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NONLINEAR WAVE EQUATION WITH POTENTIAL

By

Sandra LUCENTE

Abstract. We study the Cauchy problem for
Uy — Au+ V(xX)|ulf lu=0

with x € R". The function V'(x) is positive and regular. The exponent
p 1s subcritical or critical. By the aid of Shatah-Struwe technique (cf.
[7]), we prove the existence of the global classical solution with
suitable hypotheses on V(x): V(x) >0, 3<n<7 or V(x) = |x|%
n = 3. To approach this second case we cannot follow directly the
argument used in [7]: we need and prove weighted nonlinear esti-
mates in Besov spaces.

1. Introduction

A large amount of work has been devoted to studying several questions
related to the solution to the nonlinear hyperbolic Cauchy problem

Du(t,x) = O(t,x,u,u;) xeR"
u(0,x) = up(x)
u (0, x) = uy(x).

For example, considering the case ® = ®(u) = + |u|”'u, it is possible to analyze
the existence of the global solution or its eventual blow up in dependence on the
size of initial data, the large time behavior of the solution, and so on. The theory
began in the sixties, but in spite of the great deal of papers concerning it, some
questions remain open. More precisely, fixing our attention to the nonlinear term
®(u) = —|ulP'u, with p> (n+2)/(n—2) (supercritical exponent) no results
clarify if there exists a global regular solution with arbitrary initial data.

Key words: Nonlinear wave equation, Large data, Besov spaces, Strichartz estimates.
AMS Classification: 35170, 35L05, 35B65

Received December 15, 1998

Revised September 7, 1999



82 Sandra LUCENTE

The positive answer to the previous question in sub-critical and critical case
relies on the possibility to find a—priori estimates for the solution of the wave
equation.

For example, in sub-critical case, the conservation law for the energy is
crucial. In the critical case this L? — L? estimate is not sufficient; one has to
combine L? — L7 estimate (cf. Proposition 3.6) with a multiplicative inequality for
the nonlinear term (cf. [Proposition 3.3).

In this work we examine carefully a remark contained in Shatah-Struwe
paper [7]: in the critical case ®(u) = —|u|**=2y the authors obtain the global
classical solution and they say that using the same technique this result can be
generalized to suitable ®(x,?,u). Their proof is based on the following tools:

(i) a decay lemma,

(i) a Strichartz’ inequality,

(iii) a nonlinear estimate in Besov spaces,

(iv) a contradiction argument: in a neighborhood of an eventual blow up
point the solution is bounded.

In their work all the estimates are set in bounded domain, hence it is
reasonable that if ®(x,#,u4) is a continuous function in ¢ and x, having critical
behavior in u, then the global existence result still holds. Here we try to classify
the functions ®(x,t,u) which give the global existence result. As will become
apparent, the problem is not so simple to be solved, hence we deal only with the
equation

Uy — Au = —V(x)|u?'u (1.1)

with positive V(x).

If V(x) > 0, locally it behaves like a positive constant; this gives directly an
extension of Shatah—Struwe result. Our approach will not distinguish the critical
case from the sub-critical one and the same technique applies equally in both
cases. In particular for V' (x) constant, we see that the Shatah-Struwe method
works also in the sub-critical case. On the contrary, if V' (x) vanishes, the zero of
the potential could compensate the blow up of the solution. On the other hand, if
V(x) =0 at some point X, the equation at that point reduces to the linear
homogeneous wave equation; hence it is natural to think that the global existence
result is still valid.

Here we give the global existence result for the case V(x)|u|’'u=
|x — x0|?u%, n = 3. In order to do this we find a weighted version of the nonlinear
estimate in Besov spaces. The interest of this inequality relies on the fact that the
multiplicative rules are not well known in Besov spaces.
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The case V(x) # |x — xo|® is not considered here since it is connected with
the essential difficulty to establish a decay lemma. Finally we remark that in
other problems with vanishing potentials are studied under the strong hypothesis
of small initial energy. Another simple case is the 3-dimensional subcritical case
in which Jorgens’ argument yields global solution without any assumption on the
zeros of the potential (cf. [3]).

The plan of the work is the following. In Section 2 we collect known results
and notations and we prove the decay lemma. In Section 3 we establish the
weighted nonlinear inequality that enables us to consider the vanishing potential
case. Here we also recall some useful properties of Besov spaces. We shall use
slightly different spaces from those used in [7]: the homogeneous Slobodeckji
spaces. For this reason we often treat with Hardy’s inequality.

In Section 4 we prove our main theorem: the existence of a unique global
solution for the Cauchy problem related to (1.1), either in the subcritical or
critical case for ¥(x) >0 or in the critical 3-dimensional case for V(x)=
|x — xo2.

Acknowledgements: I'm greatly indebted with Prof. Vladimir Georgiev for his
hospitality during my visit at Academy of Science in Sofia, where we studied
weighted spaces. I’d like also to thank Prof. Sergio Spagnolo who encouraged me
to solve this problem.

2. Notations and Preliminary Results

We deal with the Cauchy problem

Ou=—-V(x)®(u) (2.1)
u(0,x) = f(x)
u(0,x) = g(x) (2.2)

where V,® satisfy
(i) V e®*(R"), V(x)=0;
(i) ® € 6*(R), [y ®(t)dt >0, ®0) =0, O(u) = [u”"u if [ul = C >0;
(i) 3<n<7, p<(n+2)/(n-2).

