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EXPLICIT STRUCTURES OF THREE-DIMENSIONAL
HYPERSURFACE PURELY ELLIPTIC SINGULARITIES

OF TYPE $(0,1)$

By

Naohiro KANESAKA

Introduction

In this paper, we give an explicit description of a certain class of singularities
of algebraic varieties of dimension greater than or equal to two using toric geome-
try. Singularities appearing in an algebraic variety which is a closed subset in
an affine space $C^{n}$ for some positive integer $n$ defined by a regular function on
C’ is called hypersurface singularities, which we will investigate in the follow-
ing sections. Especially, our subject is investigating so-called hypersurface purely
elliptic singularities.

Watanabe [18] introduced the notion of purely elliptic singularities. In two-
dimensional case, the notion of purely elliptic singularities is equivalent to that of
cusps and simple elliptic singularities. Cusps are characterized as normal two-
dimensional singularities the exceptional sets of whose minimal resolutions are
circles of rational curves and appears, for example, in Hilbert modular surfaces,
while simple elliptic singularities are characterized as two-dimensional normal
singularities the exceptional sets of whose minimal resolutions consist of non-
singular elliptic curves. These two-dimensional purely elliptic singularities are
much investigated by many researchers.

We already know due to Ishii, Watanabe and other researchers that in
three-dimensional Gorenstein purely elliptic singularities, some analogies of two-
dimensional cases hold. For example, Ishii-Watanabe [9] defined a simple $K3$

singularity to be a normal Gorenstein isolated singularity of which the exceptional
set of Q-factorial terminal modification consists of a normal $K3$ surface, of course
which is an analogy of simple elliptic singularities in two-dimensional cases. And
simple $K3$ singularities are three-dimensional purely elliptic singularities.
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Furthermore, Ishii [6] classified n-dimensional purely elliptic singularities into
$n$ classes, from type $(0,0)$ to type $(0, n-1)$ , by means of the mixed Hodge stmcture
of the cohomology of the exceptional set of each singularity. For example, in
two-dimensional cases, purely elliptic singularities are classified into two classes,
one of which is said to be of type $(0,0)$ and the other of type $(0,1)$ . The former
corresponds to the class of cusps and the latter corresponds to the class of simple
elliptic singularities. In three-dimensional cases, Ishii [6] unveiled structures of the
essential divisors of good resolutions of purely elliptic singularities. If a singularity
is Gorenstein and of type $(0,2)$ , it is a simple $K3$ singularity and its essential
divisor consists of a $K3$ surface. If a singularity is Gorenstein and of type $(0,0)$ , it
is a singularity whose essential divisor consists of rational surfaces and, roughly
speaking, forms a sphere. And if a singularity is Gorenstein and of type $(0,1)$ , the
essential divisor $fo s$ a chain of surfaces and the intersection of any pair of
surfaces adjacent to each other is an elliptic curve. The last class is the one having
no analogue in two-dimensional cases. Here, we note that elliptic curves and $K3$

surfaces are so-called Calabi-Yau varieties of dimension one and of dimension
two, respectively.

Hypersurface singularities are Gorenstein singularities. Watanabe [18] found
conditions whether a singularity is a purely elliptic singularity or not by means
of a character of a diagram, called the Newton diagram, associated with its
defining equation. We start to investigate hypersurface purely elliptic singularities
with this criterion. Here we note that we restrict ourselves to nondegenerate
hypersurface isolated singularities, see \S 1.2 for the definition of nondegeneracy,
because Watanabe’s criterion or toric method does not work well without the
nondegenerate condition.

Let us give the outline of this paper.
\S 1 is devoted to the review of resolution of singularities of nondegenerate

hypersurface isolated singularities using toric geometry, and to the review of
the definition and some properties of (hypersurface) purely elliptic singularities.
Especially, we recall Watanabe’s criterion. This indicates a special face of the
Newton boundary of the defining polynomial of a purely elliptic singularity,
which we call the fundamental face, and the sum of the terms of the defining
polynomial on it, which we call the fundamental part of the defining polynomial.
In the following sections, we will see roles of the fundamental parts in the
structures of the essential divisors and their characters as algebraic varieties.

In \S 2, we try to describe the essential divisor of a resolution of an r-
dimensional nondegenerate hypersurface purely elliptic singularity by means of
a stratified diagram in the $(r+1)$ -dimensional Euclidean space $R^{r+1}$ associated
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with the singularity, which we call the dual essential diagram of the singularity,
and of simplicial complexes, which gives simplicial subdivision of the dual essential
diagram. This attempt succeeds in case the dimension of the fundamental face
is greater than or equal to two.

\S 3 is devoted to study the varieties associated with the fundamental parts in
case the dimensions of the fundamental faces are greater than or equal to two. Of
course, these varieties have direct relations with the structure of the essential
divisor.

Hypersurface simple elliptic singularities are deeply related to elliptic curves
in two-dimensional weighted projective spaces as well as hypersurface simple
$K3$ singularities are related to $K3$ surfaces in three-dimensional weighted pro-
jective spaces. Hypersurfaces which are Calabi-Yau varieties in weighted projective
spaces, more generally in toric varieties, are spotlighted by many physicists and
mathematicians as candidates of examples of the mirror symmetry phenomena
after Batyrev’s article [1]. Before those, in the study of fundamental faces of
hypersurface simple $K3$ singularities, Yonemura [19] listed up all possible weights
of which weighted projective spaces contain normal $K3$ surfaces as anticanonical
divisors. Here, we note that Fletcher [2] independently obtain the same result by a
different approach.

Then do the fundamental parts, or fundamental faces of hypersurface purely
elliptic singularities have some relations to Calabi-Yau varieties? For this ques-
tion, we give partial answers: (1) smooth models of the variety associated with the
fundamental part has the geometric genus one in general; (2) under a special
condition, it is birational to a Calabi-Yau variety.

In \S 4, we apply the results obtained in the former parts of this paper to
nondegenerate three-dimensional purely elliptic singularities of type $(0,1)$ , which
are the simplest non-semi-quasi-homogeneous cases and have relations to Calabi-
Yau varieties, in fact, elliptic curves. Here we note that Fujisawa [3] general-
ized the notion of the weight system of a semi-quasi-homogeneous singularity to
the cases of non-semi-quasi-homogeneous purely elliptic singularities and, from
this point of view, gave a classification of three-dimensional hypersurface purely
elliptic singularities of type $(0,1)$ .

Although, as we mentioned above, many of the results contained in this
paper are already known in more general and abstract contexts, we believe in the
significance of reviewing from the point of view of the geometry of toric hyper-
surfaces because hypersurface cases are good examples for general theories and
there are many theories on toric hypersurfaces available to further investigations
of hypersurface singularities.
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Finally, we notes that this paper consists of results in the doctor’s thesis of
the author submitted at the university of Tsukuba [10].
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1. Preliminaries

1.1. Notations and Terminologies in Toric Geometry

For guidance on toric geometry, we refer the reader to Oda [14] and Fulton
[4].

Let $N$ be a free module over the ring of the rational integers $Z$ of finite rank
$n$ and $M=Hom_{Z}(N, Z)$ be the dual Z-module. Denote by $N_{R}$ (resp. $M_{R}$ ) the
scalar extension of $N$ (resp. $M$ ) by the field of the real numbers $R$ . Let $\langle*, *\rangle$ :
$M\times N\rightarrow Z$ be the canonical bilinear form. We use the same notation $\langle*, *\rangle$ for
the natural scalar extension of the bilinear form on $M_{R}\times N_{R}$ .

A strongly convex rational polyhedral cone, or cone for short, $\sigma$ in $M_{R}$ ,

denote by $C[\check{\sigma}\cap M]$ the semigroup algebra $\oplus_{m\in\overline{\sigma}\cap M}C\cdot\chi^{m}$ . For a fan $\Sigma$ in $N$, we
denote by $V_{\Sigma}$ the toric variety associated with $\Sigma$ .

A cone $\sigma$ is said to be nonsingular if it is generated by a part of a basis of
$N$. If a cone $\sigma\in\Sigma$ is nonsingular, then the corresponding affine toric variety
$SpecC[\check{\sigma}\cap M]$ is a nonsingular variety. Moreover, if every cone in a fan $\Sigma$ is
nonsingular, we say that $\Sigma$ is nonsingular. In this case, the corresponding toric
variety $V_{\Sigma}$ is a nonsingular variety.

We say that a fan $\Sigma$ is complete if $|\Sigma|$ $:=\bigcup_{\sigma\in\Sigma}\sigma=N_{R}$ . When $\Sigma$ is complete,
the corresponding toric varieties $V_{\Sigma}$ is a complete variety.

A toric variety $V_{\Sigma}$ contains an algebraic toms $T_{N}$ $:=SpecC[M]$ as an open
dense subset. This $T_{N}$ acts on $V_{\Sigma}$ which is compatible with the multiplication of
$T_{N}$ as a group variety. We have a natural one-to-one correspondence between the
orbits of $V_{\Sigma}$ by the action of $T_{N}$ and the cones in $\Sigma$ . Denote by orb $(\sigma)$ the orbit
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corresponding to a cone $\sigma$ in $\Sigma$ . The closure $\overline{orb(\sigma)}$ , denoted by $V(\sigma)$ , of orb $(\sigma)$

in $V_{\Sigma}$ is a $T_{N}$ -invariant closed subset of $V_{\Sigma}$ . In particular, if a cone $\rho\in\Sigma$ is of
dimension one, the corresponding $(T_{N^{-}})invariant$ closed subset $V(\rho)$ is a Weil
divisor and is denoted by $D_{\rho}$ . For a cone $\sigma$ (resp. a fan $\Sigma$), $\sigma(1)$ (resp. $\Sigma(1)$ )
denotes the set of one-dimensional faces of $\sigma$ (resp. one-dimensional cones of $\Sigma$).
For each $p\in\sigma(1)$ (or $\Sigma(1)$ ), $n(\rho)$ denotes the primitive integral generator of $\rho$ .

Finally, we note that $Z_{\geq 0},$ $Q_{\geq 0},$ $R_{\geq 0}$ denotes the set of non-negative
integers, the set of non-negative rational numbers, the set of non-negative real
numbers, respectively.

