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SIMPLENESS AND CLOSEDNESS OF CIRCLES IN
COMPACT HERMITIAN SYMMETRIC SPACES

By

Toshiaki ADACHI, Sadahiro MAEDA and Seiichi UDAGAWA

Abstract. We first interpret circles in Riemannian Symmetric space
by Lie algebro-theoretic formalism. In particular, it is a solution of
the system of ordinary differential equation of first order. We divide
circles into 3-types. We investigate closedness and simpleness for such
circles in compact Hermitian symmetric spaces. Consequently, we
find many open holomorphic circles and non-simple circles. Note
that there exist no non-simple circles and no open holomorphic
circles in compact Riemannian symmetric space of rank one.

Introduction

Geodesics in Riemannian symmetric spaces $N=G/K$ are well-understood
and they are orbits of one parameter subgroups of the full isometry group of $N$,

i.e., are of the form $\exp tX\cdot 0$ , where $X\in \mathscr{M}\cong T_{o}N,$ $0=\{K\}$ . Every geodesic in
symmetric space is a simple curve. If $N$ is compact, then $N$ has a simply closed
geodesic, and moreover, if $N$ is of rank one, all the geodesics in $N$ are simply
closed and have the same prime period (see [H]). The concept of geodesic is
extended to higher dimensional case as totally geodesic submanifolds or minimal
submanifolds, which are studied systematically by many differential geometers.
However, helices have been received less attention. In particular, even circles in
symmetric spaces are not studied in detail. Here, we mean by a circle of curvature
$\kappa$ a curve $\gamma(t)$ (parametrized by arc-length $\iota$ ) which satisfies the following
equation:

(0.1) $\nabla_{l}\dot{\gamma}(t)=\kappa Y_{l}$ and $\nabla_{l}Y_{t}=-\kappa\dot{\gamma}(t)$
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for some positive constant $\kappa$ and a field of unit vector $Y_{l}$ perpendicular to $\dot{\gamma}(t)$

along $\gamma$ , where $\nabla_{l}$ is the covariant differentiation along $\gamma$ with respect to the
Riemannian connection $\nabla$ of $N$ (see [NY]). These are precisely the curves with
non-zero parallel geodesic curvature vector. When $\kappa=0$ we can regard the
equation (0.1) as the equation for geodesics. From physical point of view, some
circles can be interpreted as a motion of a charged particle under an action of a
magnetic field (see [C] and also [A2]). We say that a circle $\gamma(t)$ is closed if there
exists $t_{0}(\neq 0)$ with $\gamma(t_{0})=\gamma(0),\dot{\gamma}(t_{0})=\dot{\gamma}(0)$ and $Y_{l_{0}}=Y_{0}$ . The minimum positive
$t_{0}$ with such properties is called the prime period of the closed circle. When $\gamma(t)$ is
an open circle, that is, a circle which is not closed, we say it is simple if it does
not have multiple points, that is, $\gamma(t_{1})\neq\gamma(t_{2})$ whenever $t_{1}\neq t_{2}$ . A closed circle $\gamma$

is simple if $\gamma|_{[0,t_{0})}$ does not have multiple points, where $t_{0}$ denotes the prime
period of $\gamma(t)$ . In case where $N$ is a complex projective space $CP^{n}$ , the present
authors ([AMU]) proved that every circle $\gamma$ in $CP^{n}$ (of constant holomorphic
sectional curvature 4) is a simple curve and is closed if and only if the complex
torsion $\theta$ of $\gamma$ satisfies $\theta=0$ , or $\theta=\pm 1$ ; or $\theta\neq 0,$ $\pm 1$ and one of the three ratios
$a/b,$ $b/c$ and $c/a$ is rational, where $a,$ $b,$ $c(a<b<c)$ are non-zero real solutions
of the cubic equation $\lambda^{3}-(\kappa^{2}+1)\lambda+\kappa\theta=0$ , where $\kappa$ is the curvature of $\gamma$ . The
complex torsion $\theta$ is defined by $\theta=\langle\dot{\gamma}(t), JY_{t}\rangle$ for a circle $\gamma$ in a K\"ahler manifold
$(M, J, \langle, \rangle)$ and $\theta$ is independent of $t$ . In [AM] and [A], the case where $N$ is a
complex hyperbolic space or a quatemionic space form is treated. Recently,
Mashimo-Tojo ([MT]) proved that any circle $\gamma(t)$ in a Riemannian symmetric
space $N$ is an orbit of a l-parameter subgroup of the full isometry group if and
only if $N$ is a symmetric space of rank one or $N$ is a Euclidean space. In these
spaces, circles are of the form $\exp t(\kappa H+X)\cdot 0$ with $H\in ff\chi\in \mathscr{M}$ , where X is
the Lie algebra of $K$ and $\mathscr{G}=ff+\mathscr{M}$.