Since we want to prove the boundedness of « and ®(u) = |u|’~'u for large |u|, we
can assume without restriction that, instead of [2.1), u solves the simpler equation
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Ou=—V(x)|u/" u (2.3)

We recall that for this equation there is finite speed of propagation equal to one
and formal conservation law for the energy
V(x)

1
E[u](t) = —2—JR” |ut|2 + Iqulz dx + JRn m |u|p+l d_x, (24)

that is E[u](f) = E[u](0) for each te R. We shall put E[u|(0) =: Ej.
Using these properties one can prove the local existence result (cf. Theorem

4.3 in [6]):

THEOREM 2.1. Let s > n/2; for any (f,g) € H*(R") x H*"'(R") there exists
T >0 and a unique strong s-regular solution u(x,t): R" x [0,T] — R for (2.1),
(2.2), that is ue%([0,T],H*(R")), u, € %([0,T],H*"'(R")) and u, e ¥([0,T],
H*2(R"). If f € €>*(R")NH*(R"), g€ €*(R")NH*"'(R") the unique local solu-
tion of (2.1), (2.2) is a classical solution, i.e. ue €*(R" x [0, T)).

Moreover, if (f,g) have compact support, then for each t€[0,T), u(-,t) has
compact support.

Having in mind the finite speed of propagation, we consider the backward
cone with vertex zo = (xp,%) € R" x R:

K(z0) :={z=(x,0)|t < to,|x — x0| < to — t}.
For any S < T < 1, we put
KJ(z0) :={(x,1) e K(20)|S <t < T}, Ks(20):= Ky (20),
M(zo) := {z = (x,0)|t < to,|x — x0| = to — 1},
M () := {(x,1) € M(20)|S <t < T}, Ms(z0) = Mg (z0),
D(t,20) := {x € R"|(x, 1) € K(z0)}.

Further we define the local energy

|uy|? +%|qu|2 +K£x—)|u|”+] dx (2.5)

1
E(u,D(t,z)) := J = FES|

D(t,20) 2

and we state a crucial information for the proof of our theorem, that is the flux
conservation law: for any S < T <t
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E(u,D(S,z)) — E(u, D(T, z))

X — X0

X

2
d| + )t de. (2.6)
p+1

|x — xo]

_ L J 1
V2 JIm7(z)2
This is obtained integrating on KJ(zo) the identity

V(x)

(|u,| + = |Vx| + —= FEN

|u|?t! dx) = div(u,Vu).

We see that for any potential V' (x) positive, the quantity E(u, D(S,zj)) is
decreasing in S and tends to zero whenever S — #y, hence

2
Xx—X V(x), p+1

d 0. 2.7
+p+ || = (2.7)

—Viu

lim J !
S—t MT(Z)2 |x x0|

We conclude this section with the first crucial ingredient of Shatah-Struwe
method: a Pohozaev type identity which gives the possibility to control the higher
term of the local energy. This works under suitable assumptions on V' (x) and p.

LEMMA 2.1. Let u be a classical solution for (2.1), (2.2) on K(zo)\{zo0}-
Suppose V  n,p satisfy one of the following conditions:
n+3 n+2

(Hz) (X)>O 3<n<7 nT<pSn—2

(Hy) V(x) = |x—xo|* with xoe R", n=3, p=5.

Then

lim J V(x)|ulP* dx = 0. (2.8)
D(S 20)

S—1

PrROOF. At the begin we consider zg = (0,0) and omit it in the notations of
the domains. We multiply equation by tu; + x - Vu+ ((n — 1) /2)u, obtaining
the identity

0=20, (tQO + n—1 u,u) — diV(tPo) + Ry (29)

where
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el N V) e, (X o,
Qo = 7+t +p+1|u| +u,<t Vu),
2 2
_ X || | V| V(x) p+l1 X n—1u .
Po_t(2 5 p+1|u| + Vu u,+t Vu + 57 );

_(n—-1 n+1 sl X-VV(X) i
Ry = (1 - ) ot - X T e

Integrating on KI and letting T — 0, we find:

n—1

Oz—J {SQO—i— u,u}dx+J Ry dxdt
D(S) 2 Ks

V2 2

First we observe that

-1
+—1—J {th+n u,u+x-P0}dw:I+II+III.
Mg

Vv
1+ 111 > So(1) — J s—ﬁw’“ dx
ps) p+1
where o(1) tends to zero when S — 0. In fact, in Lemma 1.2 of [7] it is shown
that

I+IIIZ—SJ —I—/—(—)ﬂ

|u|P*! dx
ps) P+ 1

X qu
x|

1 n+1

*ﬁfm R V2 4

The second term is directly estimated by —So(1) by virtue of (2.7). To reduce the
third term to [, V(x)|u|” *1dw we apply Holder’s inequality. If ¥ (x) > O this is
a straightforward computation. In the case V' (x) =0 we need some additional
assumptions. For example in the case V(x) = |x|* we have

2 1-2/(p+1) , 2/(p+1)
J —dow < (J | x| dw) (J || *[u|P* dw) ,
Ms |t Ms Mg

here y = 2a+ p+1)/(p — 1); there is convergence of the first factor only if

2 _ _ 2
doo + - J (n-Dn=3) "y,
Ms t

nlp—1) 1 o

- = > .
2(p+1) 27 p+1

In particular for n =3, p =15 we require a < 3.
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In order to conclude the proof it suffices to know

1S <0 st. VS <0, |S|<|S| II:J Rydxdt > 0. (2.10)
Ks
Hence, for |S| < |S| these relations imply
0=I+114+1II> —J S@|u|”“dx+So(1).
pis) p+1