1.2. Resolution of Singularities by Means of Toric Geometry

Let

$f=f(z_{0}, z_{1}, \ldots, z_{r})=\sum_{\geq m_{0},m_{1},\ldots,m_{r}\in Z0}a_{m_{0},m_{1},\ldots,m_{r}}\cdot z_{0}^{m_{0}}z_{1}^{m_{1}}\cdots z_{r}^{m_{r}}$

be a polynomial over the complex number field $C$ in variables $z_{0},$ $z_{1},$
$\ldots,$

$z_{r}$

such that $f(O)=0$ and that the hypersurface $X=V(f)\subset C^{r+1}$ defined by $f$

has an isolated singular point at the origin $O=0=(0,0, \ldots, 0)$ of the $(r+1)-$

dimensional affine space $C^{r+1}$ .
Let $N\cong Z^{r+1}$ . Put $e_{i}:=(0, \ldots, 0,1,0, \ldots, 0)$ (the entries equal to $0$ other

than the i-th entry which equals to 1) for $i=0,1,$
$\ldots,$

$r$ under the identifi-
cation of $N$ with $Z^{r+1}$ . Then $\{e_{i}\}_{i^{\gamma}=0}$ forms a basis of $N$. Let $\Sigma$ be a fan
consisting of the faces of the cone $\sum Re_{i}$ . Then the corresponding toric
variety $V_{\Sigma}$ is the $(r+1)$ -dimensional affine space $C^{r+1}$ and the affine coordinate
ring is

$C[(\geq 0m\in M\cap(R)^{r+1}$

where $M=Hom_{Z}(N, Z)$ . For every $m=(m_{0}, m_{1}, \ldots, m_{r})\in(Z\geq 0)^{r+1}$ , denote
$z_{0}^{m_{0}}z_{1}^{m_{1}}\cdots z_{r}^{m_{r}}$ (resp. $a_{m_{0},m_{1},\ldots,m_{r}}$ ) by $z^{m}$ (resp. $a_{m}$ ). Then the isomorphism just
above is given by

$m\in M\cap(R)^{r+1}\bigoplus_{\geq 0}C\cdot\chi^{m}\rightarrow\sim C[z_{0}, z_{1}, \ldots, z_{r}]$
, $a_{m}\cdot\chi^{m}\mapsto a_{m}\cdot z^{m}$ .

We define $\Gamma_{+}(f)$ to be the convex hull of the union of the subset $m+$

$(R\geq 0)^{r+1}$ of $R^{r+1}$ for $m$ such that $a_{m}\neq 0$ and call it the Newton diagram of
$f$ . The Newton boundary $\Gamma(f)$ of $f$ is the union of the compact faces of
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$\Gamma_{+}(f)$ . We associate a polynomial $f_{\gamma}(z)=\sum_{m\in\gamma\cap M}a_{m}\cdot z^{m}$ with each face $\gamma$

of $\Gamma(f)$ . We say that $f$ is nondegenerate on $\gamma$ if $\partial f_{\gamma}/\partial z_{0}=\cdots=\partial f_{\gamma}/\partial z_{r}=0$ has
no solution in $(C^{*})^{r+1}$ We say that $f$ is nondegenerate if $f_{\gamma}$ is nondegenerate
on any face $\gamma$ of $\Gamma(f)$ . We also say that a hypersurface singularity is non-
degenerate if its defining polynomial is nondegenerate. In the following of
this paper, we always assume that the defining polynomials of singularities are
nondegenerate.

Since $M_{R}$ and $N_{R}$ are dual to each other as vector spaces over $R$ , an element
$n=(n_{0}, n_{1}, \ldots, n_{r})\in N_{R}$ gives rise to a family of hyperplanes in $M_{R}\cong R^{r+1}$ with
the common ratio $(n_{0}, n_{1}, \ldots, n_{r})$ . For $n\in N\cap(R\geq 0)^{r+1}$ define

$l(n)$ $:=\min\{\langle m, n\rangle|m\in\Gamma_{+}(f)\}$ .

For a face $\gamma$ of $\Gamma_{+}(f)$ , define

$\gamma^{*}:=$ { $n\in(R\geq 0)^{r+1}\subset N_{R}|\langle n,$ $m\rangle=l(n)$ for any $m\in\gamma$ }.

Then $\gamma^{*}$ is a cone in $N_{R}$ . The set of cones

$\Sigma(f)$ $:=\{\gamma^{*}|\gamma\prec\Gamma_{+}(f)\}$

forms a fan, which we call the dual fan of $\Gamma_{+}(f)$ . Note that $\Sigma(f)$ is a subdivision
of $\Sigma$ , that is, $|\Sigma(f)|=|\Sigma|$ and for every cone $\sigma^{\prime}\in\Sigma(f)$ , there exists a cone $\sigma\in\Sigma$

such that $\sigma^{\prime}\subset\sigma$ .

Take a nonsingular subdivision $\hat{\Sigma}(f)$ of $\Sigma(f)$ , which is a finite subdivision of
$\Sigma(f)$ consisting of nonsingular cones. There exists at least one nonsingular sub-
division $\hat{\Sigma}(f)$ of $\Sigma(f)$–see Kempf, et al [11]. Then since $\Sigma(f)$ is a subdivision of
$\Sigma,\hat{\Sigma}(f)$ is also a subdivision of $\Sigma$ . Hence we have a map of fans

$\varphi:(N,\hat{\Sigma}(f))\rightarrow(N, \Sigma(f))\rightarrow(N, \Sigma)$ .

Let $\Pi$ : $V_{\Sigma(f)}\wedge\rightarrow V_{\Sigma}\cong C^{r+1}$ be the equivariant morphism associated with $\varphi$ . This
is a proper, birational morphism since $\hat{\Sigma}(f)$ is a finite subdivision of $\Sigma$ , and
sometimes called the equivariant blow-up associated with the subdivision $\hat{\Sigma}(f)$ of
$\Sigma$ . The following is a well-known fact:

PROPOSITION 1.1 (Varchenko [16]). If (X, $O$) is nondegenerate, the restriction
$\pi$ : $\tilde{X}\rightarrow X$ of $\Pi$ on $\tilde{X}$ is a proper, birational morphism and a good resolution of the
singularity (X, $O$).

The fiber $E:=\pi^{-1}(O)=\tilde{X}\cap\Pi^{-1}(O)$ of the origin $O\in X$ is called the excep-
tional set of $\tilde{X}$ .
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1.3. The Laurent Polynomial Associated with the Pair $(f_{\gamma}, \gamma)$

In \S 1.2, we defined a polynomial $f_{\gamma}=\sum_{m\in(Z)^{r+1}}a_{m}\cdot z^{m}\geq 0$ for each face $\gamma$ of
the Newton boundary $\Gamma(f)$ to define the notion of nondegeneracy of the defining
polynomial $f$ of hypersurface isolated singularity (X, $x$) $=(V(f), 0)$ .

To describe the exceptional sets, it is useful to define a slightly different pair
$(f_{\gamma}^{L}, M_{\gamma})$ from the pair $(f_{\gamma}, \gamma)$ as follows:

DEFINITION 1.2. For a face $\gamma$ of $\Gamma(f)$ , define $M_{\gamma}$ to be the free Z-module
generated by the vectors $\gamma\cap M-m_{0}$ and define the Laurent polynomial $f_{\gamma}^{L}$ , that
is an element of $C[M_{\gamma}]=\oplus_{m\in M_{\gamma}}C\cdot\chi^{m}$ , to be

$\sum_{m\in\gamma\cap M}a_{m}\cdot\chi^{m-m_{0}}$
,

where $m_{0}$ is an element of $\gamma\cap M$ .

Next, we recall a way to construct a complete hypersurface in a complete
toric variety from a Laurent polynomial canonically.

Let $M$ be a lattice of rank $n$ and let $M_{R}$ be its scalar extension $M\otimes_{Z}R$

by the real number field $R$ . Let $\Delta$ be an n-dimensional integral polyhedron in
$M_{R}$ . We associate a complete fan $\Sigma(\Delta)$ in $N:=Hom_{Z}(M, Z)$ and a toric variety
$P_{\Delta}$ $:=V_{\Sigma(\Delta)}$ with $\Delta$ as follows:

For every l-dimensional face $\Theta\subset\Delta$ , we define the convex n-dimensional cone
$\check{\sigma}(\Theta)\subset M_{R}$ consisting all vectors $\lambda(p-p^{\prime})$ , where $\lambda\in R_{\geq 0},$ $p\in\Delta,$ $P^{\prime}\in\Theta$ . Let
$\sigma(\Theta)\subset N_{R}=Hom_{Z}(M, Z)\otimes_{Z}R$ be the $(n-l)$ -dimensional cone dual to $\check{\sigma}(\Theta)$ .
Then, the set $\Sigma(\Delta)$ of all cones $\sigma(\Theta)$ , where $\Theta$ runs over all faces of $\Delta$ , forms a
complete fan. We represent $P_{\Delta}$ the toric variety $V_{\Sigma(\Delta)}$ associated with $\Sigma(\Delta)$ (see
Batyrev [1], Proposition 2.1.1).

Let $f=\sum_{m\in M}c_{m}\cdot\chi^{m}$ be a Laurent polynomial, i.e., an element of $C[M]=$
$\oplus_{m\in M}C\cdot\chi^{m}$ . This $f$ defines a hypersurface $V(f)$ in $T_{N}=SpecC[M]$ , denoted
by $Z(f, M)$ .

On the other hand, if the Newton polyhedron $\Delta=\Delta(f)$ of $f$, which is the
convex hull of the set of points $m$ with $c_{m}\neq 0$ in $M_{R}$ , is of dimension $n$ , we have
a complete toric variety $P_{\Delta}$ which contains $T_{N}$ as an open dense subset. Here,
denote by $\overline{Z}(f, M)$ the closure of $Z(f, M)$ in $P_{\Delta}$ .

As a result of the above discussion, to the pair $(f_{\gamma}^{L}, M_{\gamma})$ , we can attach a
toric hypersurface $Z(f_{\gamma}^{L}, M_{\gamma})$ in $SpecC[M_{\gamma}]$ and a complete toric hypersurface
$\overline{Z}(f_{\gamma}^{L}, M_{\gamma})$ in $P_{\gamma-m_{0}}$ , where the Newton polyhedron $\Delta(f_{\gamma}^{L})$ is just $\gamma-m_{0}$ in
$M_{\gamma}$ .
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1.4. Purely Elliptic Singularities and the Essential Divisors

Here we recall the definition of purely elliptic singularities and that of the
essential divisors of good resolutions of them.

DEFINITION 1.3 (Watanabe [17]). Let (X, $x$ ) be a normal isolated Gorenstein
singularity of dimension $r\geq 2$ . Let $\pi$ : $\tilde{X}\rightarrow X$ be a good resolution of (X, $x$).
Denote the reduced exceptional divisor $\pi^{-1}(x)_{red}$ by $E$. Then, we define

$\delta_{m}(X, x)$ $:=\dim_{C}\Gamma(X\backslash \{x\}, \mathcal{O}(mK))/L^{2/m}(X\backslash \{x\})$

$=\dim_{C}\Gamma(\tilde{X}\backslash E, \mathcal{O}(mK))/\Gamma(\tilde{X}, \mathcal{O}(mK+(m-1)E))$

for each $m\in N$ .

