class C¥ in

[-T,T] with values in Gf. We define C¥(—T,T;G"') in a similar way.
Concerning the regularity of the data in problem (1.1), we assume:

(R) gi€Gy, 0<j<m a.t,x,w), |ef<m, and
. k 1
f(t,x,w) are in C*(~To, To; G ").

Moreover, we assume weak hyperbolicity with characteristic roots of constant
multiplicity, that is, writing

P(tXWDt, Z (tXWDh )
j=0
(1.2) Pi(t,x,w; D;, D Zaa (t,x,w)D*D¥
)=/
o = (ap,a’),

the principal symbol P, admits the factorization

(H) Pu(t,x,w;7,&) = [ [ (z = 4i(t, x, w, &)™

j=1
where the roots A; are real and satisfy Ax(z,x,w,&) # Ak(t, x,w,&) for every
(t,x,w,&) if h# k. The number s and the multiplicity m; are independent of

([,X,W,‘f), Z} 1 = m.
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Let r:= max{m;;1 < j < s} denote the largest multiplicity.
We assume:

(Ly) m' <m-—r(l —1/0).

We are interested in the case r>1, ¢ >r/(r—1), since local existence and
uniqueness of solutions in G? is well known for every o if r =1 (strict hyper-
bolicity) whereas for r > 1, 1 <o <r/(r—1) it has been proved by Kajitani [9]
for any fully nonlinear hyperbolic equation.

Nevertheless, for » > 1, ¢ > r/(r — 1) condition (H) is not sufficient as one
can see already in the linear case, i.e. a, and f independent of w [4].

In addition to (H), for every ue Cko+" (—T,, Ty; G°) such that D™'u takes
values in W), we require that the linear operator

(1.3) P®(t,x,; Dy, Dx) 1= P(t,%,W; D1, Dy) e pory

t,x)?

with characteristic roots

A.E-u)(l‘, X, f) = /{j(ty X, W, é)|w:D’”’u(l,X)’

satisfies the generalized Levi condition stated by Ivrii [8], that is: for every solution
@ of

(1.4) o = A (t,x,Vp),

for every real Y € C* ([T, Top] x R") and every h e C([—To, To] X R") one has
(L) P (heier+ieVy = O(om—m(-1/9)y 5 4o, j=1,...,s.

Under hypotheses (H), (R) and (L,) the linear Cauchy problem:

P¥Wp=0
(1.5) _
Divyo=9g; 0<j<m

with data g; € G{ has a unique global solution v € Ck+™(—Ty, To; G§) for some
B > A4, [8], [16], provided that ko > m is large enough to perform the Mizohata
“good factorization” of P®), [16]. Hereafter we take such ko in condition (R).

Condition (L,) becomes also necessary for the well posedness of problem
(1.5) in G° when P® has analytic coefficients, [12], [13], [8].

The asymptotic behavior requested in (L,) is clearly independent of the
terms P;(t,x,w;D,, D) of P(t,x,w;D,, D) with degree j <m —r(1 —1/c), thus
assumption (L,) and (L,) are strictly connected. In fact, (L,) is the appropriate
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nonlinear Levi condition as it will be clear at the end of the proof of our main
result. Leray-Ohya impose the same condition for the particular class of
operators they consider, that is for P(z, x, D,'f’;u, D, D,)= Hle Ai(t,x,D™u, D,, D),
A; strictly hyperbolic. Such a P is not necessarily of constant multiplicity but
the completely different techniques we use here can easily adapted to cover this
situation.

We shall prove the following result of local existence and uniqueness for the

solution of problem (1.1).

THEOREM 1.1. Assume that conditions (R), (H), (L,) and (L,) are fulfilled.
Then there exist T < Typ, A > Ay such that problem (1.1) has a unique solution
ue Cktm(—T T;GY).