Being S < 0, we have the desired conclusion.
It remains to check (2.10). In particular we show that Ry is positive on Kg,

that is
n—1 n+1 x-VV(x)
— > < |S]. 2.11
(-0 ) rw = 2 isis) @11)

Suppose V(x) >0 in D(S); being Ks compact, we find |VV(x)| < Cs¥V(x) for
some Cgs > 0 and for all x € Ks. Moreover Cg is a decreasing function of S in
(—00,0). We fix T=—(p+1)(n—1)/2—(n+1)/(p+1)); T is negative in
force of the hypothesis (H;). For any S > max{7,T/Cr}, x € Ks we have

x-VV(x) _|x-VV(x) —SV(x) n—1 n+1
prl S px1 | = pxr U7 i)

In the case V(x) =0 at some point, in general, we cannot conclude that
holds. In the case V(x) = |x|* we see that [2.11) reduces to
n—1 n+1 > *_
2 p+1 ~ p+1

Being « > 2 and p < (n+2)/(n— 2), this condition is verified if (H,) holds in
D(S). In the case zp = (xp,%) # (0,0) we have
lim J V(x)|ul? udx

D(S720)

S—ty

_ limJ V(% + xo) [u(x + X0, + f0) |7~ (3 + X0, £ + 1) dx.
S—0 D(S)

Since v(x,?) = u(x + xo,t+ tp) solves Ov(x,1) = V(x + xo)|v(x,2)|” 'v(x, ), the
assertion follows from the previous computations under the assumption either
V(x) >0 in D(S,z) or V(x)=|x—x|* in D(S,z). O

We emphasize that we have only used the estimate from below p >
(n+3)/(n—1). The previous lemma is still valid if p = (n+ 3)/(n — 1) and V(x)
i1s a positive constant, namely the classical case.
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From the previous proof it follows that in the case n =3 p =35, the as-
sumption (H,) can be weakened: the potential can vanish of order 2 in isolated
points, this means

(H;) V(x0) =0 implies V(x) = |x — xo|* in a neighborhood of xo;

The case V(x) >0 is the simplest one because implies the
following:

COROLLARY 2.1. Let u be a classical solution for (2.1), (2.2) on K(z0)\{zo}.
Suppose (H,) holds, then

lim J lul’*'dx = 0. (2.12)
D(S,Zo)

S—ty

3. A Weighted Nonlinear Inequality

The aim of this section is to prove a generalization of a nonlinear inequality
due to Ginibre-Velo (cf. [2]). We prefer to recall the necessary tools for this proof,
in particular the real interpolation theory. On the contrary, we don’t describe here
the complex interpolation theory, though we shall use it. We shall often quote the
monographs and in which the reader can find a general framework for
these subjects.

About the notations, we omit to write R” if it is a domain of a function
space, denoting by || - ||, the L?(R")-norm. Finally by ~ we mean the equivalence
of two positive functions A4, B: we write 4 ~ B if there exist C;, C; such that
C1A(x) < B(x) < CA(x) for all x in the intersection of the domains of 4, B.

We start with the abstract definition of real interpolation for a couple of
Banach spaces:

DerINITION 3.1 ([8] 1.3). Let Ao, and A, be Banach spaces, both linearly and
continuously embedded in a linear Hausdorff space <.
For each 0 < t < 400, one defines the K-functional related to (Ao, A1):

K(t, -,Ao,Al) : Ao+ Ay — R,
K(t, f, Ao, A1) = inf{llgll 4, + tllall 4, st f=g+hgedoheA}.
Fixing 0 < 0 < 1, 1 < g < o0, the intermediate space between AoN A, and Ao + A,

is

oo dt
(Ao, A1)g 4 = {f € Ao+ Al f (4, 4, = Jo K (1, S Ao, A1) — < +00}-
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One of the advantages of the real interpolation theory is the fact that the linear
bounded operators are exact interpolation functors in the sense of the following
proposition:

ProposiTiON 3.1 ([8] 1.3.3(a)). Let (Ao, A1), (Bo,B1) be couples of Banach
spaces under the same hypotheses of the previous definition. Let 0 < 0 < 1,1 < g <
+o0. If

T:4y— By, T:A4,— B
is a linear bounded operator, then

T : (Ao, A1)g,q — (Bo, Bi)g,,
is a linear bounded operator.

Now we give some examples of real interpolation spaces; we need them in what
follows.

ExampLE 3.1 ([8] 1.18.5). Let w: R" — R be a positive continuous function;
Q < R" a measurable set. For each 1 < p < +o0, L?(Q,w) is the weighted L’
space which consists of the measurable functions f:Q — R such that
w7 f e LP(Q). This means

”f”il’(g’w) = JQ | 1P w(x) dx < +oo0.

For these spaces the following interpolation property holds 1185 if 0 < 8 <
1, wp,w; : R" — R are continuous positive functions, then

[L7(Q, 0f"), L7 (Q, "))y, = L (Q, 0?) (3.1)
where
1 —
l=—l’i+ 6 and o(x) = ojw] .
P Do P

In particular, there exists Cy > 0 such that

(7 1-6
”u”L"(a)p) < CH““”LPo(ng)”””Lm(wfl) (3.2)

for all u such that the right side is finite.

