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RUSCHEWEYH DERIVATIVE AND
STRONGLY STARLIKE FUNCTIONS

By

Liu JINLIN

Abstract. Let 4 denote the class of analytic functions f(z) defined
in the unit disc satisfying the condition f(0)=f'(0) —1=0. Let
S*(B,y) be the class of strongly starlike functions of order § and type
», and let C(f,y) denote the class of strongly convex functions of
order f and type y. Certain new classes §: (B,y) and C,(B,y) are
introduced by virtue of Ruscheweyh derivative and some properties
of S.(B,y) and C,(B,y) are discussed.

1. Introduction

Let 4 be the class of functions f(z) of the form
(1.1) fl@)=z+) az"

which are analytic in the unit disc £ = {z : |z| < 1}. A function f(z) belonging to
A is said to be starlike of order y if it satisfies

Zf’(Z)}

1.2 Re{ >y (zekE

(12) e (z€E)

for some y (0 <y < 1). We denote by S*(y) the subclass of 4 consisting of
functions which are starlike of order y in E. Also, a function f(z) in A4 is said to
be convex of order y if it satisfies zf'(z) € S*(y), or

#"(2)
J'(2)

(1.3) Re{1+ } >y (z€FE)
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for some y (0 <y < 1). We denote by C(y) the subclass of 4 consisting of all
functions which are convex of order y in E.
If f(z) € A satisfies

(1.4)

arg(fjééj—)—y)’%/f (- € E)

for some y (0 <y < 1)and B (0 < B < 1), then f(z) is said to be strongly starlike
of order  and type y in E, and denoted by f(z) e S (B,y). If f(z) € A satisfies

")

(1.5) arg<1+f—()——y)‘<g,8 (ze E)

for some y (0<y< 1) and f (0 <f <1), then we say that f(z) is strongly
convex of order f and type y in E, and we denote by C(8,y) the class of all
such functions. It is obvious that f(z) e A belongs to C(f,7y) if and only if
zf'(z) € S7(B,y). Also, we note that S (1,y) = S*(y) and C(1,y) = C(y).

Let f(z)=z+> . ,a.z2"€A and g(z)=z+3 ., ,b,z"€ A, then the
Hadamard product (or convolution product) (f * g)(z) of f(z) and g(z) is defined
by

(1.6) (fxg)(z —z—l—Zan nZ'.

By the Hadamard product, we define

(1.7) Df(z) = ————*f(2) (x=-1)
(1-2)

for f(z) e A. D*f(z) is called the Ruscheweyh derivative and was introduced by
Ruscheweyh in [I].
We now introduce the following classes:

S (By) = {f(:) €eA:D*(z)e S (B,y), x> —1 and 311;—:%;1 £y for zeE}

and

C'a(ﬂ,y)z{f(z)eA:D“f(z)e(—?(ﬁ,y),az—l and 1+ ((D“]{((Zz)))) #v for zeE}

In this note, we shall investigate some properties of S, (f,7) and C,(8,7).
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2. Main Results

We shall need the following lemma.

LemMa. (see (2] [3]). Let a function p(z) =1+ bz + --- be analytic in E and
p(z) #0 (ze€ E). If there exists a point zy € E such that

larg(p(z))| <38 (2] <lz0l) and larg(p(z0))| =58 (0<B<1),

then we have

where
k> -;- (a + %) (when arg(p(zo)) = gﬂ)

1 1 n
k < ) (a+;> (when arg(p(zo)) = —Eﬁ)’
and (p(zo))l/ﬂ = tia (a>0).
THEOREM 1. S;H(ﬂ,y) - S:(ﬁ, y) for o« > —y and 0 <y < 1.

Proor. Let f(z) € S,,,(B,7). Then we set

1) AL~y (1= pla),

where p(z) =1+ cjz+ cz2 +--- is analytic in E and p(z) #0 for all ze E.
According to the well known identity (see [4])

(2.2) z(D*f(2)) = (a + 1)D**'f(z) — aD*f(2),
we have

Dlf(z) 1 [z(D*(2)
23) ]

=a+1[(l~y)p(2)+y+a]-

Differentiating both sides of logarithmically, it follows that
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2(D*f (=) _ =(D*f(2) n (1 -9)zp'(2)
D*+1f(z) D*f(z) (1 =ypp(z)+y+a

(1 —y)zp'(z)
1—p)p(z) +y+a

=(1—V)p(2)+y+(

or

2(D**f(2))'
(2.4) D)

(1 —9)zp'(2)
1 —y)p(z)+y+a

—yz(l—y)p(2)+(
Suppose that there exists a point zp € E such that
z n
larg(p(2)| <38 (Il <lzol) and larg(p(20))] = 55

Then, applying the [Lemmal we can write that zop’(zo)/p(z0) = ik and
(p(zo))'"! = tia (a>0).