DEFINITION 1.4 (Watanabe [18]). A normal isolated Gorenstein singularity is
called a purely elliptic singularity if $\delta_{m}(X, x)=1$ for all $n\in N$ .

DEFINITION 1.5 (Ishii [6]). For a good resolution $\pi$ : $\tilde{X}\rightarrow X$ of a normal
isolated Gorenstein singularity (X, $x$), we can write

$K_{\overline{X}}=\pi^{*}K_{X}+\sum_{i\in J}m_{i}E_{i}-\sum_{j\in J}m_{j}E_{j}$
,

where $m_{j}\geq 0$ for $i\in I,$ $m_{j}>0$ for $j\in J$ and $E_{i}(i\in I),$ $E_{j}(j\in J)$ are irreducible
components of $E=\pi^{-1}(x)_{red}$ .

The divisor $E_{J}:=\sum_{j\in J}m_{j}E_{j}$ is called the essential divisor.

PROPOSITION 1.6 (Ishii [6]). Under the assumption of Definition 1.5, (X, $x$) is
a purely elliptic singularity if and only $lfE_{J}$ is a reduced divisor.

1.5. Hypersurface Purely Elliptic Singularities; Watanabe’s Criterion

Let (X, $O$) $=(V(f), 0)$ be an isolated singularity of dimension $r\geq 2$ defined
by a nondegenerate polynomial $f=\sum_{m\in(Z)^{r+1}}a_{m}\cdot z^{m}\geq 0\in C[z_{0}, z_{1}, \ldots, z_{r}]$ .

Let $\Gamma_{+}(f)$ be the Newton diagram of $f$ , let $\Gamma(f)$ be the Newton boundary,
let $\Gamma_{+}^{*}(f)$ be the dual decomposition of the positive quadrant $(R\geq 0)^{r+1}$ and let
$\Sigma(f)$ be the dual fan. Take a nonsingular subdivision $\hat{\Sigma}(f)$ of $\Sigma(f)$ . Let $\Pi$ :
$V_{\Sigma^{\wedge}(f)}\rightarrow V_{\Sigma}\cong C^{r+1}$ be the equivariant blow-up associated with $\hat{\Sigma}(f)$ , let $\tilde{X}$ be the
proper transform of $X$ with respect to $\Pi$ and let $E=\Pi^{-1}(O)_{red}$ .

PROPOSITION 1.7 (Ishii [7]). Under the assumption above,
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$K_{\tilde{X}}=\pi^{*}(K_{X})+\sum_{\wedge,\hat{p}\in\Sigma(f)(1)\backslash \Sigma(1)}(\langle 1, n(\hat{p})\rangle-1-l(n(\hat{p})))D_{\hat{\rho}}|_{\overline{X}}$
,

where $1=(1,1, \ldots, 1)\in M,$ $l(n(\hat{\rho}))=\min\{\langle m, n(\hat{\rho})\rangle|m\in\Gamma_{+}(f)\}$ and $D_{\hat{\rho}}$ is the
invariant divisor on $ V_{\Sigma(f)}\wedge$ associated with $\hat{\rho}$ .

We have the following criterion whether (X, $O$ ) $=(V(f), 0)$ is a purely
elliptic singularity.

PROPOSITION 1.8 (Watanabe [18]). Under the condition that (X, $O$) $=$

$(V(f), 0)$ is nondegenerate, (X, $O$ ) is a purely elliptic singularity $\iota f$ and only if
$1\in\Gamma(f)$ .

By this proposition, there exists a unique face of $\Gamma(f)$ containing 1 in its
relative interior if (X, $O$ ) $=(V(f), 0)$ is a purely elliptic singularity.

DEFINITION 1.9. Let $\Gamma(f)$ to be the Newton boundary of a hypersurface
purely elliptic singularity (X, $O$ ) $=(V(f), 0)$ . We call the face of $\Gamma(f)$ containing
$1\in M$ in its relative interior the fundamental face of $\Gamma(f)$ and express it as
$\gamma_{1}(f)$ , or simply $\gamma_{1}$ . And then, we call the polynomial $f_{\gamma_{1}(f)}=\sum_{m\in\gamma_{1}(f)\cap M}a_{m}\cdot z^{m}$

the fundamen $tal$ part of the defining polynomial $f$ .

2. Description of the Essential Divisors of Hypersurface Purely Elliptic
Singularities

2.1. The Essential Cone

At the beginning of this section, we introduce a notion due to Ishii which is
useful to study hypersurface singularities.

Let (X, $O$ ) $=(V(f), 0)$ be a hypersurface isolated singularity defined by a
nondegenerate polynomial $f$ and $\hat{\Sigma}(f)$ be a nonsingular subdivision for the dual
fan $\Sigma(f)$ .

DEFINITION 2.1 (Ishii [7]). For a polynomial $f\in C[z_{0}, z_{1}, \ldots, z_{r}]$ , define

$C_{1}(f)$ $:=\{n\in(R\geq 0)^{r+1}\subset N_{R}|l(n)-\langle 1, n\rangle\geq 0\}$ .

$C_{1}(f)$ is called the essential cone.

REMARK 2.2. We note some properties of the essential cone $C_{1}(f)$ . If the
Newton diagram $\Gamma_{+}(f)$ contains $1\in M$ in its interior, $C_{1}(f)=\{O\}$ . If $\Gamma_{+}(f)$
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does not contain 1 in its interior, that is, the boundary of $\Gamma_{+}(f)$ or $\Gamma_{+}(f)$ itself
does not contain 1, then $C_{1}(f)$ is the cone spanned by the one-dimensional cones
$\gamma_{1}^{*},$ $\gamma_{2^{*}},$

$\ldots,$
$\gamma_{s}^{*}$ , which are dual to r-dimensional faces of $\Gamma_{+}(z_{0}z_{1}\cdots z_{r}+f)$ con-

taining 1. See [7], Remark 2.3.

The relation between the essential cone $C_{1}(f)$ and the essential divisor $E_{J}$ of
a toric resolution of a hypersurface isolated singularity is given by the following
proposition, which follows directly Proposition 1.7:

PROPOSITION 2.3. Let $E_{J}$ be the essential divisor of the resolution of the
singularity (X, $O$) given by a nonsingular subdivision $\hat{\Sigma}(f)$ . Then

$E_{J}=\sum_{\hat{\rho}\in\hat{\Sigma}(f)(1)\backslash \Sigma(1),\subset C_{1}(f)}D_{\hat{\rho}}|_{\tilde{X}}$

holds, where the sum runs over all the one-dimensional cones of $\hat{\Sigma}(f)$ contained by
$C_{1}(f)$ , but not contained by $\Sigma$ .

When (X, $O$ ) is a hypersurface purely elliptic singularity, that is, $\Gamma_{+}(f)$

contains 1 in its boundary, the essential cone $C_{1}(f)$ has a nice relationship with
the diagram $C_{1^{*}}(f):=\bigcup_{n\in C_{1}(f)}\gamma(n)$ , where $\gamma(n)=\{m\in\Gamma_{+}(f)|\langle m, n\rangle=l(n)\}$ .
Including non-purely-elliptic cases, the sum of the monomials whose indices lie
in $C_{1^{*}}(f)$ with the same coefficients as in the defining polynomial $f$ only affect
the algebraic-geometric structure of the support of the essential divisor. In case
(X, $O$) is a purely elliptic singularity, $C_{1}(f)$ and $C_{1^{*}}(f)$ enjoy “duality”. We state
it here more precisely:

LEMMA 2.4. If (X, $O$ ) is a nondegenerate purely elliptic singularity, $C_{1}(f)$ is
a cone in the dual fan $\Sigma(f)$ .

PROOF. If (X, $O$ ) is a nondegenerate purely elliptic singularity, $1\in M$ is
on the boundary of $\Gamma_{+}(f)$ by Watanabe’s criterion: Proposition 1.8. Then the
essential cone $C_{1}(f)$ is just $\{n\in(R\geq 0)^{r+1}\subset N_{R}|l(n)=\langle 1, n\rangle\}$ . Define

$\gamma(C_{1}(f))$
$:=\bigcap_{n\in C_{1}(f)}\gamma(n)=\bigcap_{n\in C_{1}(f)}\{m\in\Gamma_{+}(f)|\langle m, n\rangle=l(n)\}$

.

Then $\gamma(C_{1}(f))$ is a face of $\Gamma_{+}(f)$ and $C_{1}(f)\subset\gamma(C_{1}(f))^{*}$ holds. Since $l(n)=$

$\langle 1, n\rangle$ for each $n\in C_{1}(f)$ and $1\in\Gamma_{+}(f),$ $\gamma(C_{1}(f))$ contains 1. Because $\gamma_{1}(f)$

is the minimum face of $\Gamma_{+}(f)$ containing $1\in M,$ $\gamma_{1}(f)\subset\gamma(C_{1}(f))$ . Therefore,
$C_{1}(f)\subset\gamma_{1}(f)^{*}$
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Next, note that, by definition,

$\gamma_{1}(f)^{*}=$ { $n\in(R\geq 0)^{r+1}\subset N_{R}|\langle m,$ $n\rangle=l(n)$ for any $m\in\gamma_{1}(f)$ }.
Since $1\in\gamma_{1}(f),$ $\langle 1, n\rangle=l(n)$ holds for any $n\in\gamma_{1}(f)^{*}$ Hence $\gamma_{1}(f)^{*}\subset C_{1}(f)$ .

Thus, $C_{1}(f)=\gamma_{1}(f)^{*}$ $\square $

The next corollary follows the lemma just above and the relationship between
the dual fan and the Newton diagram:

COROLLARY 2.5. There is a natural one-to-one, order reversing, dual corre-
spondence between the non-zero faces of $C_{1}(f)$ and the faces of $C_{1^{*}}(f)$ containing
of 1 as follows: A face $\sigma$ of $C_{1}(f)$ corresponds to the face $\gamma(\sigma):=\bigcap_{m\in\sigma}\gamma(n)$ .
Conversely, a face $\gamma$ of $C_{1^{*}}(f)$ containing 1 corresponds to the face $\sigma(\gamma):=\gamma^{*}$ ,
where $\dim\sigma+\dim\gamma(\sigma)=\dim\gamma+\dim\sigma(\gamma)=r+1$ hold.

In particular, the essential cone $C_{1}(f)$ itself corresponds to the fundamental
face $\gamma_{1}(f)$ .

Consequently, for a nondegenerate hypersurface purely elliptic singularity
(X, $O$), every nonsingular subdivision $\hat{\Sigma}(f)$ of the dual fan $\Sigma(f)$ gives a non-
singular subdivision of $C_{1}(f)$ :

DEFINITION 2.6. Let (X, $O$) $=(V(f), 0)$ be a nondegenerate purely elliptic
singularity. For a nonsingular subdivision $\hat{\Sigma}(f)$ of the dual fan $\Sigma(f)$ , define the fan

$\hat{C}_{1}(f)$ $:=\{\hat{\sigma}\in\hat{\Sigma}(f)|\hat{\sigma}\subset C_{1}(f)\}$ .