ExampLE 3.2 ([1] 5.6.2). Let 4 be a Banach space. One denotes by /;(4) the
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space of the sequences {a;};Z , = 4 having norm
|aj“1 Z stq”a ”A
j=—00

bounded. Let (A4p,A;) be a couple of Banach spaces in the sense of
3.1. The real interpolation gives

(122 (A0), 2 (41))g.4 = (Ao, A1)g,), (3.3)
where 1 < gy, ¢1 < o0, and

s=(1—06)so + sy, 1=1-9-i—£.
q qo q

ExampLE 3.3 ([8] 2.4.2(13)—(16)). Let s> 0, 1 < p,q < c. The Besov spaces
B, , is defined in the following way:
if s is not integer

B = (WS, W},, with s=6k+(1—-0)h, hkeN;

if s is integer, by reiteration

6 1-60 1

(B;Oqo leq,)e,q with s:0s0+(1 "0)51, _q_0+ - ;

In the same way, considering the homogeneous Sobolev space Wp”, after fac-
torization out of polynomials, one obtains homogeneous Besov spaces.
In what follows we shall use also homogeneous Slobodeckji spaces:

s =

. Xy . . .
{Bp, p 1if s 1s not integer
fs .

WS if s is integer

We recall that these spaces are different from the Sobolev spaces of fractional
order: suppose s is not integer, then Wps = H; if and only if p =2.

Other relations between these spaces are given in terms of embedding
theorems (cf. [1]):

. . n n
B;’qf—>L’ if s> ;—;, p<r,q<r, (3.4)
B, — B, if g<q. (3.5)

Using semigroup theory one finds several equivalent norms for the spaces
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defined by real interpolation. For example the translation on R" yields the next
result:

ProposiTION 3.2 ([8] 2.5.1). Let 0<s< 1, 1< p,qg<+00. An equivalent
norm for B;’ A

1/q
dh
1 llgs, = (stl B0 S G+ B) = £ W) . (3.6)

Ginibre and Velo use this norm to derive an estimate for |u|* in Besov
spaces:

PrROPOSITION 3.3. LetO<s<1,A>1and 1< p;,p;,p,q<+c0 and 4> 1,
with 1/p=1/p, +1/p,. There exists C > 0 such that

A A—1
el < Clluly 1d* o (3.7)

for all u such that the norms on the right side are finite.
We write in Slobodeckij spaces this result:

LEMMA 3.1. Under the same hypotheses of the previous proposition, there
exists C > 0, depending only on n,p,p,, such that

C _
Heal “lhyirs < ;llullpi/;;elllul'1 e 0<e<l. (3.8)

Proor. Using Ginibre—Velo result it is clear that it suffices to prove the
embedding

C(n)

Wyt o By, g<p and |flly, < =2

p,q -

nre

and after we take p = p,. Since 1 < g < p there exists r > 1 such that 1/g =
1/p+1/r. Using and Holder’s inequality (with respect to the measure

da/|h|") we find
1/r
1llse, < ( | |hr"+”) e
' lhl <t

This gives the desired embedding. U



92 Sandra LUCENTE

In order to obtain the weighted variant of this inequality, we deal with
L”(|x|*) denoting with by || - |, ,
space WP'(|x|°‘) is the completion of #;° with respect to

its norm. In the same way the weighted Sobolev

lelly o = 11Vl 0 = [l 1X1*/7 Vsl
4

By real interpolation we define

Wy (1x1%) = (L (1xI*), W, (1x]%)),, 0<s<L.

From the general property of interpolation ([8] 1.6.2), one deduces that €§° is a
dense subset in W;(|x|°‘).

Now we want to represent the norms of these spaces like a sum of sequences
in the classical spaces; this can be done by means of Paley—Littewood partition of
unity in R”".

ProPOSITION 3.4 ([1] 6.1.17). There exists a sequence of functions {¢;};.
which satisfies
(i) 9 €€y, 0<¢ <1;
(ii) suppg; = {& e R"|C127 < [¢] < G277}
(i) > ,cz9;(&) =1 for £ #0 this sum contains at most two not vanishing
terms,

(iv) 3C > 0 such that |Vo,| < %

By the aid of this decomposition we find an equivalent norm for L’(|x|*).

for each je Z.

Lemma 3.2. Let {¢;},., be a sequence satisfying Proposition 3.4. If ue
L?(|x|*) then

lullp = > 27 llgpully (3.9)
jeZ

ProoF. Combining the properties (i) and (iii) for ¢;, we get 1 /271 <
Z(p]’.’ < 1. On the other hand, on the support of ¢, we have |x|* ~27* hence

S ol = Y[ o = | e

jeZ jeZ

This completes the proof. O

A similar result for Wp‘(|x|°‘) is obtained using of the following Hardy’s

inequality (cf. [5]).
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ProrosiTiON 3.5. For each « >0, 1 < p <n,

X" fIL, < NxI*VAll, ¥f e 65 (R). (3.10)

LemMA 33. Let 1< p<n; {9}, satisfying Proposition 3.4. For any

ue Wpl(lxla) one has

|Iu||1ptx Zz_ja”(ﬂj““iy;- (3.11)

jeZ

Proor. It suffices to prove the inequality for ¢’ functions. Having in mind

the definition of W, (|x|*), from we have

el := IVutlls , < € 27l Vullp
jeZ

Since ¢;Vu = V(p;u) — (Vg;)u, to obtain

lullf , < C> 27 lgyullf,
jezZ

it suffices to find

> 2 N(Veul} < €327 V(g

jeZ jeZ

The properties (iii) and (iv) of {¢;} allows us to compute

1
(Vo ull? =~ S 1(V)pull? < € Z

I=—1 I=—1

I | ¢]—|—]u

Using Hardy’s inequality, it follows that
1
D 277NV ullp < €D 27 V(g m)lll = D27 IV(pw)lI?.
JjeZ jeZ I==1 jeZ