In section 1, we reformulate the differential equation of circles in symmetric
spaces by using Lie algebraic theory. We take a lift of $\gamma$ to $G$ and rewrite (0.1) in
terms of the Maurer-Cartan form for $N$. We then derive from the rewritten
equation a system of ordinary differential equations of first order. We find it has
a solution of power series with infinite radius of convergence due to the Cauchy’s
method of majorant series. We give two classes of circles, namely those classes of
the form $\exp t(\kappa H+X)\cdot 0,$ ( $ H\in$ Y,T $X\in \mathscr{M}$), which we call circles of the first
kind, and those of the form $\exp((1/\kappa)(\sin(\kappa t)X+(1-\cos(\kappa t))Y))\cdot 0,$ $(X,$ $Y\in \mathscr{M}$,
[X, $Y$] $=0$), which we call circles of the second kind.

In section 2, first of all, we define a notion of holomorphic circle (which
constitutes a subclass of the class of circle of the first kind when the ambient
space is a Hermitian symmetric space) and we prove that every circle of the first
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kind in a 2-dimensional complex quadric $Q^{2}$ is necessarily a holomorphic circle
with respect to some invariant complex structure on $Q^{2}$ . Next, we investigate the
closedness of holomorphic circles in complex Grassmann manifolds. We remark
that every circle of the first kind is a simple curve. We give an answer to the
question “When is a holomorphic circle closed in $G_{m}(C^{m+n})?$ . Consequently, we
can find closed circles and open circles of the same curvature, which shows that
holomorphic circles in $G_{m}(C^{m+n})$ cannot be classified up to isometries of the
ambient space only by curvature.

Finally, we mention that the congruent classes of circles. In a complex
projective space or a complex hyperbolic space two circles with same curvature
and same complex torsion are congruent to each other under holomorphic
isometries. On the other hand, in a compact Hermitian symmetric space of rank
greater than one, there are circles with the same curvatures and the same complex
torsions which are not congruent to each other. For example, let $\gamma_{1}$ be a circle
of curvature $\kappa$ which lies on a totally geodesic submanifold $RP^{2}(c/4)$ in $N$ and $\gamma_{2}$

be a circle of the second kind of the same curvature $\kappa$ . Note that $\gamma_{1}$ is of the first
kind. Although these circles have the same null complex torsion, they are never
congruent to each other under the isometry group of $N$ for any $\kappa$ .

\S 1. Circles in Riemannian Symmetric Spaces

Let $N=G/K$ be a Riemannian symmetric space with a G-invariant Rie-
mannian metric $g$ . We have the reductive symmetric decomposition of the Lie
algebra $\mathscr{G}$ of $G$ as follows:

$\mathscr{G}=\ovalbox{\tt\small REJECT}^{r}+\mathscr{M}$, [X $\mathscr{M}$] $\subset \mathscr{M}$, $[\mathscr{M}, \mathscr{M}]\subset ff$

where X is the Lie algebra of $K$ and $\mathscr{M}$ is identified with the tangent space of
$N$ at the base point $0=\{K\}$ . We denote by $T_{x}N$ the tangent space of $N$ at a
point $x=g\cdot 0\in N$ , where $g\in G$ and by $\pi$ : $G\rightarrow N$ the projection which is given
by $\pi(g)=g\cdot 0$ . The map $\mathscr{G}\rightarrow T_{X}N$ given by $\xi\rightarrow(d/dt)|_{\leftarrow-0}\exp t\xi\cdot x$ restricts
an isomorphism Ad $g\mathscr{M}\rightarrow T_{X}N$ . We denote the inverse map by $\beta_{X}$ : $ T_{x}N\rightarrow$