In the following part of this section, we will see that the “duality” between
$C_{1}(f)$ and $C_{1^{*}}(f)$ simplifies algebraic-geometric description of the essential divisors
of purely elliptic singularities (Theorem 2.10). But, we will restrict ourselves to
nondegenerate hypersurface purely elliptic singularities of type $(0, i)(i\geq 1)$ . We
need nondegeneracy of singularities because toric method does not work well
without this assumption as we saw before. We also need the assumption that
the dimension of the fundamental face $\gamma_{1}(f)$ is greater than or equal to two to
keep the direct relation of the one-dimensional cones of $\hat{C}_{1}(f)$ and the irreducible
components of $E_{J}$ (Proposition 2.7, Theorem 2.14).

2.2. The Stratification on the Essential Divisor and the Dual Essential
Diagram

Each toric variety is stratified by its orbits by the action of algebraic torus, so
that every closed subset of a toric variety is also stratified. Let (X, $O$) $=(V(f), 0)$
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be a hypersurface isolated singularity and $\hat{\Sigma}(f)$ be a nonsingular subdivision of
$\Sigma(f)$ . Then, we can define a natural stratification on the exceptional set $E$ or the
essential divisor $E_{J}$ using the stratification of the toric variety $ V_{\Sigma(f)}\wedge$ .

To every cone $\hat{\sigma}$ in $\hat{\Sigma}(f)$ , we can attach an orbit orb $(\hat{\sigma})$ of $V_{\Sigma^{\wedge}(f)}$ , which is the
orbit of the smallest dimension in the affine open subset $SpecC[\hat{\sigma}^{\vee}\cap M]$ . Define
$\mathring{E}(\hat{\sigma}):=E\cap orb(\hat{\sigma})$ . Recall that $V(\hat{\sigma})$ denotes the closure of orb $(\hat{\sigma})$ in $V_{\Sigma(f)_{\circ}}^{\wedge}and$

put $E(\hat{\sigma})$ $:=E\cap V(\hat{\sigma})$ . Note that $E(\hat{\sigma})$ is the closure of $\mathring{E}(\hat{\sigma})$ in $E$ . A stratum $E(\hat{\sigma})$

may be the empty set or may not be connected in general.
Let (X, $O$) be a nondegenerate hypersurface purely elliptic singularity. The

disjoint union of orbits for all the cones $\hat{\sigma}$ in $\hat{C}_{1}(f)$ covers almost all $E_{J}$ . Indeed,
define

$E_{J}^{\prime}$

$:=\prod_{\hat{\sigma}\in\hat{C}_{1}(f)\backslash \{0\}}\mathring{E}(\hat{\sigma})$
,

where $O$ is the origin of $N$. Then, the closure of $E_{J}^{\prime}$ is just $E_{J}$ and we have

$E_{J}=\bigcup_{\hat{\sigma}\in\hat{C}_{1}(f)\backslash \{O\}}E(\hat{\sigma})$

.

Therefore, it is sufficient for us to investigate the strata and their closures for the
cones in $\hat{C}_{1}(f)$ . For a cone $\hat{\sigma}$ in $\hat{C}_{1}(f)$ , we will use the symbol $\mathring{E}_{J}(\hat{\sigma})$ (resp.
$E_{J}(\hat{\sigma}))$ for $\mathring{E}(\hat{\sigma})$ (resp. $E(\hat{\sigma})$ ).

For a cone $\hat{\sigma}\in\hat{\Sigma}(f)$ , we also define $\gamma(\hat{\sigma}):=\bigcap_{n\in\hat{\sigma}}\gamma(n)$ , which is a face of
$\Gamma_{+}(f)$ . Let $\hat{\sigma}$ be a cone in $\hat{C}_{1}(f)$ . Then the face $\gamma(\hat{\sigma})$ contains the fundamental
face $\gamma_{1}(f)$ . Hence, $\dim\gamma(\hat{\sigma})\geq\dim\gamma_{1}(f)$ holds by Corollary 2.5. Then by Oka
[15], Lemma 4.7, we have the following in case $\dim\gamma_{1}(f)\geq 2$ :

PROPOSITION 2.7. If (X, $O$) is nondegenerate and the dimension of the fun-
damental face $\gamma_{1}(f)$ is greater than or equals to two, then for any cone $\hat{\sigma}$ in $\hat{C}_{1}(f)$ ,

the closure $E_{J}(\hat{\sigma})$ of the stratum $\mathring{E}_{J}(\hat{\sigma})$ is an irreducible nonsingular variety of
complex dimension $r-\dim\hat{\sigma}$ . Especially, it is non-empty.

In particular, for $a$ one-dimensional cone $\hat{\rho}$ in $\hat{C}_{1}(f)$ , the corresponding divisor
$D_{\hat{\rho}}|_{\overline{X}}$ is irreducible.

Now, we introduce a diagram to describe the essential divisor $E_{J}$ of a reso-
lution of a hypersurface purely elliptic singularity (X, $O$) $=(V(f),0)$ defined by a
nondegenerate polynomial $f$ .

DEFINITION 2.8. Let $C_{1}(f)$ be the essential cone. For $1\in M$ , we call the
intersection of $C_{1}(f)$ and the hyperplane $H_{1}$ $:=\{n\in N_{R}|\langle 1, n\rangle=1\}$ in $N_{R}$ the
dual essential diagram of (X, $O$), which is denoted by $B_{1}(f)$ .
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REMARK 2.9. Here, we note the reason why we call $B_{1}(f)$ the “dual”
essential diagram. If necessary, we may call $C_{1}^{*}(f)$ the ”essential diagram”
because the sum of the terms of $f$ whose indices are in the subset $C_{1^{*}}(f)$ of
the Newton diagram $\Gamma_{+}(f)$ determines the algebraic-geometric structure of the
support of the essential divisor $E_{J}$ . In case (X, $O$ ) is a purely elliptic singularity,
as we mentioned before, the essential cone $C_{1}(f)$ can be regarded as the “dual”
of $C_{1^{*}}(f)$ . Although $B_{1}(f)$ has the same information as $C_{1}(f),$ $B_{1}(f)$ is a little
more convenient for us to visualize the essential divisor as we will see below.

For a cone $\sigma$ in $N_{R}$ , define $\delta(\sigma)$ to be the intersection of $\sigma$ and $H_{1}$ and $\mathring{\delta}(\sigma)$

to be the relative interior of $\delta(\sigma)$ .
The dual essential diagram $B_{1}(f)$ has a natural stratification:

$B_{1}(f)=\prod_{\sigma\in C_{1}(f)\backslash \{O\}}\mathring{\delta}(\sigma)$
,

which we call the primitive stratification of $B_{1}(f)$ .
A nonsingular subdivision $\hat{\Sigma}(f)$ of $\Sigma(f)$ gives the dual essential diagram

another stratification:

$B_{1}(f)=\coprod_{\hat{\sigma}\in\hat{C}_{1}(f)\backslash \{O\}}\mathring{\delta}(\hat{\sigma})$
.

This stratification can be considered as a “subdivision” of the primitive strati-
fication of $B_{1}(f)$ in the following meaning: For each $\hat{\sigma}\in\hat{C}_{1}(f)$ , there is a cone
$\sigma\in C_{1}(f)$ such that $\delta^{O}(\hat{\sigma})\subset\mathring{\delta}(\sigma)$ . If two strata of the stratification associated with
a nonsingular subdivision are contained by the same stratum of the primitive
stratification of $B_{1}(f)$ , we say that these two strata are primitively equivalent.

Obviously, each stratum of a stratification of $B_{1}(f)$ as above is non-empty
and connected.

THEOREM 2.10. (i) There is $a$ one-to-one correspondence between the strata of
$B_{1}(f)=\coprod_{\hat{\sigma}\in\hat{C}_{1}(f)}\delta^{O}(\hat{\sigma})$ and the strata of $E_{J}^{\prime}=\coprod_{\hat{\sigma}\in\hat{C}_{1}(f)}\mathring{E}_{J}(\hat{\sigma})$ given by

$\mathring{\delta}(\hat{\sigma})\leftrightarrow\mathring{E}_{J}(\hat{\sigma})$

for every cone $\hat{\sigma}$ in $\hat{C}_{1}(f)\backslash \{0\}$ .
If $\dim\gamma_{1}(f)\geq 2$ , then the stratum $\mathring{E}_{J}(\hat{\sigma})$ is non-empty and connected in the

Zariski topology for every $\hat{\sigma}\in\hat{C}_{1}(f)$ and

$\dim_{R}\mathring{\delta}(\hat{\sigma})+\dim_{C}\mathring{E}_{J}(\hat{\sigma})=r-1$

holds.
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(ii) The stratum $\mathring{\delta}(\hat{\sigma})$ corresponds to the stratum isomorphic to

$Z(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})x_{C}(C^{*})^{n}$ .

(iii) The closure $\delta(\hat{\sigma})$ of $\mathring{\delta}(\hat{\sigma})$ corresponds to the closure $E_{J}(\hat{\sigma})$ of $\mathring{E}_{J}(\hat{\sigma})$

birational to

$\overline{Z}(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})\times {}_{C}P_{C}^{n}$ .

In (ii), (iii), $n=r-(\dim\hat{\sigma}+\dim\gamma(\hat{\sigma}))+1$ .
(iv) Strata of $E_{J}^{\prime}$ are isomorphic to each other and the closure of them

are birationally equivalent $lf$ the corresponding strata of $B_{1}(f)$ are primitively
equivalent.

PROOF. (i) The operator $\delta^{o}$ gives the one-to-one correspondence between the
non-zero cones in $\hat{C}_{1}(f)$ and the strata of $B_{1}(f)$ . And the operator $\mathring{E}_{J}(*)$ gives
the one-to-one correspondence between the nonzero cones in $\hat{C}_{1}(f)$ and the
stratum of $E_{J}^{\prime}$ . These two operations give the correspondence in the theorem.
When $\dim\gamma_{1}(f)\geq 2$ , the non-emptiness and connectedness of $\mathring{E}_{J}(\hat{\sigma})$ follow
Proposition 2.7. By the same proposition, we have $\dim_{C}\mathring{E}_{\int_{\circ}}(\hat{\sigma})=r-\dim_{R}\hat{\sigma}$ .
Since $\dim_{R}\mathring{\delta}(\hat{\sigma})=\dim_{R}\hat{\sigma}-1$ , we obtain $\dim_{R}\mathring{\delta}(\hat{\sigma})+\dim_{C}E_{J}(\hat{\sigma})=r-1$ .