Now we prove the inverse inequality. We see that

> 2 Pl < C Y 27I(Voully + llo(Vu)l7]
jeZ jeZ

jeZ supp ¢;

|x|%0? |Vul? dx].
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In force of the properties (ii) and (iv) of Paley—Littlewood resolution of unity, we
find

o
27\ p.ul|?. SCU x| updx—t—j x“Vupdx].
> oy = €| |l x| 1w

Using Hardy’s inequality we conclude

Zz—f“lleull’;ypl < CJR" x| Vul? dx = Cllull 1 g)- .

jeZ
Now we are in position to set the following isomorphism:
LP(Ix|*) =~ L%/ (L), W, (1x%) = I%/P(W,).
Using the property in Example 2, we deduce the next result:

LemMA 34. Let 1<p<n, «a>0, 0<s<1 and {¢;},.z satisfying Pro-
position 3.4. For any ue W;(|x|°') one has

”u”;/ps(lxlﬂ) = Zz——jalleu“p; (312)
jeZ

In this lemma an explicit relation between Wps (|x|*) and Wps appears; another
important relation between these two spaces is given in the next lemma:

LEMMA 3.5. Let 1< p<n 0<s<1, a>0. The following inequality holds:
1l *ull s < Cllaall iz 1 )- (3.13)

Proor. From definition of weighted L? space we know that |||x|*u||, =
lullL7(|x)- On the other hand if u € €5, using Hardy’s inequality we get

-1
el *all iy = odll %1% ill, + X1 *Vaell, < CH|x*Vatll, = full g 10y -

We see that the operator T, :u+— |x|*u is bounded from L?(|x|*) to L? and
from W)(|x|¥) to W,; [Proposition 3.1 yields [3.13). A density argument gives
the conclusion. O

The same technique enable us to investigate on the behavior of cut functions
in these spaces.
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LemMA 36. Let 0<s<1, 1<p<n If pe%;, f€B; then
loslls:, < CllAlge -

Finally we can prove the weighted version of (3.8) with a vanishing weight.

THEOREM 3.1. LetO<s<1l,l<p<n 1<p,py <400, A>1and «a >0.
If 1/p=1/p, +1/p, the following inequality holds:

i1 C i1
el *faal *“atll iy < — Ntllgpgoe X110l ™ 0 <& <1 (3.14)
for all u such that the norms on the right side are finite.

ProoF. From we have

o6l *Joel “Ilyirs < Cll el g g (3.15)

On the other hand, fixed a Paley-Littlewood decomposition {g;},
implies

Nl oy = D27 bl 1 (3.16)
jeZ

: " : :
Since ¢,|f1* = ;|3 41 Pjsrf I , the previous lemma yields

1
Z Pkt

k=-1

u
oyl 1l < €

Wy

From [Lemma 3.1 it follows

C < )
ol A 14N, < — > oS 15 ll@a f 1 2
O s ”
Since

—j -1 —1
27 MNepaf 17 e = NIx M @af 17 1Lz

we obtain

—j C 1
S 2NVl < I Wy 3l W
Jje

jeZ
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Using again with « = 0 from (3.15) and ((3.16), we get the conclusion.
O

It is clear that this technique leads to other weighted estimates; for example if
we choose {¢;} such that C127 < |x — x| < G277 for all x in the support of g¢;,
we check

x = xo|*ul* |, O<e<l. (3.17)

C
A-1
1 = xol " ullyry < — llutll e

We conclude this section setting the local variant of Besov spaces, in which
we formulate the Strichartz’ estimates for the linear wave equation.
For any Q open set in R", B;’ ,(€) is the completion of ¢7° with respect to

’ = i X3 n L. == .s n .
”ul|B’~§.q(Q) = mf{HU”B;‘q(R ) St ve=uve Bp,q(R )}

These spaces on domains satisfy the same interpolation rules as the ones defined
on R”". In what follows we deal with 0 < s < 1 and Q = D(¢,zy) for fixed ¢ € R,
zo € R" x R. By interpolation rule we see that for any @€ 6,, 0<®d <1, ® =1
on B;(0) the function

u(x, t) x e D(t,zp)
w1 = u(lt_ t0|2(x—2x0) +xo,t)(D(x_x0) otherwise (3-18)
|x — xo |t — to
satisfies
()l g; rny < Cllullg; (p0,20))- (3.19)

In these local spaces, Strichartz’ result takes the following formulation:

ProposITION 3.6. Let (1/F,1/r)=((n—1)/2(n+1)),(n+3)/2(n+1))),
f,9€ CE(R™), he L"(R"™). Let @ be a solution for

Ow(x,t) = h(x,t) xeR", n>3
w(x,0) = f(x)

@:(x,0) = g(x).
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The following estimate holds:

(e, )l i rnery < CURN Lrgrery + 1 g2 gey + 19 g-12mmy)- - (3.20)

If zo = (x0,%) and s <t < ty, the previous inequality gives:

1/2
““’”Lr‘([s,r],W,.‘/2<D(z,zo)>>5C<EH(”’D(S’Z°)) +”h”Lr({s,rLB,‘/f(D(t,zo))) (3.21)
where

1
Enle, D) =5 [ Jontx 0 + Vol 9 ax
5,20

To simplify the notations we put || - |

L¥(fs,d, WA (D(t,20))) — - 11y,

4. Global Existence Theorem

Now we are in position to prove our main theorem:

THEOREM 4.1. Assume that V(x),n,p satisfy the hypothesis (H;) or (Ha)
given in Lemma 2.1. Consider ®(u) = |u|’'u for large u a €*(R) function.

