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KENMOTSU TYPE REPRESENTATION FORMULA FOR
SPACELIKE SURFACES IN THE DE SITTER 3-SPACE

By

Reiko ArvyamMAa and Kazuo AKUTAGAWA

Introduction

In [10], Kenmotsu proved that surfaces in the Euclidean 3-space E* can be
represented by means of the mean curvature and the Gauss map. In and [4],
we gave the Kenmotsu type representation formulas for surfaces in the hyperbolic
3-space (cf. [1I]) and the Riemannian 3-sphere. For each Riemannian 3-space
form N3 and a surface M2 in N3, we can consider an adapted frame on M? as a
map from M? to the isometry group Isom(N3). The ‘Gauss map’ of M? to
S%(= S0O(3)/SO(2)) is defined from the ‘rotational part’ (i.e., SO(3)-part) of the
adapted framing map. (For example, Isom(E>) = R? x SO(3).)

On the other hand, Nishikawa and the second author proved the Lor-
entzian version of the Kenmotsu representation formula for spacelike surfaces in
the Minkowski 3-space L* (cf. [12]). Here Isom(L3) = R® > SO(1,2) and hence
the Gauss map is a map to the upper hyperboloid H* (= SOy(1,2)/SO(2)). In
this paper, we introduce the Kenmotsu type representation formula for spacelike
surfaces in the Lorentzian 3-space form of constant curvature 1, that is, the de
Sitter 3-space Sf’. A similar formula in the anti-de Sitter 3-spac'e has been already

given in [6].

1. De Sitter 3-space S;

The de Sitter 3-space Sl3 is defined as the semi-sphere in the Minkowski 4-
space L* of radius 1. As in [9] and [1], it is convenient to use the complex special
linear group SL(2; C), which is the double cover of SOy(1,3), as the group of
isometries of 513 . Put
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Identify L* with the space Herm(2) = {x = Xo€o + - - + x3€3 | x0,...,x3 € R} of
2 x 2 Hermitian matrices with the metric {x,x) = —detx. SL(2;C) acts iso-
metrically on L* by

g-x=gxg" (geSL(2;C),x e L* = Herm(2)).

Hence it acts on S} isometrically and transitively. Then we can regard S; as the
symmetric space

S3 = SL(2;C)/SU(1,1) = {gesg*|g € SL(2; C)},

where SU(1,1) = {h e SL(2; C) |hesh* = e3}.

Divide SL(2;C) into three subsets G_, Go, G according to the signature of
the indefinite Hermitian metric <{g),8>¢2 = 821821 — 8282 for the second row
complex vector g, = (g,),8,) of g € SL(2; C). Then we can also divide S3, which
is difffomorphic to S? x R, into three components as follows:

S_ = {gesg*lge G_} = {x € 8] | xo — x3 < 0}(= R?),
So = {gesg’lg e Go} = {x € 87 | x0 — x3 = 0}(=S' x R),
Sy = {gesg*lge G.} = {x € S} | xo — x3 > 0}(= R?).

Take a coordinate (yy,y,,¥,) on Sz defined by (v, y;, ) = (1,x1,x2)/
|xo — x3|, the metric on S; is written as ds?= (1/y2)ds}, where ds§=
—dy? + dy? + dy? is the Minkowski metric. We denote by RS; the upper half
space model (R3,ds?) of each Sy c Sj.

The Gram-Schmidt procedure for row complex vectors of each matrix
g € SL(2; C) with respect to the indefinite Hermitian metric <-, '>C12 gives the
decomposition

(1.1) G_.=S-SU(,1) and G,=5-J-SU(1,1),

where S is the Lie subgroup consisting of upper triangular matrices

(g 1§a) (a>0,leC).
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Then we can identify each component S_, S, with S, that is,
S_ = {sess*|se S}, S, ={-sess*[seS}.
Note that S(=Sz) is diffeomorphic to RS; under the map

RS} 3 (yg, 1, ¥2) — (\/(;V_O +n +1\//\;_;_:’2)/\/y_0) cs.