(ii) Let $\hat{\sigma}\in\hat{C}_{1}(f)$ be a cone and $\hat{v}\in\hat{\Sigma}(f)$ be an $(r+1)$ -dimensional cone
such that $\hat{\sigma}$ is a face of $\hat{v}$ . Then, $U_{\hat{v}}$ $:=SpecC[(\hat{v})^{\vee}\cap M]$ contains orb $(\hat{\sigma})$ .

On $U_{\hat{v}}$ , the proper, birational morphism $\Pi$ : $U_{\hat{v}}\rightarrow C^{r+1}$ is defined by the
homomorphism $C[(R\geq 0)^{r+1}\cap M]\rightarrow C[(\hat{v})^{\vee}\cap M],$ $\chi^{m}-\rangle$ $\chi^{m}$ . The proper trans-
form $\tilde{X}$ of $X$ is defined by the element $\hat{f}$

$:=\sum_{m\in(R_{\geq 0})^{r+1}\cap M}a_{m}\cdot\chi^{m-m_{\dagger}}\in C[(\hat{v})^{\vee}$

$\cap M]$ , where $m_{\dagger}$ is the unique vertex of $\Gamma_{+}(f)$ such that $\{m_{\dagger}\}=\bigcap_{\hat{\rho}\in\hat{v}(1)}\{m\in M_{R}|$

$\langle m, n(\hat{p})\rangle=l(n(\hat{p}))\}$ . Here we note that $m_{\dagger}\in\gamma(\hat{\sigma})$ .
In this proof, we denote the intersection $V(\hat{\sigma})\cap U_{\hat{v}}$ simply by $V(\hat{\sigma})$ .

Then $p(\hat{\sigma}):=\oplus_{m\in(\hat{v})^{\vee}\cap M,\not\in(\overline{v})^{\vee}\cap(\overline{\sigma})^{\perp}\cap M}C\cdot\chi^{m}$ forms an ideal defining $V(\hat{\sigma})$ on $U_{\hat{v}}$ ,
where $(\hat{\sigma})^{\perp}=$ { $m\in M_{R}|\langle m,$ $n\rangle=0$ for any $n\in\hat{\sigma}$ }. On the other hand, $ C[(\hat{v})^{\vee}\cap$

$(\hat{\sigma})^{\perp}\cap M]:=\oplus_{m\in(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}\cap M}C\cdot\chi^{m}$ forms a group-algebra of $(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}\cap M$ .
Then $C[(\hat{v})^{\vee}\cap M]$ is the direct sum of $p(\hat{\sigma})$ and $C[(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}\cap M]$ . The natural
projection $C[(\hat{v})^{\vee}\cap M]\rightarrow C[(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}\cap M]$ , which is defined to be identity on
$(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}\cap M$ and zero on the complement, is a homomorphism of group-
algebras and gives rise to an isomorphism $C[(\hat{v})^{\vee}\cap M]/p(\hat{\sigma})\cong C[(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}$

$\cap M]$ . Hence we can identify $C[(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}\cap M]$ with the affine coordinate ring
of $V(\hat{\sigma})$ and the morphism associated with the above projection with the closed
immersion $V(\hat{\sigma})\rightarrow U_{\hat{v}}$ . Thus we can omit the terms of $\hat{f}$

$:=\sum_{m\in(R)^{r+1}\cap M}a_{m}\geq 0$
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$\chi^{m-m_{\dagger}}$ whose indices m–m\dagger are not in $(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}\cap M$ when we consider the
intersection $\tilde{X}$ and $V(\hat{\sigma})$ .

Take $m\in\Gamma_{+}(f)\cap M$ such that \langle m--m\dagger , $n\rangle$ $=0$ for any $n\in\hat{\sigma}$ . Then $\langle m, n\rangle=$

$\langle m_{\dagger}, n\rangle=l(n)$ since $m_{\dagger}\in\gamma(\hat{\sigma})$ , so that $m\in\gamma(\hat{\sigma})$ . In particular, m–m\dagger is contained
by the sublattice $M_{\gamma(\hat{\sigma})}=R(\gamma(\hat{\sigma})-m_{\dagger})\cap M$ of $(\hat{\sigma})^{\perp}\cap M$ . Therefore, we conclude
that $E_{J}(\hat{\sigma})=\tilde{X}\cap V(\hat{\sigma})$ is defined by $\hat{f}_{\gamma(\hat{\sigma})}$ $:=\sum_{m\in\gamma(\hat{\sigma})\cap M}a_{m}\cdot\chi^{m-m_{\dagger}}\in C[(\hat{v})^{\vee}\cap(\hat{\sigma})^{\perp}$

$\cap M]$ on $V(\hat{\sigma})$ , so that $\mathring{E}_{J}(\hat{\sigma})$ is defined by $f_{\gamma(\hat{\sigma})}^{L}=\sum_{m\in\gamma(\hat{\sigma})\cap M}a_{m}\cdot\chi^{m-m_{\dagger}}$ con-
sidered as an element of $C[(\hat{\sigma})^{\perp}\cap M]$ . Indeed, the affine coordinate ring of the
open subset orb $(\hat{\sigma})$ of $V(\hat{\sigma})$ is just $C[(\hat{\sigma})^{\perp}\cap M]$ .

Now note that $(\hat{\sigma})^{\perp}\cap M$ can be expressed as a direct sum $M_{\gamma(\hat{\sigma})}\oplus M^{\prime}$ . Let $n$

be the rank of $M^{\prime}$ . Then we have $rk((\hat{\sigma})^{\perp}\cap M)=rkM_{\gamma(\hat{\sigma})}+n$ , and hence $n=r-$
$(\dim\hat{\sigma}+\dim\gamma(\hat{\sigma}))+1$ . Thus we obtain $\mathring{E}_{J}(\hat{\sigma})=Z(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})\times c^{SpecC[M^{\prime}]}\cong$

$Z(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})\times c(C^{*})^{n}$ .
At the end of the proof of (ii), we note that $Z(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})$ is stable if we

change $m_{\dagger}$ into any element of $\gamma(\hat{\sigma})\cap M$ .
(iii) $E_{J}(\hat{\sigma})$ and $\overline{Z}(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})\times c^{P_{C}^{n}}$ contain $\mathring{E}_{J}(\hat{\sigma})_{\circ}$ and $Z(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})\times c$

$(C^{*})^{n}$ as open dense subsets, respectively. By (ii), $E_{J}(\hat{\sigma})$ is isomorphic to
$Z(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})\times c(C^{*})^{n}$ , so that $E_{J}(\hat{\sigma})$ and $\overline{Z}(f_{\gamma(\hat{\sigma})}^{L}, M_{\gamma(\hat{\sigma})})\times c^{P_{C}^{n}}$ are birational
to each other.

(iv) The claim of (iv) follows directly (ii), (iii) of the theorem and Corollary
2.5. $\square $

REMARK 2.11. In case (X, $O$ ) is a nondegenerate purely elliptic singularity of
type $(0,0)$ , some strata of $E_{J}^{\prime}$ are the empty set or consist of several connected
components (see [15]).

COROLLARY 2.12. In particular, if a stratum $\mathring{\delta}(\hat{\sigma})$ is in the interior of the dual
essential diagram $B_{1}(f)$ , it corresponds to the stratum $\mathring{E}_{J}(\hat{\sigma})$ isomorphic to

$Z(f_{\gamma_{1}(f)}^{L}, M_{\gamma_{1}(f)})x_{C}(C^{*})^{\dim C_{1}(f)-\dim\hat{\sigma}}$

and the closure $\delta(\hat{\sigma})$ corresponds to the closure $E_{J}(\hat{\sigma})$ birational to

$\overline{Z}(f_{\gamma_{1}(f)}^{L}, M_{\gamma_{1}(f)})\times c^{P_{c}^{\dim C_{1}(f)-\dim\hat{\sigma}}}$ .

In the above, to define $M_{\gamma_{1}}$ and $f_{\gamma_{1}}^{L}$ as in Definition 1.2, we can always use 1 as $m_{0}$ .

2.3. The Dual Complex of the Essential Divisor

Let $Y$ be a nonsingular algebraic variety and let $E=\sum_{i^{r}=1}E_{i}$ be a simple
normal crossing divisor on $Y$.
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For $E$, we define the dual complex $\Gamma_{E}$ of $E$ as follows (cf. Ishii [8], Definition
7.4.7):

(0) We associate a vertex $\bullet$ for each irreducible component $E_{i}$ ;
(1) If a pair of irreducible components $E_{i},$ $E_{j}$ intersect, then we associate a

line segment between the vertices corresponding to $E_{i},$ $E_{j}$ ;
(2) If three irreducible components $E_{i},$ $E_{j},$ $E_{k}$ intersect, we associate a tri-

angle (two-dimensional simplex) with the vertices corresponding to $E_{i},$ $E_{j},$ $E_{k}$ ;

$(i-1)$ If $i$ irreducible components intersect, then we associate an $(i-1)-$

simplex with the vertices corresponding to $E_{v_{1}},$ $E_{v_{2}},$
$\ldots,$

$E_{v_{j}}$ ;

The dual complex of a simple normal crossing divisor is a simplicial complex.
Since the essential divisor $E_{J}$ of a good resolution of the singularity (X, $O$)

is a simple normal crossing divisor, we can associate the dual complex $\Gamma_{E_{J}}$ with
$E_{J}$ .

Next, for the nonsingular subdivision $\hat{C}_{1}(f)$ of the essential cone $C_{1}(f)$

induced by the nonsingular subdivision $\hat{\Sigma}(f)$ of $\Sigma(f)$ , we define a simplicial
complex:

DEFINITION 2.13. We define $K_{1}(\hat{\Sigma}(f))$ to be the set of all $\delta(\hat{\sigma})$ , where $\hat{\sigma}$ runs
over all cones in $\hat{C}_{1}(f)\backslash \{O\}$ .

Indeed, $K_{1}(\hat{\Sigma}(f))$ is a simplicial complex whose support is just the dual
essential diagram $B_{1}(f)$ since the set of all cones in $\hat{C}_{1}(f)$ forms a nonsingular
fan.

THEOREM 2.14. If the dimension of the fundamental face $\gamma_{1}$ is greater than or
equals to two, there exists a natural isomorphism of simplicial complexes between
$K_{1}(\hat{\Sigma}(f))$ and $\Gamma_{E_{J}}$ .

$PR\infty F$ . By Proposition 2.7, if $\dim\gamma_{1}(f)\geq 2$ , then there exists a one-to-one
correspondence between the set of all one-dimensional cones $\hat{p}$ in $\hat{C}_{1}(f)$ and the
set of all irreducible components of the essential divisor $E_{J}$ as follows:

$\hat{p}\leftrightarrow D_{\hat{p}}|_{\overline{X}}$ .