Let fe®%*(R"NH(R"), ge%*(R")NH*Y(R"), s>n/2. The Cauchy
Problem

Du(x,t) = =V (x)®(u) (4.1)
u(0,x) = f(x)
ut(()?x) = g(X)

admits a unique global solution u e ¢*(R" x R).
Moreover, if V,®, f,g are €* functions, then ue € (R" x R).

We argue by contradiction. Let us suppose that the local solution u(z,x)
blows up in T = #y,. Our aim is to establish that for each xo € R”, u(x,t) belongs
to L*(Ks(z9)) with S near #. Since n < 7 it is sufficient to prove u € W3 (Ks(zo))
and then to use the embedding W, — L®.

The first step is to prove the boundedness of u in L] (R, Wfl/ %), that is to
have informations on ‘“half derivative™.

PROPOSITION 4.1. Let u be a classical solution to (4.1), (4.2) in K(z0)\{z0};
then u is bounded in L7([0,1]; W}/*(D(1,2))) and

r

lull; 0.4 < C(20, Ep)- (4.3)
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ProoF. We consider the different cases (H;) and (H,).

(Hi) V(x)>0,3<n<7, (n+3)/(n—1)<p<(n+2)/(n-2).

From localized Strichartz’ estimate (3.21), for each s,te R, s <7t <, we
have

lull; 5.« < C(En(u, D(s,20)))"* + CUV()ul” " ull s 0 57200,y (49

Since Ey(u,D(s,z9)) is a decreasing function in s, the first term is controlled
by E, 172 We want to control the last term with &||u||®_ _ for some g > 1 and
e>0.

Let ¥ € 45 be a cut function 0 <¥ <1 and ¥ =1 on D(t,z); let & be the
function defined in (3.18). Combining [Lemma 3.6 and [Proposition 3.3, for each
tels 1] we get

I‘ST

- 1 -1~
” V(x)lulp u”B‘/Z(D(, 20)) = “\P(x) V(x)lulp u“B'/Z(R") = C” |u|p u“B'/Z(R")

~ ~1p—1 -1
< C”“”B;y/’?(kn)”lulp ”LPI (R™) = C““”g;‘/’?(p(,,z()))“|u'p ”LPI(D(t,zo))

with

1 1

After integration in ¢ we find:

-1
” V(x)lulp u“L'([s,r],B:/z (D(1,20))) = C(S ‘c)”u”r,s t“u“Lm(p—l)(Kr(zO))

We observe that C(s,7) = (t —s)? with f < 1; it follows that there exists a
constant C(#) = C(z,s).

Now we want to estimate the factor ||u||?
such that

ulw D (K (o))" If there exists 0 < a < 1

1 1 1 1
o0~ (3) 1005 o

then using interpolation rule and the embedding we obtain

1l -ty < I 51y Il 5 < Nl ol 5

The last inequality gives
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1/p1
1 - 1)
”u“Ll’l(pl K[ () = (J ”u“"‘f}z@D(: lu ”L‘”Tg((tpzo dt)

1/p
(I—2)(p—1) (-1
< ¢ sup Julf e, ([ gy o)
If ap;(p —1) <7, then by Holder’s inequality we get

1/p
([ rgevan) ™ < commazs:,
again we can take C(s,7) < C(#). Hence we find

1 - ( 1
el < CES" + Cllull ™ sup lull o g,

F,8,T — F,5,T (D(1,20))"

Now [Corollary 2.1 implies

sup ||u||L1,,+f)(p( 1))) <e if t—1tg Ve>O0.

s<t<
For s close to ty, we conclude

lull;,,. . < CEy"> + ellu ;1270 (4.7)

r,s,T
Considering y=1+a(p—1) and X(s,7) = ||ul;,,, we have a continuous
function such that
X(s,5)=0
7+ X(s,7) 1is increasing for all se R

.eX”(s,‘c)—X(s,‘r)—{—CE(}/2 >0 Ve>0.

We choose ¢ < K }’(CE(}/ 2177 where K, = min,so{x?’"! + x~! + 1}; this implies
that X(s,¢) is bounded, ie. ||lu||; . is bounded. Having in mind that the local
solution is regular in K;(zo), when 7 — to we have the conclusion.

It remains to prove that the exponent « in the previous computation exists,
that is the following system of inequalities has a solution:

O<axl1

1 1 1 1
pl(p—1)=a<?_55) =0
ap)(p—-1) <7

Having in mind the definition of p and 7, the last inequality can be written as
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4
N ()

On the other hand, the condition p>n+3)/(n—1) implies
4/((n—1)(p — 1)) < 1; then the previous system is equivalent to

a < 4
RECEEY

p(p—1) "\F 2n p+1

From the last equation we get

0<

a(p) = 2n p(n—1)—(n+3)
P I pn+ 1 —n?) +n2+dn+ 1

It remains to verify

4
(n=1(p—-1)

Using again the assumption p > (n+ 3)/(n — 1) we get a(p) > 0 if and only if

0<a(p) <

p2n+1—n?)+n*+4n+1>0. (4.9)

Since n > 3 the quantity (2n+ 1 —n?) is negative, so that we require

n?+4n+1

L—75—"F5—.
L R
A simple computation shows that in the case n >3

n+2<n2+4n+l
n—2 n:=-2n-1

Being p subcritical or critical this implies (4.9). The same argument reduces the
condition to the discussion of the inequality

(n+2)n(n -1 =22n+1-n?)] < (n=2)n(n+3)(n—1) +2(n* + 4n + 1)]

and this is fulfilled.

Now we consider the case

(Hy) V(x) =|x — xo|* with xoe R", n=3, p=5.