2. Normal Gauss Maps of Spacelike Surfaces in Sl3

Let f be a conformal immersion from a Riemann surface M into S?, whose
image is a spacelike surface in S13. We can choose an adapted framing & : M —
SL(2;C) of f locally (that is, on each contractible neighborhood) and uniquely
up to a right multiplication of U(1)-valued map. This implies that f = fe;&™,
&ep&* is a unit normal vector field of f and &(e; — vV —1e;)&* is a vector field of

type (1,0), where
V-18
U(l) = {(e . 6_3__10) aesl}.

We define the normal Gauss map % : M — C :== CU{x} by

én (511 (5’12)
% = ——, where &= .
F3 &y Exn

22
It should be pointed out that the normal Gauss map ¥ is globally defined on
M. On the open set U_ := f1(S_) (resp. U, := f'(S})) in M, the image of ¥
is contained in the unit open disk D := {ze C||z| < 1} (resp. in €\D). Then
4(f~'(Sp)) = 8! = dD. We also remark that the union U_U U, is an open dense
subset in M.

As mentioned in Introduction, the normal Gauss map ¢ of f is also obtained
from the ‘rotational part’ of the adapted framing & as follows: The upper and
lower hyperboloids H %_r in the linear space R> are given by

Hi = {x = x0€0 + x1€1 + X267 | det x = 1,sgn(xp) = +l1}.

The subgroup SU(1,1) in SL(2;C) acts transitively on each hyperboloid H %_r,
and then H2i = SU(1,1)/U(1). Decomposing &|,. : Uy — Gz corresponding to
the decomposition of G, we obtain an SU(1,1)-valued map 4 and an
S-valued map & (defined locally) on each Ux:

(2.1) Ely. =Lh, &y, =SLJIh

By using h, 4z : Uz — Hi is determined as follows:
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G_ = heoh*, 9, = —eheph’e.

We denote by P the stereographic projection of HiUHE from the south
pole —ep e H?. Then the normal Gauss map 4 on Uz is just Po%z:

Po%_=p/q:U_.— D, 5
4G = R where h:(q lz)
Po%.=gq/p: U, — C\D, P

On each Uz, ¥ can be also interpreted geometrically as follows: Consider
Sfly_ (resp. f|y,) to be a conformal immersion into RS} = (R3 ds?) and RS; to
be a conformally embedded domain R3 in the Minkowski 3-space L* = (R?,ds3).
Let N(z) be the future-pointing (resp. past-pointing) unit normal timelike vector
at each point f(z) in L>. Parallel translating N(z) to the origin in L>, then we
again obtain the normal Gauss map 4_: U_ — Hfr (resp. %, : U, — H?*) of f
on U_ (resp. U,).

Each & : Uz — S in is a (local) framing map of f: M — S}, that is,
fly. = &35 and fl, = —Fe3#". In the same way as in [3] (cf. [9]), we can
show that % satisfies the following differential equation of first order by
means of (the lift 4 of) %.

Take an isothermal coordinate z and (1,0)-form ¢ on M such that the
induced metric *ds?> = ¢ - . Let B be the sl(2; C)-valued (1,0)-form on U_U U,
written locally as

= (5 51

then B, € (oM, . ® 97 tra HZ) We can write the differential equa-
tion for & by using S as follows

(B+B)es+4les, B+Bles on U,
e3(B+ ) +iesles, f+ "] on U,.

h(ei — vV—lex)h*¢ on U_,
eth(ey — V—ley)h*erp on Uy,

NI— NI'—‘

1
(2.2) S ldy = {;

We denote by H the mean curvature of f and by ® its Hopf differential. It then
follows from Proposition 6.1 in [I] combined with that

2
f* dsZ — 5 4|gz| 5= |dZ|2,
{1+191°)+H(1 - |4])}

= 5 49:(9). > 5= dz - dz
{(L+191) + H(1 - |9]")}(1 — |9])

Moreover, we obtain the following
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ProposITioN 1. The normal Gauss map 4 : M — C of a spacelike surface
with mean curvature H in S; satisfies

(23) (1= 19{1+191°) + H(1 - 19°)}%: + 2{|9]" + H(1 - |9]")}§%.9:

= H.(1-|%9")'%:.