Hence we can define a bijection from the set of O-dimensional simplexes of
$K_{1}(\hat{\Sigma}(f))$ to the set of O-dimensional simplexes of $\Gamma_{E_{J}}$ by sending $\delta(\hat{\rho})$ to
$D_{\hat{\rho}}|_{\overline{X}}$ .
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To verify the theorem, we have to show that the intersection of irreducible
components

$(D_{\hat{\rho}_{0}}|_{\tilde{X}})\cap(D_{\hat{\rho}_{1}}|_{\tilde{X}})\cap\cdots\cap(D_{\hat{\rho}_{n}}|_{\tilde{X}})$ ,

where $\hat{p}_{0},\hat{\rho}_{1},$ $\ldots,\hat{\rho}_{n}$ are one-dimensional cones contained by $C_{1}(f)$ , is not the
empty set if and only if $\hat{p}_{0}+\hat{p}_{1}+\cdots+\hat{\rho}_{n}$ is a cone in $\hat{\Sigma}(f)$ .

This follows the facts that $D_{\hat{p}_{0}}\cap D_{\hat{p}_{1}}\cap\cdots\cap D_{\hat{\rho}_{n}}$ is not an empty set if and
only if $\hat{\rho}_{0}+\hat{p}_{1}+\cdots+\hat{p}_{n}$ is a cone in $\hat{\Sigma}(f)$ and that $E(\hat{\rho}_{0}+\hat{p}_{1}+\cdots+\hat{\rho}_{n})=$

$V(\hat{\rho}_{0}+\hat{\rho}_{1}+\cdots+\hat{\rho}_{n})\cap\tilde{X}$ is an irreducible variety by Proposition 2.7 if $\hat{\rho}_{0}+$

$\hat{p}_{1}+\cdots+\hat{p}_{n}$ is a cone in $\hat{C}_{1}(f)$ when $\dim\gamma_{1}(f)\geq 2$ . $\square $

COROLLARY 2.15. If the dimension of the fundamental face $\gamma_{1}$ is greater than
or equals to two, the dimension of the dual complex $\Gamma_{E_{J}}$ equals to $r-\dim\gamma_{1}(f)$ ,
and hence $\Gamma_{E_{J}}$ is isomorphic to a triangulation of $(r-\dim\gamma_{1})$ -dimensional ball.

3. Complete Toric Hypersurfaces Associated with the Fundamental Parts

For a purely elliptic singularity (X, $O$) $=(V(f), 0)$ defined by a nondegen-
erate polynomial $f$ , we can associate a pair $(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})$ consisting a Laurent polyno-
mial $f_{\gamma_{1}}^{L}$ and a lattice $M_{\gamma_{1}}$ with the fundamental part $f_{\gamma_{1}}$ of $f$ and construct
canonically a complete toric hypersurface $\overline{Z}(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})$ as in \S 1.3, which we call the
complete toric hypersurface associated with the fundamental part $f_{\gamma_{1}}$ in this section.

In the following of this section, we will investigate the complete toric hyper-
surfaces associated with the fundamental parts of the defining polynomials for
hypersurface purely elliptic singularities whose fundamental faces have the dimen-
sion greater than or equal to two.

In order to study toric hypersurfaces, we often investigate the Newton poly-
hedra of the defining Laurent polynomials. Similarly, studying the fundamental
faces of the Newton diagrams is useful to understand the complete toric hyper-
surfaces associated with the fundamental parts.

We will use the scalar extensions by the field of rational numbers $Q$ instead
of $R$ as we use before for the Z-modules $M$ and $N$ etc in order to mind that our
operations to vectors etc are closed in $Q$ every time. Nevertheless, there are no
differences technically.

3.1. Quasi-Q-Reflexive Polyhedra and Hyperplanes Passing Through Them

The following definitions are weaker variations of the definition of reflexive
polyhedra due to Batyrev for n-dimensional convex polyhedra in $M_{Q}$ , which may
have non-integral points as its vertices.
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DEFINITION 3.1 (cf. Batyrev [1], Definition 4.1.5). Let $M$ be a free Z-module
of rank $n$ and $N$ be its dual Z-module. Let $\Delta$ be an n-dimensional convex
polyhedron in $M_{Q}$ containing the zero $O\in M$ in its interior. Then the pair
$(\Delta, M)$ is said to be quasi-Q-reflexive if every affine hyperplane generated by an
$(n-1)$ -dimensional face of $\Delta$ is of the form for an integral element $1\in N$ :
$\{x\in M_{Q}|\langle x, 1\rangle=-1\}$ .

In the above, if we can take a primitive integral element $1\in N$ for every affine
hyperplane generated by an $(n-1)$ -dimensional face of $\Delta$ , the pair $(\Delta, M)$ is said
to be Q-reflexive.

If $(\Delta, M)$ is a quasi-Q-reflexive pair (resp. Q-reflexive pair), we call $\Delta$ a quasi-
Q-reflexive polyhedron (resp. Q-reflexive polyhedron)

REMARK 3.2. Note that a Q-reflexive pair $(\Delta, M)$ is, of course, a quasi-Q-
reflexive pair and that a quasi-Q-reflexive pair $(\Delta, M)$ is Q-reflexive if and only if
there exists an integral point on every affine hyperplane generated by an $(n-1)-$

dimensional face of $\Delta$ .

REMARK 3.3. A Q-reflexive pair $(\Delta, M)$ is a reflexive pair if and only if $\Delta$

is integral.
Recall that for a subset $K$ in $M_{Q}$ , the polar dual $K^{*}$ of $K$ is defined by

$K^{*}:=$ { $y\in N_{Q}|\langle x,$ $y\rangle\geq-1$ for all $x\in K$}.

If $(\Delta, M)$ is a reflexive pair, then its polar dual $(\Delta^{*}, N)$ is also a reflexive pair.
But for a Q-reflexive polyhedron which is not integral, its polar dual is not
Q-reflexive.

We will show the following for later use:

LEMMA 3.4. Let $(\Delta, M)$ be an n-dimensional quasi-Q-reflexive pair. Then $\Delta$

contains no integral point in its interior except for the zero $O\in M$ .

PROOF. Suppose that there exists an integral point in the interior of $\Delta$ ,
say $x_{0}$ , which is not the zero of $M_{Q}$ . Then there exists at least one $(n-1)-$

dimensional face $\delta$ of $\Delta$ through which the $one- dimensioI\tilde{l}al$ cone generated by
$x_{0}$ passes. Let $H_{\check{\prime}}$ be the hyperplane of $M_{Q}$ spanned by $\delta$ . Then there exists
an integral vector $1\in N$ such that

$H=\{x\in M_{Q}|\langle x, 1\rangle=1\}$ .
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Here, note that since $x_{0}$ is in the interior of $\Delta$ , there exists a positive rational
number $\alpha$ greater than 1 such that the point $\alpha x_{0}$ is on $H$. Hence, we have
$\langle\alpha x_{0},1\rangle=1$ , so that $\langle x_{0},1\rangle\neq 0$ and $\alpha=1/\langle x_{0},1\rangle$ holds. Since both $x_{0}$ and 1 are
integral vectors, $\langle x_{0},1\rangle$ is an integer. If $\langle x_{0},1\rangle\geq 1$ , then $\alpha\leq 1$ : a contradiction. If
$\langle x_{0},1\rangle=0$ , then $\langle\alpha x_{0},1\rangle=0$ : again a contradiction.

Thus $\Delta$ must have no integral point in its interior except for the zero. $\square $

Given a Q-reflexive pair $(\Delta, M)$ , we can make new Q-reflexive pairs of
codimension 1:

LEMMA 3.5. Let $M,$ $M_{Q}$ be as before, respectively. Let $H$ be a rational affine
hyperplane passing through the zero $0\in M_{Q}$ . If $\Delta$ is a quasi-Q-reflexive polyhedron,
then for $\Delta_{H}:=\Delta\cap H$ and $M_{H}:=M\cap H,$ $(\Delta_{H}, M_{H})$ is a quasi-Q-reflexive pair.

PROOF. We can regard $H$ as a Q-vector subspace which contains $M\cap H$ as a
lattice. Since $\Delta$ is a convex polyhedron containing the zero $0\in M_{Q}$ in its interior
and $H$ passes through the zero, $\Delta_{H}$ is an $(n-1)$ -dimensional convex polyhedron
in $H$ containing the zero in its relative interior.

We have to show that the affine hyperplane generated by any $(n-2)-$

dimensional face of $\Delta_{H}$ is of the form $\{x\in(M_{H})_{Q}|\langle x, 1^{\prime}\rangle=-1\}$ for some $ 1^{\prime}\in$

$N_{H}:=Hom_{Z}(M_{H}, Z)$ . Now note that any $(n-2)$ -dimensional face of $\Delta_{H}$ is the
intersection of some $(n-1)$ -dimensional face of $\Delta$ and $H$. Hence let $\delta_{H}=\delta\cap H$

be an $(n-2)$ -dimensional face of $\Delta_{H}$ which is the intersection of an $(n-1)-$

dimensional face $\delta$ of $\Delta$ and $H$. Since $\Delta$ is quasi-Q-reflexive, there exists an
integral element $1\in N$ such that $\delta=\{x\in\Delta|\langle x, 1\rangle=-1\}$ . Let 1’ be the image of
1 by the homomorphism $\iota^{*}$ : $N\rightarrow N_{H}$ $:=Hom(M_{H}, Z)$ , which is the dual map of
the inclusion $l:M_{H}\rightarrow M$ . Then, obviously, $\delta_{H}=\{x\in\Delta\cap H|\langle x, 1^{\prime}\rangle=-1\}$ . Thus
we are done. $\square $

COROLLARY 3.6. In the previous proposition, if $\Delta_{H}$ is integral, then $(\Delta_{H}, M_{H})$

is a reflexive pair.

3.2. The Q-Reflexive Pair Associated with the Fundamental Face

Let (X, $O$) $=(V(f), 0)$ be an r-dimensional purely elliptic singularity defined
by a nondegenerate polynomial $f=\sum_{m\in(Z)^{r+1}}a_{m}\cdot z^{m}\geq 0$ Recall that $\gamma_{1}=\gamma_{1}(f)$

denotes the unique face of $\Gamma(f)$ containing 1 in its relative interior. In the
following, we assume that $\dim\gamma_{1}\geq 2$ .
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Now we assume that $\dim_{Q}\gamma_{1}=r-k$ . Then there exist exactly $k+1$ compact
faces $\delta_{1}^{(0)},\delta_{1}^{(1)},$ $\ldots,\delta_{1}^{(k)}$ of $\Gamma(f)$ such that $\dim\delta_{1}^{(i)}=r$ for any $i$ and

$\gamma_{1}=\delta_{1}^{(0)}\cap\delta_{1}^{(1)}\cap\cdots\cap\delta_{1}^{(k)}$ .