Therefore, if arg(p(zo)) :gﬂ, then

20D (20)) 4 vt zop'(20)/P(20)
D*f(z) | (1=2)p(z0) [1 M (1 =7)p(z0) + 7+ OJ

. K
= (1 - y)aPe™/? |1 - .
( ')))a e +(1 _y)aﬂetnﬁ/2+y+a

This implies that

e {zo(m“f(zo»' )

Da+lf(20)
/4 ikp
== 1 .
7B+ arg{ + 0= ale 175 a}
= gﬂ + Tan™!

kﬁ(y+a+(1—y)aﬁ cosGﬁ))

X {(v+a>2+z(y+a)<1—y)aﬁ cos((m/2)B)+(1—y)*a® +kB(1—y)aP sin((z/2)p)

1 1
B (Where k > §(a+5) > l),

which contradicts the hypothesis that f(z) € S, ,(8,7).

=

ST
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Similarly, if arg(p(zo)) = —(n/2)p, then we obtain that

- o+l z !
arg{hogﬂf((zom -rp < -5

which also contradicts the hypothesis that f(z) € S; (B,7).
Thus the function p(z) has to satisfy |arg(p(z))| < ;—T,B (z € E). This shows
that

L I

or f(z) € S,(B,7).
THEOREM 2. Let o> —y and 0 <y < 1, then Cui1(B,7) = Cu(B,7).

PROOF. [(z) € Ca1(B,) & D**'f(2) € C(B,y) & 2(D**'f(2)) € §"(B,7)
& DM (zf(2) e §7(B,y) & 7/'(2) € 8,1 (B,7)
= 2f"(z) € §,(B,7) & D*(2f"(2)) € S™(B,7)
& 2(D*f(2))' € §7(B,7) & D*f(z) € C(B,7)
& f(2) € CulB,7).

For ¢ > —1, and f(z) € 4, we define the integral operator L.(f) as

2.5) L) =2 ey

z¢ 0

The operator L.(f) when ce N = {1,2,3,...} was studied by Bernardi [6]. For
c=1,L;(f) was investigated by Libera [5].

THEOREM 3. Let c¢>—y and 0<y<l1l. If f(z) eS‘;(ﬂ,y) with
2(D*(Lc(f)))'/(D*(Le(f))) # v for all z € E, then we have L.(f) € S, (B,7).

PrOOF. Set

A =+ (L= (o)

where p(z) is analytic in E, p(0) =1 and p(z) #0 (z € E). From [2.5), we have

(2.6)



308 Liu JINLIN

(2.7) 2ADX(Le(f))" = (e + 1)D*f — eD*(Le(f)).
Using and [2.7), we get
_Dby
D*(Lc(f))
Differentiating [2.8) logarithmically, we obtain

:(D* (z)) (I —y)zp'(2)

- D(z) ct+y+(1=y)p()

Suppose that there exists a point zo € E such that

(2.8) (c+1) =c+y+(1-y)p(2).

—y=(1=y)p(z) +

[N N

Y/
=3B,

Then, applying the Lemma, we can write that zop’(z9)/p(z0) = ik and

arg(p(z))] <58 (12 < |zol) and [arg(p(z0))]

(p(z0)) " = tia (a>0).
If arg(p(zo)) = —(n/2)B, then

20D (z0)) o . zop'(20)/p(20)
D*f(z) 7= =7p( 0)[1 c+y+(1—y)p<20)]

— _ —inf/2 lkﬁ
(1=7) [ +c+y~}—(1 —y)aﬂe—f"/’/z]'
This shows that

57

n ikp
=3B+ arg{l TR (o y)a/"e'i”/’/z}

= —g—ﬁ + Tan™!

kp (c+y+ (1—y)a’ cos <gﬁ) )

(e+7)°+2(c+7)(1=p)aF cos((n/2)B) +(1 =) a —kB(1—y)a’ sin((z/2))

n 1 1
< _E’B (where k < ) (a—!—;) < —1),

which contradicts the condition f(z) € S, (8,7).
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Similarly, we can prove the case arg(p(zo)) = (n/2)p. Thus we conclude that
the function p(z) has to satisfy |arg(p(z))| < (=/2)p for all z € E. This gives that

2(DX(L.(f)))’
arg{ D*(L.(f))

*y}\ <gﬁ (ze E),
or L.(f) € S,(B,7).

THEOREM 4. Let c¢>—y and 0<y<l1. If f(z)eCy(B,y) and
1+ z(D*(L(f))" /(D*(L:(f))) # 7y for all z € E, then we have L.(f) e Cy(B,7).

PrROOF. f e Cu(B,7) & 2f € 5,(B,y) = Lc(zf") € S,(B,7)

& z(L(f)) € S5,(B,y) & L(f) € Cu(B, 7).
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