REMARK 1.2. Condition (L,) concerns only the terms P; of P(t,x,w;D,, Dy)
with degree je|m—r(l —1/0),m|, therefore it is empty for 1 <o <r/(r—1).
Also hypothesis (L,) gives no restriction since it becomes m’ <m — 1 (any qua-
silinear equation), so from we reobtain the already quoted result by
Kajitani [9]. In the opposite direction, we recognize (L) to be the usual Levi
condition, whereas (L) is m’ < m — r, so thatTheorem 1.1 for ¢ = 00, G® := C*®,
coincides with [Theorem 1.1 in [3].

Ivrii and Mizohata [17] show that assumptions (H) and (L,) mean that
the terms P; of P can be factorized in suitable ways, see also Komatsu [13]. In the
remaining part of this section we use the differential factorization by Ivrii to give
examples of equations satisfying the hypotheses of Theorem 1.1 while we shall use
the pseudodifferential “good factorization” by Mizohata during the proof of our
main result throughout Section 3 and Section 4.

Precisely, if P satisfies condition (H), then we have [16]:

(1.6) Py=(A4))" ... - (4y)" + (terms of order <m — 1)
where 4;, j=1,...,s',and 4, - ... - Ay are strictly hyperbolic differential operators.
It is {r1,...,rv} = {my,...,ms}, hence max r; = llélja;(smj =r.

For 1 <k <r, let us define
Qi = (A" ™+ (40)" 7+, (2), = max{z,0}.

P satisfies condition (L, ) if and only if in the case of analytic coefficients (see
for a detailed proof):

(17) P = Lj, OrdLj < j, Lj = Bijj

s

il
o

J



Nonlinear weakly hyperbolic equations 89

where k; = [(m — j)/(1 — 1/0)], 0 < j < m, B; is an arbitrary differential operator
of order (j—ordQy,), j<m, B, =1 and [z] = max{/ € Z;/ < z}.

Note that for j <m—r(1—1/0) it is k; > r hence Qr, =1 and the facto-
rization of L; in becomes trivial: L; any operator of order j. In particular
is always fulfilled for o <r/(r—1) as (L,).

Now, let o) <0, <---<o0, be a numbering of the set {¢//d;/,deZ,
1 <d < ¢ <r}. Then, given P, in the factorized form [I.6), we are able to write,
for every o > 1, the structure of all operators P satisfying [1.7), such structure
remaining the same for o € Jon, on41[, h=0,...,4, 00 :=1, 0,41 := 0.

For example, let 4,,4> and A;A; be strictly hyperbolic operators of orders
My, M, and pu; + u, respectively. Then, for

P, = A} A3 + (terms of order <m —1), m =3y +2u,
we have r=3, 61 =3/2, 6, =3, 03=3. In it is
P 2, 3/2<0x2
ml = 1, 2<0<
e k>3, 3/2<0<3
m=2 = 2, 3<o<

whereas for j >3 we have k,_; >3 for every o > 1.
Hence, the operators P satisfying [1.7), with principal part P, = 4742+
(terms of order < m — 1) are of the form:

A} A% + By, 141 + Bpa, 3/2<0<2
A} A3 + By, —y,~141 4> + B2, 2<0<3

AfAf + Bm—2/11 —uz—lAizAZ + Bm—,ul 241 + Bm—37 3<o=<

where B, denotes an arbitrary operator of order v.
From this, we can give examples of equations satisfying the hypotheses of

with double and triple characteristic roots:
A3 (t,x, D" u, D,, D) A3(t,x, D*>"*u, D,, D,)u
+ By —1(t, X, D™ %u,D,, D,)A,(t,x,D*'"'u, D,;, D,)u = f(t,x, D™ u)
if 3/2<0<2;
A3 (t,x, D*»"'u, D,, D) A3(t,x, D**~*u, D;, Dy)u
+ By p,-1(2, %, D™ ?u, Dy, D) A% (t, x, D"~ u, D,, Dy) A5(t, x, D*>"*u, D,, D;)u

= f(t,x, D™ y)
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if 2<0<3;

A} (t,x,D*"'u, D,, D) A%(t,x, D*>3u, D,, Dy)u
+ By p,-1(t, X, D™ 3u, Dy, Dy) A2 (t, x, D" ~'u, Dy, D) A5(t, x, D**"*u, Dy, Dy)u
+ By, —2(t, %, D™ 2u, Dy, D) A1 (t, x, D*'"'u, D, Dy )u = f(t,x, D™ u)

if 3<o0< .