Let $H^{(0)},$ $H^{(1)},$
$\ldots,$

$H^{(k)}$ be the hyperplanes of $M_{Q}$ spanned by $\delta_{1}^{(0)},\delta_{1}^{(1)},$ $\ldots,\delta_{1}^{(k)}$ ,
respectively. Then, we have

$\gamma_{1}\subset(Q\geq 0)^{r+1}\cap(\bigcap_{i=0}^{k}H^{(i)})$ .

Let $v_{0},$ $v_{1},$
$\ldots,$

$v_{k}$ be the primitive integral generators of the dual cones $(\delta_{1}^{(0)})^{*}$ ,
$(\delta_{1}^{(1)})^{*},$

$\ldots,$

$(\delta_{1}^{(k)})^{*}$ , respectively. Then we have $H^{(i)}=\{m\in M_{Q}|\langle m, v_{i}\rangle=\langle 1, v_{i}\rangle\}$

for $i=0,1,$
$\ldots,$

$k$ . Here we put

$\Delta^{(i)}$

$:=(Q\geq 0)^{r+1}\cap(\bigcap_{j=0}^{i}H^{(j)})-1$ .

On the other hand, we define

$N^{(i)}$ $:=N/(\sum_{j=0}^{i}Qv_{j}\cap N)$ .

Then we have a natural homomorphism $u^{(i)}$ : $N^{(i)}\rightarrow N^{(i+1)}$ for $j=0,1,$
$\ldots,$

$k-1$ .
Let $M_{Q}^{(i)}$ $:=Q\Delta^{(i)}-1$ and $M^{(i)}$ $:=M_{Q}^{(i)}\cap M$ . Then $M_{Q}^{(i)}$ and $N_{Q}^{(i)}$ , further, $M^{(i)}$

and $N^{(i)}$ are dual to each other.
Moreover, define

$L^{(i)}$
$:=\bigcap_{j=0}^{i}H^{(j)}-1$

for $j=0,1,$ $\ldots,$
$k$ . Then $L^{(i)}$ is a hyperplane in $M_{Q}^{(i-1)}$ , where $M_{Q}^{(-1)}=M_{Q}$ . Note

that we have

$\Delta^{(i+1)}=\Delta^{(i)}\cap L^{(i+1)}$

for $i=0,1,$
$\ldots,$

$k-1$ .
Consequently, we obtain sequences of lattices:

$N^{(0)}\rightarrow N^{(1)}\rightarrow\cdots\rightarrow N^{(k)}$ , $M^{(k)}=\prec M^{(k-1)}\rightarrow..$ . $\rightarrow M^{(0)}$

and a sequence of convex polyhedra:

$(\Delta^{(0)}, M^{(0)})\supset(\Delta^{(1)}, M^{(1)})\supset.$ . . $\supset(\Delta^{(k)}, M^{(k)})\supset(\gamma_{1}-1, M_{\gamma_{1}})$ .
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Here, we prepare a lemma to progress further: In general, let $M$ be a free Z-
module of rank $r+1$ and $N$ be its dual Z-module.

LEMMA 3.7. For an integral positive vector $w\in N$ , define $ M(w):=H(w)\cap$

$M-1$ and $\Delta(w):=(Q\geq 0)^{r+1}\cap H(w)-1$ , where

$H(w)$ $:=\{m\in M_{Q}|\langle m, w\rangle=\langle 1, w\rangle\}$ .

Then $(\Delta(w), M(w))$ is a Q-reflexive pair.

PROOF. Let $w=(w_{0}, w_{1}, \ldots, w_{r})$ be a positive integral vector in $N$ and let
$d:=\sum_{i^{r}=0}w_{i}$ . We assume that $w$ is primitive, i.e., $gcd(w_{0}, w_{1}, \ldots, w_{r})=1$ .

For this $w$ , we define a lattice $M^{\prime}(w)$ by

$M^{\prime}(w)$ $:=\{(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r})\in Z^{r}|\sum_{i=1}^{r}w_{i}(\alpha_{j}+1)\equiv dmod w_{0}\}$

and denote by $\Delta^{\prime}(w)$ the convex hull of the set of points in $M^{\prime}(w)_{Q}$ :

$\{p_{0}$ $:=(-1, -1, \ldots, -1),$ $p_{1}$ $:=(-1+d/w_{1}, -1, \ldots, -1),$ $\ldots$ ,

$p_{r}$ $:=(-1, -1, \ldots, -1+d/w_{r})$ }.

Then $(\Delta^{\prime}(w), M^{\prime}(w))$ is a Q-reflexive simplex and the corresponding toric
variety $P_{\Delta(w)}$ is a weighted projective space of weights $w$ , namely $P(w)=$

$P(w_{0}, w_{1}, \ldots, w_{r})$ .
We define a homomorphism $\iota_{\Delta}/$ : $M^{\prime}(w)\rightarrow M\cong Z^{r+1}$ and its scalar extension

$\iota_{\Delta}/$ : $M^{\prime}(w)_{Q}\rightarrow M_{Q}\cong Q^{r+1}$ , where

$\iota_{\Delta^{\prime}}(\alpha)=(\langle\alpha, 1_{0}\rangle, \langle\alpha, 1_{1}\rangle, \ldots, \langle\alpha, 1_{r}\rangle)$ ,

$1_{0}=(-w1/w_{0}, -w_{2}/w_{0}, \ldots, -w_{r}/w_{0})$ and $1_{j}=(0, \ldots, 0,1, 0, \ldots, 0)i$ for $j=1$ ,
2, $\ldots,$

$r$ . Then $\iota_{\Delta}/$ is injective and the image of it is contained in the r-dimensional
Q-vector subspace defined by the equation $\sum_{i=0}^{r}w_{j}m_{j}=0$ , which we can identify
with $M(w)_{Q}$ , in particular, the image of $M^{\prime}(w)$ by $\iota_{\Delta}/$ is contained in the sub-
lattice $M(w)=\{m\in M|\sum_{i^{\gamma}=0}w_{i}m_{i}=0\}$ . Moreover, we can easily show that $\iota_{\Delta^{\prime}}$

is surjective. Therefore, $\iota_{\Delta}/$ is an isomorphism of lattices.
The image of $p_{j}$ by $\iota_{\Delta^{\prime}}$ is $(-1, -1, \ldots, -1, \langle p_{i}, 1_{i}\rangle, -1, \ldots, -1)=(-1$ ,

$-1,$
$\ldots,$

$-1,$ $-1+d/w_{j},$ $-1,$
$\ldots,$

$-1$ ) for each $i$ . The fact that the convex hull of
the set of the points $\{\iota_{\Delta^{\prime}}(p_{i})\}$ is just $\Delta(w)$ completes the proof. $\square $
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By Lemma 3.5 and the lemma just above, we know that $(\Delta^{(i)}, M^{(j)})$

$(i=0,1, \ldots, k)$ are quasi-Q-reflexive pairs. In fact, the last one $(\Delta^{(k)}, M^{(k)})$ is a
Q-reflexive pair. Although we need quasi-Q-reflexivity for $(\Delta^{(k)}, M^{(k)})$ , but not
Q-reflexivity in the following discussion, we state this fact as a proposition:

PROPOSITION 3.8. $(\Delta^{(k)}, M^{(k)})$ is a Q-reflexive pair.

PROOF. As we saw just before, $(\Delta^{(k)}, M^{(k)})$ is a quasi-Q-reflexive pair.
Then, as we stated in Remark 3.2, we have to show that there exists an integral
point on the affine hyperplane generated by any face of codimension-one of
$\Delta^{(k)}$ .

Now let $\delta$ be a face of codimension-one of $\Delta^{(k)}$ . Then there is an integral
element $1\in N^{(k)}$ such that $\delta=\Delta^{(k)}\cap\{x\in(M^{(k)})_{Q}|\langle x, 1\rangle=1\}$ and $\Delta^{(k)}$ is con-
tained by the half-space $\{x\in(M^{(k)})_{Q}|\langle x,1\rangle\leq 1\}$ . If there is no integral point on
the hyperplane $\{x\in(M^{(k)})_{Q}|\langle x, 1\rangle=1\}$ , the integral convex polyhedron $\gamma_{1}-1$

must be contained by the half-space $\{x\in(M^{(k)})_{Q}|\langle x, 1\rangle\leq 0\}$ since $\gamma_{1}-1\subset\Delta^{(k)}$ ,
which contradicts the fact that $\gamma_{1}-1$ contains the zero $0\in M^{(k)}$ in its interior, for
$\dim\Delta^{(k)}=\gamma_{1}-1=\dim M^{(k)}$ . $\square $

By Lemma 3.4, we obtain the following proposition:

PROPOSITION 3.9. The fundamental face $\gamma_{1}$ of a hypersurface purely elliptic
singularity contains no integral point in its relative interior except for 1.

THEOREM 3.10. Let $\overline{Z}=\overline{Z}(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})$ be the complete hypersurface in $P_{\gamma_{1}-1}$

associated with the fundamental part of $f$ . Then the geometric genus of a non-
singular model of $\overline{Z}$ equals to one.

$PR\infty F$ . To begin with, we mention the result of $Khovanski\check{i}[13][12]$ .

LEMMA 3.11 (Khovanskii). Let $f$ be a nondegenerate Laurent polynomial, $\Delta$

be the Newton polyhedron of $f$ and let $Y$ be the hypersurface in $(C^{*})^{\dim\Delta}$ defined
by $f$ . Then there exists a complete nonsingular toric variety in which the closure $\tilde{Y}$

of $Y$ is a compact nonsingular variety transverse to all the orbits of the toric
variety. And the geometric genus $p(\tilde{Y})=h^{\dim\overline{Y},0}$ is given by the formula:

$p(\tilde{Y})=l^{*}(\Delta)$ ,

where $l^{*}(\Delta)$ is the number of the integral points in the interior of $\Delta$ .
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In Lemma 3.11, take $f_{\gamma_{1}}^{L}=\sum_{m\in\gamma_{1}\cap M}a_{m}\cdot\chi^{m-1}$ as $f$ and $\gamma_{1}-1$ as $\Delta$ , then we
have a nonsingular compactification $\tilde{Z}$ with the geometric genus $p(\tilde{Z})=l^{*}(\Delta)$ .
By Proposition 3.9, we have $1^{*}(\Delta)=1$ . This completes the proof. $\square $

3.3. Special Cases

At the end of this section, we add some comments on special cases where
$\gamma_{1}(f)=\Delta^{(k)}$ hold in the above discussion. The next proposition follows Corollary
3.6:

PROPOSITION 3.12. If $\gamma_{1}(f)=\Delta^{(k)}$ , then the pair $(\gamma_{1}-1, M_{\gamma_{1}})$ is a reflexive
pair.