We fix our attention to the point zo = (xo, fp) in which the potential vanishes,
since otherwise there exists s € R such that V(x) > 0 in D(¢,zp) for all t € [s, t[
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and the assertion follows from the case (H;). Here we use a different estimate for
the last term in (4.4), in fact we have to apply instead of its
2.1.

Combining the embedding and the weighted estimate (3.17), we find

s 2asy
[ — Xo[ “u I|B‘i//§’4(D(t,zo)) < [l = xol @ “W;/;(M)

C,. 2. C 4
< 5 Il zee sl = ol | gy < 5 el o,z 18| o3, 1ol

The interpolation rule for weighted L? spaces gives

- _ 12 apl)2
|Iu|lL8(R37fx—x0|4/3) = ”u”L‘z(R3)”u”Lé(Ra,lx—xolz)'

Using the embedding [3.4), we conclude

C
2.5 3 1/3. 12
e = 0052 gy < 2 10 = ol ey

After integration in ¢ we get

1/3

- 1/6 4 2 = 2
Illx — x|"/ Ul pskeizy) < “u”L“([s,r];Wl/“ED(t,z'))Si‘igr|||x_ X\ ull Lo(oe, 2)

=12,,5 -1 3 =11/3,.112
e = %10 e 512 ) < € 1l ireeny 2y P lllx = % Pul 5o,

We are in position to apply Lemma 2.1, and for s close to fy we find

1/3
sup || — xol*ull Lo s,y < C2.
s<t< 1

Denoting
X(s,7,8) = |[ull Las,q; w12 ps, 2
we have a continuous function such that
X(s,s,6) =0 for all ¢>0
X(s,7,e) is increasing in ¢ and 7
1/2

8X3(S,‘L',8) - X(s,7,0) + CE,’” = 0.

Using the fact that X(s,7,¢) — X (s,7,0) when ¢ — 0, we see that there exists a
suitable g > 0 such that for all ¢ < g the last condition gives
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1+ CE,?

< — 70 41+ X(s,1,0))%.
< Trx(e0 I+ XEn0)

Taking ¢ < 3_3(CE5/ 24 1)~ we get X(s,7,0) is bounded, that is our conclusion.
U

As a consequence of the embedding er / 2(D(t, z0)) — L7(D(t,zp)), using we
get

ue L' (Ko(zo)). (4.10)

Coming back to the proof, from we also deduce that
lull 160 (ke(z0)) < Co(1) if Hy holds (4.11)
11 — xol /®ull L3 i (zy) < Co(1) if H; holds, (4.12)

where o(1) tends to zero when 7 — fo.
The next step is to establish the F-summability for Du. In what follows we
put D=0, or D=20,, fori=1,...,n

PROPOSITION 4.2. Let u be a classical solution for (4.1), (4.2) on K(zo)\{2o}.
One has Du e L'(Ky(z))-
Proor. By differentiating it follows
0Du=—DV(xX)|ul’'u— pV(x)|u”~' Du.

Having in mind the finite speed of propagation, for any s < 7 < #y, Strichartz’
estimate (3.20), gives

1Dl 4k zayy < C(E(Du, D(s,20))) "2

-1 -1
+ 1DV () ul”™ ull Lriks (o)) + CNV Nl Dtdll (2

(20)

Suppose (H,) holds.
From [4.5), using the relations and (4.11), we have:

1
1DV ()|l el Lo ke yy < NPV N o (i aop 1] 2 i oy 1411 bk = €0(1),
1
|V (x)|ul?P™ Du“L' *(20)) <||V||Lw(1<f(zo)||u||u|<p n(K,(ZO))||D“||Lr'(1<0(zo))

< Co()|1Dull L (ko (z0))-
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Summing these inequalities, we find:
1/2
1Dull (ke 20y < CEo'* + Co(1)(1+ || D] 1 e ) (4.13)

Being the local solution regular in Kj(zo), for 7 — t, we get the conclusion.
The situation is slightly different in the case in which (H;) holds.
Since we deal with bounded domain, if p < g then

I[1x — x0|a/p”||1f(p(z,zo)) < [[x— x0|a/q”||L"(D(t,zo))‘

The same inequality holds when we consider K7(zo) instead of D(,zp). This fact
enables us to estimate | DV (x)|u|’ 'u|
9/2 <6 we have

L'(K} (20)) o |Hx - x0|u5||L4/3(Ks’(ZQ))’ Since

sup J ix = xo|2|ul*”? dx = o(1).
D(I,Z())

§S<I<7T
Using this condition and the interpolation rule
L7(|x - xo|*?) = (L%, L°(|x - x0|2))4/777,

we obtain

T
J j Ix — xo|*3u” dxdt = o(1)[jull? , ..
D(t,2) o

S

From we have that this quantity is bounded. Being 20/3 < 7 we conclude
lllx — x0|“5||L4/3(1<;(zo)) = o(1).
In order to control ||V(x)|u[”_1Du||L,(K;(ZO)) we can use [4.12):
I[1x — x0|2u4D“||L4/3(1<;(zO)) < Cll|x- xOI1/6uH28(K;(zo))“Du||L4(Kg(zo))
< o(1)[| Dul| Lok, (z9))-

These relations and Strichartz’ estimate imply (4.13), hence the conclusion. []

CoROLLARY 4.1. Let u be a classical solution for (4.1), (4.2) in K(z9)\{z0};
then

lim E(u, D(s,zp)) = 0. (4.14)

s—

ProoF. Being E(u, D(s,zp)) decreasing in s, we have lim,_,,, E(LZ,D(S, Z0)) =
[. In force of [2.8), to obtain / = 0 it suffices that fD(s 20) |Du|? dx — 0. Combining
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Holder’s inequality and the previous proposition we have:

2 2/( 1)
1Du 72 ks )y < [measr (KS (z0)))7 "

C(to — 5)°.