If we replace the ambient space S; by the de Sitter 3-space S3(c?) of constant
curvature ¢ (¢ > 0), then the above equation will change to

(1 =191 {c(1 +191>) + H(1 - |9|)}%.: + 2{c|%|* + H(1 - |%|*)}9%.%:
= H,(1 - |9|*)%%9:.

Putting ¢ =0 in it, we can obtain the generalized harmonic map equation for
Gauss maps of spacelike surfaces in L ([8]).

PROPOSITION 2. For a CMC (constant mean curvature) H conformal im-
mersion f : M — 83(c?), the normal Gauss map % is a non-holomorphic harmonic
map from M to C equipped with the following metric h, y:

. 4|d¢)? _
o H |(1 —|C|2){C(1+K|2)+H(l _|C|2)}‘

ReEMARK 1. (1) When [H| > ¢, h; y restricted on the unit open disk D is
deformed to a hyperbolic metric 4|d¢|*/(|H|(1 — |¢]*)?) as ¢ goes to O for a fixed
nonzero H.

(2) When |H| < ¢, there exists a CMC H conformal immersion / from M to
the hyperbolic 3-space of constant curvature —c? such that the pair of f and f
forms a kind of Bonnet pair (cf. Appendix II in [3]). Then the normal Gauss
maps f and f satisfy the same harmonic map equation, up to the coordinate
change of a homothety in C. (For the study of the metric h,  and harmonic
maps to (D,h, y), see also [5].)

3. Kenmotsu Type Representation Formula in S13

Conversely, we can show that (2.3) is the integrability condition for the
framing equation [2.2). We then obtain the following Kenmotsu type repre-
sentation formula in S;.
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THEOREM 3. Let M be a simply connected Riemann surface with a reference
point zo € M, and take an isothermal coordinate z on M. Give a smooth function H
on M. Let v: M — D be a non-holomorphic smooth map satisfying the equation

(2.3):

A+ +HA=) L 2+ HO - D)
1— v - (1-v??

v.v;: = H,v;.

Define a 1-form w on M as follows and assume that it is smooth on M:

2(%)
z d
(A D)+ HO- YA -pP

Put a Lie(S)-valued 1-form pu on M by

1 . 1 . v 1
ﬂ=5(ﬁ+ﬂ )‘E‘*’Z{‘B,ﬁ-i—ﬂ les, B= (vz v)w'

Then there exists uniquely a smooth map & : M — S such that ¥ (zo) = € and
S VdSF =p. Put f=Fe3S”, then f: M —S_c S? is a conformal immersion
outside {w € M|w(w) = 0} with prescribed mean curvature H and the normal Gauss
map G =v.

REMARK 2. If we regard the immersion f constructed in Theorem 3 as
an immersion f = (fy, fi,/2) : M — RSI3, then f is given by the following path
integral:

z

fo(z) = exp (2Re J

z
vw), @) +Vo1h(E) = J fole + 7@).
20 Z0
REMARK 3. For a spacelike surface in S; with CMC H of range |[H| > 1
(resp. |H| = 1), we have obtained the Kenmotsu-Bryant type (resp. Weierstrass-
Bryant type (cf. [9])) representation formula by means of its adjusted Gauss map
[1], which is a non-holomorphic harmonic map (resp. holomorphic map) to the
hyperbolic disk (D, 4|d¢|?/(1 —|¢ 1>)?). By a similar adjusting theory to the one in
[3], we can also deform the normal Gauss map to the adjusted Gauss map
through a one-parameter family of integrable differential equations of first order.

REMARK 4. It has been proved in [7] and [13] that any complete spacelike
surface in Sf with CMC H of range |H| £ 1 is totally umbilic. We also note that
any totally umbilic complete spacelike surface of range |H| < 1 is never contained
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Figure 1: Totally umbilic spacelike surfaces in RS (=S_): |H| > 1,|H|=1,|H| <1

in S_(<Sj7). (See the third example in Figure 1). Then any CMC H (|H| < 1)
spacelike surface in S_ is not complete.
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