Ad $g\mathscr{M}\subset \mathscr{G}$ . We may regard $\beta$ as a $\mathscr{G}$-valued l-form on $N$, which is called the
Maurer-Cartan form of $N$ (see [BR]). We define the bundles $[\mathscr{M}]$ and $[\ovalbox{\tt\small REJECT}]$ with
fibres, respectively, $[\mathscr{M}]_{x}=Adg\mathscr{M}$ and $[X]_{x}=Adg\ovalbox{\tt\small REJECT}^{r}$ at $x\in N$ , which are
subbundles of the trivial bundle $N\times \mathscr{G}$ over $N$. If $X=(d/dt)|_{t=0}\exp t\xi\cdot x$ then

(1.1) $\beta_{X}(X)=AdgP_{\mathscr{M}}(Adg^{-1}\xi)$

where $P_{\mathscr{M}}$ : $\mathscr{G}\rightarrow \mathscr{M}$ is the projection. Pulling the equation (1.1) back to $G$, we
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have

(1.2) $(\pi^{*}\beta)_{g}=Adg(P_{\ovalbox{\tt\small REJECT}}\theta)$

where $\theta$ is the left-invariant Maurer-Cartan form of $G$ .
Let $\gamma$ : $R\rightarrow N$ be a curve. There is a lift $F:R\rightarrow G$ of the map $\gamma$ with $\gamma=$

$\pi\circ F$ (such a lift always exists globally when the domain is simply-connected). By
the equation (1.2) we have

(1.3) $(\gamma^{*}\beta)_{t}=AdF(t)\cdot\alpha_{\ovalbox{\tt\small REJECT}}$

where $\alpha=F^{-1}dF$ and $\alpha_{\ovalbox{\tt\small REJECT}}$ is the $\mathscr{M}$-component of $\alpha$ in the decomposition $\alpha=$

$\alpha_{\ovalbox{\tt\small REJECT}}+\alpha_{f}$. Let $\nabla$ be the Levi-Civita connection for $(N, g)$ . Denoting $P_{[\ovalbox{\tt\small REJECT}]}$ : $N\times \mathscr{G}$

$\rightarrow[\mathscr{M}]$ the projection along $[\ovalbox{\tt\small REJECT}^{\prime}]$ , we have

$\beta\circ\nabla=P_{[\ovalbox{\tt\small REJECT}]}\circ d\circ\beta$

(see [BR], $p22$ ). This means that the Levi-Civita connection for the Riemannian
symmetric space $(N, g)$ is nothing but the flat differentiation in $N\times \mathscr{G}$ followed
by projection. We have the following lemma.

LEMMA 1.1. A curve $\gamma(t)$ parametrized by arc-length $t$ is a circle of curvature
$\kappa(>0)$ if and only if the following equations hold:

(1.4) $\left\{\begin{array}{l}\frac{d}{dt}\alpha_{\ovalbox{\tt\small REJECT}}(\frac{d}{dt})+[\alpha_{\mathscr{J}}(\frac{d}{dt}),\alpha_{\ovalbox{\tt\small REJECT}}(\frac{d}{d\iota})]=L,\\\frac{dL}{dt}+[\alpha_{ff}(\frac{d}{dt}),L]=-\kappa^{2}\alpha_{\ovalbox{\tt\small REJECT}}(\frac{d}{dt}).\end{array}\right.$

$PR\infty F$ . It follows from (1.3) that

$\beta\circ\nabla_{t}\dot{\gamma}=P_{[\ovalbox{\tt\small REJECT}]}\circ\frac{d}{dt}\beta(\dot{\gamma})$

$=AdF\circ\{\frac{d}{dt}\alpha_{\ovalbox{\tt\small REJECT}}(\frac{d}{dt})+[\alpha ff(\frac{d}{dt}),$ $\alpha_{\mathscr{M}}(\frac{d}{dt})]\}$ .

Repeating this process one more time, we have (1.4). q.e. $d$ .

Here, we give some examples which satisfy the equation (1.4).