2. Pseudodifferential Operators in Gevrey Classes

In section 1 we introduced the spaces of functions G, GA"’I, CK(-T,T; SA"’I).
Correspondently we denote by SA'f'}”, meR o>1, AeR,, ¢ € Z,, the space of
the symbols a(x,&) of order m such that

0202 a(x, &)|
||la||gmo := sup sup < 00,
.0 xeZ" R A|fx|(x!a<é>m"|ﬂ|
IBl<¢

where (&) = (1 + |¢|*)"/?, and define:

ma . 14 m,o, mo ,__ 1 m,o
S 0= lim S§77% 8§™%:= lim S™°
{—+0 A—+o0

For a symbol a(x,¢) in S,",” we define the operator aa(x, D) by
an(x, D) = e"a(x, D)e™",
where A = 7(D)"/?, 1€ R.
For ke Z,, T >0, denote by C¥(-T,T; SA"”}") the space of all functions
a(t,x,&) of class C* in [—T, T] with values in SA"j}" and define C¥(—T, T;S™?)

analogously. Finally, let S}* denote the class of symbols a(x, ) of usual pseudo-
differential operators in R" with norm

llallgm = sup sup |6;‘6£a(x,é)|<é>lﬁl—m_
© lu+Bl< R»

The following proposition has been proved by Kajitani [9].

PrOPOSITION 2.1. . Let a(t,x,&) be in C¥(—T,T;S;"°) and A=A(r) =
AQT — ){DDV?, A€ R. Then, if 2JA|T < (24°nA4)""° and [¢'c/(c — 1)] + ¢+
[n/2) +2 < ¢, apnw(t,x, &) is in CX(—=T,T;S}") and satisfies:

”aA”Ck(—T, T"S/T) S c{’“anck(_T’ T, S/.‘r‘n}a),

where c, is independent of a(t,x,&).
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We shall use symbols depending on a parameter w.

For MeZ,, let dy =card{ae Z" ;0= (ap,a’), 00 < ko, o) < M} and
W = Wy = Wy x R™, where W, is an open given set in R’. We denote by
SA”f}"’l(R” x W x R") the space of the sumbols a(x,w,&) of order m such that:

028788 a(x, w,&)|
||a||%m20,1:= sup sup

— )
a,yeZ} x,{eR" A'“'*Md!"y!(@m 1Al
18l <¢ weW

and by C*(-T, T; SA'T'}"’I) the space of all functions of class C* in [T, T] with
values in SA'f’}”’l(R” x W x R").

Next, we need to introduce a class of weighted Sobolev spaces. We denote by
H»%*(R"), t,u > 0,0 > 1, the spaces of all functions u € #(R") such that

T<D>1/a

[ll oo == lle ul| g < 00,

H* = H*(R"), the usual Sobolev space.
Gevrey-Sobolev spaces of similar and even more general type, have been

studied by several authors, see [10], [11], [1], [7], [2]

We recall that
(2.1) . GPNCE c HYOH,
for some positive 7 and every u, whereas
(2.2) H>* < G\

for every u>n/2, 1>0, A >c,t7° More precisely, there exists a constant
¢ = c(n,u) such that

||u||GA<a> < c|lul| ge.on-

For u > n/2 and arbitrary 7,0, H*>*# is a Banach algebra:

(2.3) [#0]| oo < C s ) ||tl] oo~ 0]l gy

We shall use classes of functions and symbols depending also on a parameter ¢.
Define CK(H*%#), ke Z, u>0, A>0, the space of the functions u(z,x) such
that e*CT-0P"5Jy e C(~T, T; H*), 0 < j < k, with norm:

”u”C;(HLn,p) ‘= Sup sup ”azju(t, ')”Hl(ZT—t),n,/t—j
0<j<k |t|<T

and denote by CX(S7; H»%H), ¢ € Z, the space of symbols a(t, x, &) of order m
such that:
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[lall sup sup “aga(".’é)llcﬁ(ﬂ“’-ﬂ)
a k(gm. [Hiopu = SUu
CT(S[ yH ) lalsf fER" <é>m_|a|

Note that for u > n/2 + k, we have CK(H*?#) =« CK(~T,T;GJ), A > c;(AT)™°,
since it is 2T —¢t>T for |t| < T.

Similar spaces of functions and symbols have been considered by Kajitani
(see also [7]) who gave a detailed treatment of them.

We refer to these authors for the proofs of the following two propositions.

ProPOSITION 2.2. Let a(t,x,&) be in CX(S/ H*%*) and A= A(t) =
e MT=D<DY  Thon asn@(t, x,&) is in CK(-T,T; /') and satisfies:
lazamllcx-, Tism) < C/'||a||c;(s;";m~avu)

SJor [¢'a/(c — 1) +2¢ +[n/2] +2 < ¢, where c, is independent of a(t,x,&).

Moreover ap(,(t,x,&) can be expanded as follows:

a/\(t)(tv X, 5) = Z ()’!)—151"(’» X, é)w}'(t> é) + RN(a)(ta Xy é)

[yI<N
where:

— — V4 _ 1/o
w,(,¢) = e AQ2QT-0<5> aé’el(” <&

and Ry(a)(t,x,¢) is in CK(—T,T; S0 ""YNy for [f'a/(c - 1)] +2¢' + [n/2)
+N <.

PROPOSITION 2.3. Let f(t,x,w) be in C*(~T, T; GA(”’I)), f satisfying f(t,x,0)
=0, and let ue CX(H**), u> py(n,a).

If ||u||C;(H1,,_,,) <r, with rd < c:=c(n,k,u), T < Ty, A'/°T; < co(o,n), then:
f(t,x,u(t,x)) € CH(H»"#)
and

”f(t’ X, u(t’ x)”C;‘.(H’lv"vl‘) = C”“”C’T‘(H’L“"‘)'

3. Factorization and System Form

In this section we consider the equation:

(3.1) {Pv:f

J _
Djvj—o = g;
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for the linear operator:

(3.2) P= > a.(t,x,D™ u(t,x)) Dy,

o) <m

assuming:

i) P(t,x,w,¢) satisfies (R), (H), (L,), (Ls)

ii) ue Ckot™ (HAo#) and D™ u(t,x) € Wy for every (t,x) e [-T,T] x R".

Our aim is to prove that if A and u are sufficiently large, T' and
el xgem (Hhon) sufficiently small, then problem can be reduced to an

ST .
equivalent Cauchy problem for a suitable system for which we are able to state
an energy estimate in Gevrey-Sobolev spaces.

We start by remarking that from (R) and the well known composition rule
in Gevrey spaces, it follows that the coefficients of P are in Ck(—T,T;Gf), 4 >
max{Ag, c;(AT)"7}.

Hence we can perform for the operator P the “good factorization” of
Mizohata (see also [14], where the case of C® coefficients is considered), so
obtaining:

PROPOSITION 3.1.  Assume that the operator (3.2) satisfies conditions 1) and ii).
Then we have:

(33) P=Po.-.--oP +R;
where:
(3.4) P = (D;— 4(t,x,D™ u(t,x), D)™ + a (¢, x, DM'u(t, x), D)

- (Dr = (2, %, D™ u(t,x))" " + - + all) (1, x, DMu(t, x), Dy),

(3-5) 4i(t,x,w, &) € CRO(—T, T; SHoY)

(3.6) a1, x,w,&) e C" (=T, T; S"5 1)
m

(37) R = Zl’h(t, X,DM’u(t, x)>Dx)Dtm_h, r;,(t, X, W, 6) € C(——T, T; Sh—m;a,l)
h=1

where DMy .= {07 u;00 = (w0, ') € Z, x Z, 00 < ko, la| < M1}, My an integer
depending only on n and m.