REMARK 3.13. In general, the fundamental face $\gamma_{1}(f)$ does not satisfies the
assumption in the above proposition. Indeed, for the polynomial

$f=z_{0}^{3}+z_{1}^{3}z_{2}+z_{1}^{3}z_{3}+z_{2}^{5}+z_{3}^{5}$ ,

$\gamma_{1}$ is contained by $(Q\geq 0)^{4}\cap H$ , where $H=\{m=(m_{0}, m_{1}, m_{2}, m_{3})\in Q^{4}|$

$\langle m, (5,4,3,3)\rangle=15\}$ , but $\gamma_{1}\neq(Q\geq 0)^{4}\cap H$ .

A complex normal irreducible n-dimensional projective variety $Y$ with only
Gorenstein canonical singularities is called a Calabi- $Yau$ variety if it has trivial
canonical bundle and $H^{i}(Y, \mathcal{O}_{Y})=0$ for $0<i<n$ . Due to Batyrev [1], Theorem
4.1.9, a $\Delta$-regular toric hypersurface $\overline{Z}(f, M)$ is birational to a Calabi-Yau
variety if $(\Delta(f), M)$ is a reflexive pair. See [1], Definition 3.1.1 for the definition
of $\Delta$-regular hypersurfaces.

The nondegeneracy of the defining polynomial of a purely elliptic singularity
guarantees the $(\gamma_{1}-1)$ -regularity of $f_{\gamma_{1}}^{L}$ . Therefore, by Corollary 2.12, we obtain
the following statement:

COROLLARY 3.14. If $\gamma_{1}=\Delta^{(k)}$ , then the closure $E_{J}(\hat{\sigma})$ of the stratum $\mathring{E}_{J}(\hat{\sigma})$ of
the essential divisor corresponding to the stratum $\mathring{\delta}(\hat{\sigma})$ of the dual essential diagram
$B_{1}(f)$ of dimension $\dim B_{1}(f)$ is birational to a Calabi- $Yau$ variety of dimension
$(r-\dim B_{1}(f)-1)$ .

Moreover, the closure $E_{J}(\hat{\sigma})$ of the stratum $\mathring{E}_{J}(\hat{\sigma})$ is birational to a $ru$led
variety over this Calabi- $Yau$ variety $\iota f\mathring{\delta}(\hat{\sigma})$ is contained in the interior of the dual
essential diagram $B_{1}(f)$ .
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4. Three-Dimensional Purely Elliptic Singularities of Type $(0,1)$

4.1. The Type of a Purely Elliptic Singularity

Ishii [6] classified the r-dimensional purely elliptic singularities using the
mixed Hodge structures of the $(r-1)$ -th cohomology groups of the stmcture
sheaves of the essential divisors of good resolutions of them as below:

Let (X, $x$ ) be a purely elliptic singularity of dimension $r\geq 2$ and let $\pi$ :
$\tilde{X}\rightarrow X$ be a good resolution of (X, $x$) with $E_{J}$ the essential divisor. Then we
have

PROPOSITION 4.1 (Ishii [6]).

$C\cong H^{r-1}(E_{J}, \mathcal{O}_{J})\cong Gr_{F}^{0}H^{r-1}(E_{J})=\bigoplus_{i=0}^{r-1}H_{r-1}^{0,i}(E_{J})$ ,

where $H_{m}^{i,j}(*)$ is the $(i,j)$ -component of $Gr_{i+j}^{W}H^{m}(*)$ .

By the proposition just above, for a unique $i(0\leq i\leq r-1)$ ,

$H^{r-1}(E_{J}, \mathcal{O}_{J})=H_{r-1}^{0,i}(E_{J})\cong C$ .

DEFINITION 4.2 (Ishii). A purely elliptic singularity (X, $x$) is of type $(0, i)$ if
$H^{r-1}(E_{J}, \mathcal{O}_{E_{J}})$ consists of the $(0, i)$ -Hodge component.

Watanabe [18] gave the relation between the type of a hypersurface purely
elliptic singularity and the dimension of the fundamental face of the Newton
boundary of the defining equation:

PROPOSITION 4.3 (Watanabe). Let (X, $O$ ) $=(V(f), 0)$ be an r-dimensional
purely elliptic singularity defined by a nondegenerate polynomial $f$ . Then (X, $O$) is

of type $(0, \dim\gamma_{1}-1)$ if $\dim\gamma_{1}\geq 2$ and of type $(0,0)$ $lf\dim\gamma_{1}=1$ or $0$ .

4.2. The Dual Essential Diagram of a Three-Dimensional Hypersurface
Purely Elliptic Singularity of Type $(0,1)$ and the Stratification on It

Three-dimensional hypersurface purely elliptic singularities of type $(0,1)$ have
two-dimensional fundamental faces and two-dimensional essential cones by Propo-
sition 4.3. These have the simplest structures in hypersurface purely elliptic sin-
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$\delta(\rho^{(\alpha)})\bullet$ $\delta(\hat{\rho}_{\bullet}1_{-})$ ... $-\bullet-\bullet\delta(\hat{\rho}_{s})\delta(p^{(\beta)})$

Figure 1

gularities with the fundamental faces of dimension greater than or equal to two
and the non-trivial dual essential diagrams.

Let $f\in C[z_{0}, z_{1}, z_{2}, z_{3}]$ be a nondegenerate polynomial defining a purely elliptic
singularity of type $(0,1)$ at the origin $O\in C^{4}$ . Then as we mentioned above, both
the dimension of the fundamental face $\gamma_{1}$ and that of the essential cone $C_{1}(f)$ are
two. Therefore, the dual essential diagram $B_{1}(f)$ is a line segment.

Take a nonsingular subdivision $\hat{\Sigma}(f)$ of the dual fan $\Sigma(f)$ . In fact, we have
only to take a nonsingular subdivision $\hat{C}_{1}(f)$ of the essential cone $C_{1}(f)$ to see
the essential divisor. Then the essential divisor $E_{J}$ of the induced resolution of
singularities $\pi$ : $(\tilde{X}, E)\rightarrow(X, O)$ is just

$\sum_{\hat{\rho}\in\hat{C}_{1}(f)(1)}D_{\hat{\rho}}|_{\overline{X}}$

.

Let $\gamma_{1}^{(\alpha)}$ and $\gamma_{1}^{(\beta)}$ are three-dimensional faces of $\Gamma_{+}(f)$ such that

$\gamma_{1}(f)=\gamma_{1}^{(\alpha)}\cap\gamma_{1}^{(\beta)}$ .

and let $\rho^{(\alpha)}$ and $\rho^{(\beta)}$ be one-dimensional cones dual to the faces $\gamma_{1}^{(\alpha)}$ and $\gamma_{1}^{(\beta)}$ ,
respectively. Moreover, let $\rho^{(\alpha)}=\hat{\rho}_{0},\hat{p}_{1},$ $\ldots,\hat{p}_{s},$ $p^{(\beta)}=\hat{\rho}_{s+1}$ be one-dimensional
cones in $\hat{\Sigma}(f)$ in the essential cone $C_{1}(f)$ , where in this order, one-dimensional
cones appear in $C_{1}(f)$ . Figure 1 shows the dual essential diagram of (X, $O$) and
the stratification associated with $\hat{\Sigma}(f)$ .

By Theorem 2.10, we know that any one-dimensional stratum of $B_{1}(f)$

corresponds to a stratum of $E_{J}$ isomorphic to

$Z(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})=V(f_{\gamma_{I}}^{L})\subset(C^{*})^{2}$ .

The stratum $\delta(\hat{\rho}_{j})$ corresponds to the stratum $\mathring{E}_{J}(\hat{p}_{i})$ isomorphic to

$Z(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})\times cC^{*}$

for $i=1,2,$ $\ldots,s$ . And the stratum $\delta(\rho^{(\alpha)})$ (resp. $\delta(\rho^{(\beta)})$ ) corresponds to the
stratum $\mathring{E}_{J}(p^{(\alpha)})$ (resp. $\mathring{E}_{J}(\rho^{(\beta)})$ ) isomorphic to

$Z(f_{\gamma_{1}^{(\alpha)}}^{L}, M_{\gamma_{1}^{(\alpha)}})$ (resp. $Z(f_{\gamma_{1}^{(\beta)}}^{L},$ $M_{\gamma_{1}^{(\beta)}})$ ).
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4.3. The Dual Complex of the Essential Divisor

By Theorem 2.14, we can easily read the structure of the dual complex $\Gamma_{E_{J}}$ of
$E_{J}$ from Figure 1.

On the other hand, as we saw before, Theorem 2.10 and Corollary 2.12 give
the stmcture of the closure of each stratum of the essential divisor up to
birational equivalence. In particular, the closure of the stratum of $E_{J}$ corre-
sponding to a one-dimensional stratum of $B_{1}(f)$ is a nonsingular algebraic curve
isomorphic to the toric hypersurface $\overline{Z}(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})$ associated with the fundamental
face $\gamma_{1}$ , which is also a nonsingular algebraic curve, for two nonsingular curves
which are birational to each other are isomorphic to each other.

Moreover, by Theorem 3.10, the geometric genus of the toric hypersurface
associated with the fundamental face of a purely elliptic singularity is one, so that
$\overline{Z}(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})$ is an elliptic curve.

Summing up, we obtain the following final statements:

THEOREM 4.4 (cf. Ishii [6], Theorem 4.6). The dual complex $\Gamma_{E_{J}}$ of the
essential divisor $E_{J}$ of the singularity (X, $O$) $=(V(f), 0)$ is of dimension one.

$D_{p^{(u)}}|_{\overline{X}}=E_{J}(\rho^{(\alpha)})$ (resp. $D_{p^{(\beta)}}|_{\overline{X}}=E_{J}(p^{(\beta)})$ ) is birational to

$\overline{Z}(f_{\gamma_{1}^{(\alpha)}}^{L}, M_{\gamma_{1}^{(\alpha)}})$ (resp. $\overline{Z}(f_{\gamma_{1}^{(\beta)}}^{L},$ $M_{\gamma_{1}^{(\beta)}})$ )

and for $i=1,2,$
$\ldots,$

$s,$ $D_{\hat{\rho}_{j}}|_{\overline{X}}=E_{J}(\hat{p}_{i})$ is birational to the elliptic ruled surface:
$\overline{Z}(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})\times cP_{C}^{1}$ .

The intersection of every two irreducible components adjacent to each other
$(D_{\hat{\rho}_{j}}|_{\overline{X}})\cap(D_{\hat{\rho}_{j+1}}|_{\overline{X}})=E_{J}(\hat{\rho}_{j}+\hat{\rho}_{j+1})$ is isomorphic to a nonsingular elliptic curve

$\overline{Z}(f_{\gamma_{1}}^{L}, M_{\gamma_{1}})$ .
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