EXAMPLE 1.1 (Circles of the first kind). When $\gamma$ is a circle of the first kind,
the equation (1.4) is reduced to the following equations:
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$\left\{\begin{array}{l}[H,X]=Y\\[H,Y]=-X,\end{array}\right.$

where $\dot{\gamma}(0)=X,$ $(\nabla_{t}\dot{\gamma}(t))(0)=\kappa Y$ under the identification $\mathscr{M}\cong T_{0}N$ by $\beta$ . When
$N$ is a Riemannian symmetric space of rank one, since there is always such
$H\in ff$ for any orthonormal two vectors {X, $Y$ } with $($ ad $H)^{2}=-1$ on a plane
spanned by $X$ and $Y$, it follows from the uniqueness of the solutions of ordinary
differential equation that any circle of curvature $\kappa$ is of the form $\exp t(\kappa H+X)$ .
$0$ (see [MT]). Since, if $\gamma(0)=\gamma(s)$ for some $s>0$ , then $\gamma(t)=\gamma(s+t)$ holds for
any 1, we see that any circle of the first kind is a simple curve. A Riemannian
homogeneous space which admits no circles other than circles of the first kind is
necessarily a Riemannian symmetric space of rank one or a Euclidean space(see
[MT]).

EXAMPLE 1.2 (Circles of the second kind). Choose $X,$ $Y\in \mathscr{M}$ with the prop-
erties $\Vert X\Vert^{2}=\Vert Y\Vert^{2}=1,$ $g(X, Y)=0$ and [X, $Y$] $=0$ . We then have $\alpha ff(d/dt)=0$ ,
$\alpha_{\mathscr{M}}(d/dt)=\cos(\kappa t)\cdot X+\sin(\kappa t)\cdot Y$ . Note that $\Vert\dot{\gamma}(t)\Vert=\Vert AdF(t)\cdot\alpha_{\mathscr{M}}(d/dt)\Vert=1$ .
Set $L=\kappa(-\sin(\kappa t)\cdot X+\cos(\kappa t)\cdot Y)$ . We then see that the equation (1.4) holds.
In this case, $\dot{\gamma}(0)=\alpha_{\mathscr{M}}(d/dt)|_{t=0}=X,$ $(\nabla_{t}\dot{\gamma}(t))(0)=\kappa Y$ under the identification
$\mathscr{M}\cong T_{0}N$ by $\beta$ . Henceforth, $\gamma(t)$ is a circle of curvature $\kappa(>0)$ by Lemma 1.1. It
is clear that $\gamma(t)$ is a closed curve of prime period $ 2\pi/\kappa$ . Moreover, it is easy to
see that $\gamma(t)$ lies on a 2-dimensional totally geodesic flat surface in $N$. Therefore,
if $N$ is compact and admits a 2-dimensional flat torus as a totally geodesic
submanifold then $\gamma(t)$ is a non-simple curve if and only if $\kappa\leq\sqrt{c}/\pi$ , where $c$

is the maximal sectional curvature of $N$. In particular, when $N$ is a compact
Hermitian symmetric space of rank greater than 1 we see that $N$ admits infinitely
many non-simple circles.

We now explain the position of the above examples among circles in
Riemannian symmetric spaces of compact or non-compact type. In this case, we
shall assume that the Riemannian metric $g$ is given by the Killing form $B$ of $\mathscr{G}$ .
Fix arbitrary $X\in \mathscr{M}$ , and set

$m_{1}(X)=\{[H, X]|H\in ff\}$ , $m_{2}(X)=\{[H, X]|H\in \mathscr{K}[H, [H, X]]=-X\}$ .

It follows from $g([H, X], Z)=(-1)^{s}B(H, [X, Z])$ , where $s=0$ or 1 according as
$N$ is of noncompact or compact type, that the orthogonal complement $m_{1}^{\perp}(X)$

of $m_{1}(X)$ in $\mathscr{M}$ with respect to $g$ is given by

$m_{1}^{\perp}(X)=\{Z\in \mathscr{M}|[X, Z]=0\}$ .
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Therefore, if $Y\in m_{2}(X)$ then the circle is of the first kind, and if $Y\in m_{1}^{\perp}(X)$