In (3.4), the A;’s are the characteristic roots of P after a modification for small
|€], say |¢] < R, hence they have the regularity as in from the hypotheses (H)
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and (R). The construction of the aﬁlj ) can be performed as in hence they are
analytic functions of some derivatives of the coefficients a, and of u depending
only on m and n.

The factorization holds under the only hypotheses (H) with ord aij ) <
h — 1; then condition (L,) implies ord aij) < h/o. We remark that the order of
aﬁlj) is invariant under permutations of the indeces (1,...,s) in (3.3).

By using [Proposition 3.1, we are able to reduce the equation in to a
suitable system form.

Without loss of generality, but only to have simpler notation, hereafter we
consider an operator P with two characteristic roots (i.e. s =2). We have:

P=P,oPi+R
(3.8)

P=P10P2+R

with P, and P; defined by with respectively coefficients a\) and a\/) of
order < h/o, while R and R are of the type (3.7).

Let us set:
(vg=v (VU =V
v = (D, — i])l) Uptl = (D, - lz)U
(3.9) Om—1 = (Dy = 4)™ v | vmim-1 = (D, —22)™ v
' Um, = P1v Umim, = Pav i
Umy+1 = (D — A2) Py Umtmy+1 = (Dy — A1) Pyo
L Um—1 = (D, — Az)mz—lPlv L Uym—1 = (D, - ll)m'—lpzl).

The equation is equivalent to:

'(D,—/ll)vjzvj+1 (Oﬁjﬁml—2)

D, — A)om -1 = —agr},)vo - a,(,i)_lvl —r agl)vml—l + U,
1
(Dt — iz)vj = Vj+1 (m1 <j<m-— 2)
2 2
(3.10) (D; — A2)om—1 = —aggvml — aﬁnz_lvmlﬂ — = a§ )vm_l —Rv+ f
100 (D1 = 1) oms) = omijs1 (0= j<m2—2)
~ ~ ~(2
(Dt - 12)0m+mz—l = _asr%zvm - agg_lvm—l —_ aE )Um—!—mz—l + Umi-m,
(D, - Al)vmﬂ- = Umtj-1 (m2 <j<m-— 2)

~ ~(2 ~(1 "'
L (D — A1) vam-1 = —a5) Vs — af,,l)_lvm+mz+1 — .. —a Yoam1—Rv + f
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We can handle the terms Rv and Rv by means of the following lemma which
can be proved as Lemma 5 pag. 77 in [17]; in facts only finitely many products

are involved, so we can argue as in proving Prop. 3.1.

LEMMA 3.2. Assume that the operator (3.2) satisfies i), ii). There exists
M, = M(m,n) > M,, such that:

. Joo .
D/v = Z c;(l’)(t,x, DMy, D)oy + v;

h=1
(3.11)
. S,
Dtjv = Z 5;(11)(ta anM2u7 Dx)vm+j—h + Umj, 0<j<m-1
h=1 -
where:

c,(lj)(t, x,w, &), 5,(lj)(t, x,w, &) e C(-T,T,; Sh“”l).
From Lemma 3.2 and (3.7) it follows that

m—1
Rv = Z b;(t, x, DMy, D, )v;
j=0
(3.12)

Rv = mz-l Ej(t, x, DM u, Dy Yoy,
j=0
where M3 = M3(m,n) > M, and:
bi(t,x,w,&), l;j(t,x, w,&) e C(—T,T; SO;"’I).
If now we define:
i = <Dx>(m—1—j)/avj
(3.13) Bmsj = (DM VDo, 0 j=0,...,m—1
V= (Boy..-,02m1)

the equations (3.10), taking into account (3.12), show that Pv = f is equivalent to
a hyperbolic system of size 2m x 2m:

(3.14) (D; — A(t,x, D™ u(t, x), Dy) + A(t, x, DMiy(t, x), D))V = F,
M, = M4(m,n) > M3, where

F=(0,...,f(t;x,D™u(t,x)),..., f(t,x,D™ u(t,x)))’,
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A is diagonal with elements the 4;’s each one repeated 2m; times, whereas A4 has
order 1/0; more precisely the entries of A(¢,x,w,&) are in C(-T, T;S‘/“?"’l).

Under the hypotheses of |Proposition 3.1, we obtain:

PROPOSITION 3.3. Let V be defined by (3.13) and (3.9). Then there is
Ms > My, depending only on m,n,o, such that

(3.15) (0F cv; || <m') = Q(¢,x, DMsu, D)V

with Q a d, x 2m matrix, Q(t,x,w,&) € C(=T, T;S™ —m+r(1-1/0)+1/g;0,1)

The above proposition is similar to Proposition 2.6 in [3] where we considered
the C® case (formally, 0 = o0, 1/0 = 0). The same proof holds, taking now into
account the positive order /o of azj ) in (3.4) and the assumption (R) of Gevrey
analytic regularity.

For a fixed integer M > ko, let us consider the derivatives 0; v = 8% 0% v,
ag < ko, |&| < M, and let us denote by {7,(“) the functions defined by and
(3.9) with 0 v in place of v. Then set

(3.16) V=" < M,a0 < ko,0 < j <2m—1).

The following proposition, which gives a representation of the commutators
[0f ., Plv, can be proved as Proposition 2.8 in [3];

L,x

PROPOSITION 3.4. Let V be defined by (3.16). Then there exists Mg > Ms
depending only on m,n,c and not depending on M, such that:

(3.17) (8%, Plu; o] < M, 0o < ko) = B(t, x, DM*™ u)H(t, x, DMou, D)V

t,x)
where B, H are dy x dpy, dpr < 2mdys matrices respectively,
B(t,x,w) e C(-T,T;G]"),
H(t,x,w,&) e C(=T, T; S
and
DMy = (0]oFu;j < ko+m',j+|Bl < M+m'}.

Since Mg does not depend on M, now we can fix

(3.18) M>M6+%n+6.
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In next section we shall use the fact that, under the hypotheses of [Theorem 1.1,
from [Proposition 3.1, Lemma 3.2 and [Proposition 3.4, the equation Pv = f is
equivalent to a first order system LV = F with L of the form:

(3.19) L =0, — iK(t,x,DMey, D,)) + B(t, x, DM*™ u)H(t, x, DMsu, D,)

where:

— K is a 2mdys x 2md)ys matrix, K(t,x,w,&) e C(-T,T; SAI;J,I);
- K(t,x,w, &) — K*(t,x,w,&) e C(—T, T; SAI/";”’I);

— B is a dy x dy matrix, B(t,x,w) e C(-T,T; GA"’I);

— H is a dy x 2Mdy, matrix, H(t,x,w,&) e C(-T, T; SAI/"“”I)_

PROPOSITION 3.5. Let L be given by (3.19) with M satisfying (3.18) and
ue CR™ (H#) =M +s+m', s=n/2+ 1. There are r,h,/ > 0 such that if
A=>h, 2AT < ¢ and ‘

(320) . “u”C;O"'"‘I(H).,a,y) =r

then:

t
(3-21) ” V(t)”H;.(zT—z),a,s < ”V(O)”HU.T,U,: +2 J “LV(T)”H).(ZT-‘(),U,: dz|, 'tl <T

0

for every V e CL(H*os+1),

The numbers r,/ depend only on A4,n,m,o, whereas h depends only on
K(t,x,w, &), B(t,x,w), H(t,x,w,&),n,o.