Zo)_

This completes the proof. O

In order to conclude the proof of the main Theorem we need D’ue
L"(Ko(z0)). We use the same trick: by differentiating two times [4.I) we get:

0D*u = —D*V(x)|ul” 'u— 2pDV (x)|ul”~' Du +
—pV (X)|u|”"' D’u — p(p — 1)V (x)®" (u)(Du)’.

Here ®”(u) ~ |[u|”"? if n <5, while ®"(u) is bounded if n=6,7. Localized
Strichartz’ estimates give

1D2ull (i 20y < C(E(Du, D(s,20))) "/

+ CIID*V (x)ul"™!

L'(K(z0)) (4.15)
+ C||IDV (x)|u|”~ lDu”Lr(Kr(zo))

+ (|| V(x)|u|p_lD2u||L’(K;(zg)) (4.16)
+ Cl V(x)q)”(”)(D“)z||Lr(1<;(zo))- (4.17)

Suppose (H;) holds.
We can estimate (4.15), (4.16) obtaining

-1 1
||D2 V|u1p||u(1(;(z0)) + |1DV [u|? Du”L'(K; y + | V' |ul?~ D?

(KT (z0))

“(z)) T+ 1D?u

< C”“”Lm(p 1) (K[ (z0)) (“u L’(K‘(ZO L’(K'(z())))

< Co(1)(2 + “Dzu“L;(K.f(Zo)));

in the last inequality we used [4.10), (4.11) and the previous proposition.

We divide the estimate for in two cases: n <5 and n=6,7.

If n<5, by the aid of Holder’s inequality and Sobolev embedding,
WK (zZ)) — L“(K’(f)) with o« = 2(n + 1)/(n —3), we find:

1V () lul?~2

2
Li(k: (=) | D70

<(zon 1 DU LH(KF(20))"

Using |Corollary 2.1 and the previous proposition, we conclude that

ID?ull i kx(zoy) < € + Co(V)ID?ulll 1 1))
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If n=6,7, we use the interpolation rule L* = (L* L"), 5,4, «=2(n+1)/
(n —3) and the embedding W} (K7(zp)) — L*(K[(z0)) holds; we have

1V (x) D" (u) i) < DU ks < CUDuIL e 1Dl e
It follows:
D%l i ks ) < € + CoD)ID?ull ey + CIDull iy
Since (n—5)/2 <1, in both cases we conclude
D?u e L;(Ko(zo)). (4.18)

Suppose (H,) holds.
The estimate for is based on the interpolation rule W)/2=
(L?, W)/, and on embedding W2 (K (20)) — L3 (K (z0)):

5 5 5 5/2 5/2
1 Lo ieeony = NotlZ 2oy < 100150 gy < 00 iy 980300

From [Proposition 4.2 and from we get

||“5||L4/3(1<;(z0)) < C(t).

Now we control the terms in [4.16):
lllx— x0|u4D“||L4/3(1<;(zo)) + [ lx — x0|2”4D2u||L4/3(K;(ZO))
< C(to) [l = Xolu*[| 2z 1Pl Loy + 1070 Lo (zoy)
C (o)1 = xol "*ull o ks ) (1Pl Lo oy + 1074l ok )

Using we find:

2
” |x — x0{u4Du||L4/3(K; + ” l-x - X()| u4D2u“L4(K;(zo))

(20))

< o()(1Dul La(e(z0)) + IDull Lok (z0)))-

Finally we deal with (4.17):

2 2 2
1% = xol (D) || Lass (i 20y < Il — ol || L2k o) P8I o i oy 1Pl 2 i)
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From [Lemma 2.1 we obtain

2 2
I[1x — xol uS(D“) ”L4/3(1<;(20)) < 0(1)||Du||L4(K;(zo))||D2“||L4(K;(zo))-

The sum of these estimates leads again to (4.18).
As a consequence of the hypotheses on ®(v) and on p, we have

ue W} (Ko(z0)) = [ul”'u e Wi (Ko(20));
moreover being the domains bounded, we obtain the crucial information:
V(x)|ul”~'u e W2(Ko(20)). (4.19)

By energy estimate and Gronwall’s lemma, the previous relation in turn implies
D*ue L*([0, to], L*(D(t,z0)) with |¢| <4. More precisely we need this infor-
mation for the cases n = 6, 7; instead if n = 4,5 we have to consider only |«| < 3
and if n =3 it suffices |a| = 2.

The conclusion is now exactly like in [7], [9]; we repeat it to have a self-
contained proof. If the local solution blows up at time 7 > 0, then there exists
xo € R" and (x,,t,) — (xo,%) such that lim,|u(x,,t,)| = +c0. We fix ¢ >0 and
from we know that E(u,D(s,z)) < ¢ if S <s < fp. Since the local

solution is %2, we can extend this inequality: there exists J > 0 such that

1, 2 1 2 1 1
~u? + Vo]t + ——=V(x)|u|"" dx < e.
j|x_x0|sm_§+62| Pt 3 Ve V()

This means E(u,D(s,z)) < ¢ where Z = (xp, fp +J); in particular in the truncate
section K°(Z), (4.3) still holds. The above argument shows that u € W (Ky’(2))
and then u e L®(K,°(2)).

Since Ko(z0) = K,°(2) it is impossible that the solution blows up in zo.
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