then the circle is of the second kind. Note that $m_{1}^{\perp}(X)$ is equal to the curvature
nullity space $N(X)=\{Z\in \mathscr{M}|g(R(X, Z)Z, X)=0\}$ , where $R$ is the curvature
tensor of $(N, g)$ . Thus, the remaining class of circles in a Riemannian symmetric
space consists of circles which have the property $\dot{\gamma}(0)=X,$ $(\nabla_{l}\dot{\gamma}(t))(0)=\kappa Y$ and
$Y=aZ+bW$ with $Z\in m_{1}^{\perp}(X),$ $W\in m_{1}(X),$ $a^{2}+b^{2}=1$ , where $0<|b|<1$ , or
$|b|=1$ and $W\in m_{1}(X)\backslash m_{2}(X)$ . We call the circle of this kind a circle of the
general kind.

An equation of the circles of curvature $\kappa$ in $N$ is now interpreted by the
following system of ordinary differential equations of first order:

THEOREM 1.1. Represent $F$ as $F=gh$ , where $h:R\rightarrow K$ and $g$ has a property
that $g^{-1}(dg/dt)\in \mathscr{M}$ . Then, $\gamma=\pi\circ F$ is a circle of curvature $\kappa$ with initial
conditions $\dot{\gamma}(0)=X,$ $(\nabla_{l}\dot{\gamma}(t))(0)=\kappa Y$ if and only if $g$ is a solution of the following
$d_{l}fferential$ equation

(1.5) $g^{-1}\frac{dg}{dt}=\cos(\kappa t)X+\sin(\kappa t)Y$ with $g(O)=I$ .

Moreover, each entry of the solution $g(t)$ is represented by the power series of $t$

with infinite radius of convergence.

PROOF. For $F=gh$ , we have

$F^{-1}\frac{dF}{dt}=Adh^{-1}(g^{-1}\frac{dg}{dt})+h^{-1}\frac{dh}{dt}$ .

Therefore, by our assumption on the choice of $g$ we have

$\alpha_{\ovalbox{\tt\small REJECT}}=Adh^{-1}(g^{-1}\frac{dg}{dt})$ , $\alpha ff=h^{-1}\frac{dh}{dt}$ .

Set $\tilde{\alpha}_{\ovalbox{\tt\small REJECT}}=Adh\alpha_{\ovalbox{\tt\small REJECT}}$ . Then, differentiating this equation, we obtain

$\frac{d\tilde{\alpha}}{dt}=Adh\{\frac{d\alpha_{\ovalbox{\tt\small REJECT}}}{dt}+[\alpha_{X}, \alpha]\}$ .

Again by differentiating this equation, from Lemma 1.1, we find that $\gamma=\pi\circ F$ is
a circle of curvature $\kappa$ if and only if $d^{2}\tilde{\alpha}_{\ovalbox{\tt\small REJECT}}/d\iota^{2}=-\kappa^{2}\tilde{\alpha}_{\ovalbox{\tt\small REJECT}}$ . This and the initial
conditions imply that

$\tilde{\alpha}_{\ovalbox{\tt\small REJECT}}=\cos(\kappa t)X+\sin(\kappa t)Y$ .
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Since $\tilde{\alpha}_{\mathscr{M}}=g^{-1}(dg/dt)$ , we have (1.5). Now, the general theory of ordinary
differential equation implies that the solution of (1.5) always exists for all $t$ (if
necessary, by taking the real and imaginary part of each entry we may transfer
(1.5) to the real-valued equation of the same type). Moreover, since all the
coefficients in the right hand side of (1.5) are represented by power series of $t$ with
infinite radius of convergence, it follows from the Cauchy’s method of majorant
series that the solution is also represented by power series of $t$ with infinite radius
of convergence. q.e. $d$ .

REMARK. (1) For the circle of the first kind, we take $F=\exp t(\kappa H+X)$ ,
$g=\exp t(\kappa H+X)\cdot\exp t(-\kappa H)$ and $h=\exp t(\kappa H)$ . For the circle of the second
kind, we take $F=g=\exp((1/\kappa)\sin(\kappa t)X+(1/\kappa)(1-\cos(\kappa t))Y)$ and $h=I$ .