ProOF. From Proposition 2.3 it follows that if 7 < Ty, T} = T1(A4, 0,n), and

””HC;O(HA,M) <r, r=r(4,0,m,n)

then
Ki(t,x, &) := K(t,x, DMou(t, x), &) — K(t,x,0,&) € Cr(S'; H>¥),
By(1,x) := B(t,x, DM*™ (1, x)) — B(t,x,0) € Cr(H***),
H(t,x,&) := H(t,x,DMou(t, x), &) — H(t,x,0,&) € Cp(SV; H%),
whereas

Kz(t’x’ é) = K(t’ x,0, é) € C(_T7 T; SAI;G),
By(t,x) := B(t,x,0) e C(-T, T; GJ),

Hy(t,x,£) := H(1,x,0,¢) € C(=T,T;8,/").
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We can apply [Proposition 2.2l to K; and Hj, so obtaining:

HART-0D g FACT-0D _ g | R+
with Rli(t, x, &) = R,J—’(t,x,DM"u(t, x),&) e C(-=T,T;S'°) and
eﬂ(2T—z)<D,>‘/°H1en(zr—z)wx)”" = H, + Nli’

with NiE (1, x,¢) = Ni (1, x, DMeu(t, x), &) € C(=T, T; S712/7).
On the other side, under the hypotesis 2AT < (24"nA)_1/ ? we can apply
IProposition 2.1 to K, and H, to have:

eil(ZT—t)(D,)”"Kze¥}.(2T—I)<Dx>|/” — K, + R¥,
with R¥(t,x,&) e C(—T,T;S"?) and

e tART=0DY g JFH2T-0DOY" _ g, 4 NE,

with Ni(t,x,&) e C(=T, T;S1+2/9).
Now we are ready to estimate d/dt||V(t)||f,mr_,>,a,s,

IV ()| gpar-nos = 1eXOV ()|l ger  A(8) = 22T — )<XDY°.
We have:

(3.22) d%“ V(0)| jpser-n.ec = 2Re(@MV (V' (1) — DYV (1)), MOV (2))

= <24V (1) 3er-n.0ss10 + 2RE(LV(2), V(1)) gacr—.o
+ 2Re(i(K(t) — B()H(1))V (1), V(1)) gricr-n.0.s-

Let us denote by S(¢) := K(t) — B2(t)H(t) the part of K(t) — B(¢)H(t) which
contains derivatives of u of order not exceeding Ms. S — S* has order 1/o
and for Sy =e?Se ™ one has SpA =S+ R, R(t,x,&) = R(t,x,DMsu(t, x),&) e
C(-=T,T;S'?).

Thus, with E := i<D,>""/°(S — §* + R— R*), E(t,x,&) = E(t,x, DMeu(t,x), &)
e C(~T,T;S%), at a fixed ¢ we have:

ZRC(ISV; V)Hi(zr_l),g,: = (Z(SA - SX)EAI/,eA V)H‘ = (EeAV,eA V)HS‘H/Z”'

Hence, taking [Proposition 2.3 into account, the usual continuity of pseudo-
differential operators in Sobolev spaces gives:
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|2 Re(lS(t) V(t)a V(t))HA(ZT—t),a,sl < 2C(n) Z suplagafE(t’x’ é)l
lod, |81 < (3/2)n+6
' ” V(t)||}2{i(2T~t),a,s+1/2a

2
< (Il o ey + DIV Ollpirno o

taking Mg+ (3/2)n+ 6 + s < u into account. The constant # depends only on
K(t,x,w,&), B(t,x,w), H(t,x,w,&), n and o.

Next, to estimate —2Re(iBi(¢)H () V (1), V(1)) gaer-n.0s in (3.22), we use also
the Banach algebra property of H?*(2T-1)0.5-1/20,

[2Re(By () H (1) V (1), V(1) gaar-i.os|
< 2||Bi()H () V(1)|| gracer—n.a.5-1/20
NV Ol grer-n.aseee < 2CE)IBi(t, - DM u(t, )| gaar-s.05-12
NH @) V()| gaar-o.0-120 = |V () || grer-o.0.541/20

< 2C(n, B)lull groon 1 sup| 93 OLHA (1, x, DMeu(t, x), £)|
T

lof, |81 < (3/2)n+6

NV Ol par.osmas < Al rgent sy + DIV Oz 00010
T

(Hl,a,,u

with a larger A if necessary but still depending only on K(#,x,w,&), B(t,x,w),
H(t,x,w,&), n and o.
In [(3.20) we can assume r < 1 without loosing generality, so we have

2Re(i(K(t) — B(t)H (1)) V (1), V(t))H).(ZT—t).a,.rl < 2h|| V(’)”?{}.(ZT—:),G,A‘—H/ZJ-
Now if we choose in (3.22) 4 > h, we obtain:
d
IV Ollpern.es < 2Re(LV(0), V(0) giar-s.o.
hence (3.21) is proved.
4. Proof of [Theorem 1.1.
Let us consider the Cauchy problem (1.1)

P(t,x,D™ u; D;, D )u = f(t,x, D™ u)

D,ju|,:0=gj, 0<j<m
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P(t,x, D™ u; D1, D) = 34 < pm Ga(t; X, D™ u)D,, under the hypotheses of Theorem
1.1.

Taking M € Z, as in [3.18), if u is a solution then the derivatives u(® :=
6;"06:'14, a = (o, '), ap < ko, || < M, satisfy:

(4.1) Pu'® 4 [0, Plu= 0, f(t,x,D™ u).

1,x?

Now, defining Uas Vin with u in place of v, from [3.14) and
3.4 we can write equations in the system form:

(4.2) LU = F(t,x, DM+™'y)

with L = 8, — iK(t,x, DMeu, D,) + B(t,x, DM*™ u)H (t,x, DMsu, D) as in [3.19)
From [Proposition 3.3, we have

(4.3) DM+ y = (1, x, DMsu, D) U

whereas DMy is a subset of U , so the Cauchy problem (1.1) for u is equivalent to
the first order problem

L(t7 X, (:Ja Q(‘}a Dt,DX)I} = F(taxa Q(j)
(4.4) :
U|t=0 =G

for the vector U. It is not restrective to assume G =0 and F (t,x,0) of compact
support.

In proving the well posedness of problem (4.4), we start by considering the
case

m <m-r(1-1/o)—1/o

that means Q of negative order, say —d. So, for Ue Cr(H**%), s=n/2+1,
Hf]HCT(Hz,a,s)sR, R and T sufficiently small, we have QU, F(t,x,QU)ce
Cr(H*?5+%) and, moreover, u satisfies in_view of [4.3). Thus we can
apply [Proposition 3.5 to the linear problem for 1%

L(ta X, (:]9 Qﬁ,Dta DX)I:} = F(t7x7 Q(:])

I7|t=0 =0
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obtaining a unique solution Ve CL(H*75+%) which satisfies inequality (3.21)
with s+ in place of s. In this way, taking a smaller 7 if necessary, we have a
compact map

(} — V
from the ball {l:/e Cr(H*%%); ||(:]||CT(H1,“) < R} to itself and the fixed point
Schauder theorem allows us to conclude.

To prove in the general case, i.e. with
(Ly) m <m-—r(l-1/g)
we can make a linearization in (4.4) taking derivatives dy, j=1,...,n, so

obtaining a system for the vector U := (U, V,U):
(4.5)

with L = 8, — iK — BH, H of order m’ —m +r(1 — 1/6) + 1/, Q of order m’ —
m+r(l —1/6)+1/o — 1. From (L,) we have H of order 1/o and @ of order
1/c—1 <0 and we can argue as above.

Note that the order of H corresponds to the Levi condition for L in G?: it is
well known that this order can not exceed 1/¢ and this leads to the upper bound
m—r(1 —1/a) for m’. (L,) is the appropriate nonlinear Levi condition in G°.
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