(2) Since a differential equation $h^{-1}(dh/dt)=\alpha ff$ always has a solution $h$ , we
see that $g=Fh^{-1}$ always satisfies $g^{-1}(dg/dt)\in \mathscr{M}$ for such a choice of $h$ (cf. p69
of [KN]).

\S 2. When ls a Holomorphic Circle Closed in $G_{m}(C^{m+n})$?

First of all, we review some fundamental facts on the geometry of complex
Grassmann manifold. Let $G_{m}(C^{m+n})$ be a complex Grassmann manifold of m-
dimensional complex subspaces in $C^{m+n}$ . In this case, $G=SU(m+n),$ $K=$

$S(U(m)\times U(n))$ . Moreover, we have

$\mathscr{M}=\{\left(\begin{array}{ll}0 & -A^{*}\\A & 0\end{array}\right)|A$ is an $n\times m$ –complex $matrix\}$ ,

where $A^{*}$ is the adjoint matrix of A and $0$ is an appropriate square zero-matrix.
Let $HM(m+n)$ be the space of all Hermitian matrices of order $m+n$ . Define
$E_{1}\in HM(m+n)$ by

$E_{1}=\left(\begin{array}{ll}I_{m} & 0\\0 & 0\end{array}\right)$ .

Here $I_{m}$ is the identity matrix of order $m$ . Define a map $\tilde{p}:SU(m+n)\rightarrow$

$HM(m+n)$ by $\tilde{\rho}(g)=gE_{1}g^{-1}$ . The map $\tilde{p}$ induces an injective map
$\rho:SU(m+n)/S(U(m)\times U(n))\rightarrow HM(m+n)$ . Since $\rho$ is an immersion at the
base point $0$ and $p$ is G-equivariant, we see that $\rho$ is an embedding. We give
$HM(m+n)$ a Hermitian trace metric $h$ with respect to which $p$ is an isometric
embedding. If we define $h$ by $h(A, B)=(2/c)tr(AB^{*})$ for $A,$ $B\in HM(m+n)$ then
$G_{m}(C^{m+n})$ with the induced metric $p^{*}h$ has a maximal sectional curvature $c>0$ .
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Let $H_{0}=\left(\begin{array}{ll}-(n\sqrt{-1}/(m+n))I_{m} & 0\\0 & (m\sqrt{-1}/(m+n))I_{n}\end{array}\right)$ be an element of the

center of $\mathscr{K}$ Then, an invariant complex structure $J$ of $G_{m}(C^{m+n})$ is given by
$J_{0}=\pm adH_{0}$ at $0$ .

In case of circles in compact Riemannian symmetric space of rank one, it
is possible to determine the closedness of the circle by solving the cubic eigen-
equation. The reason why the closedness of the circle is determined by such a
simple equation is that any circle is contained in a totally geodesic complex
submanifold $CP^{2}$ (see [AMU]). On the other hand, it is not so easy to determine
the closedness of circles of the first kind even in $G_{2}(C^{4})$ . In fact, there are circles
of the first kind fully embedded in $G_{2}(C^{4})$ . For example, take

$X=(_{A}^{0}$ $-A^{*}0$ , $H=\left(\begin{array}{ll}B & 0\\0 & C\end{array}\right)$

and

$A=\frac{\sqrt{c}}{\sqrt{28}}(_{-2}^{-1}$ $11$ , $B=(^{\sqrt{-1}}0$ $\sqrt{-1}^{0}$ , $C=(^{2\sqrt{-1}}0$ $00$ ,

We then have $[H, [H, X]]=-X$ . Set

$Y=[H, X]$ , $Z=[[X, Y],$ $X$], $W=[[X, Y],$ $Y$],

$L=[[X, Y],$ $Z$], $S=[[X, Z],$ $X$], $T=[[X, W],$ $X$], $U=[[X, Y],$ $W$].

Then, $Span_{R}\{X, Y, Z, W, L, S, T, U\}$ is an 8-dimensional subspace of $\mathscr{M}$ . Hence-
forth, a circle $\gamma(t)=\exp t(\kappa H+X)\cdot 0$ is fully embedded in $G_{2}(C^{4})$ .

Therefore, we investigate the closedness of circles in the special class, i.e.,
holomorphic circles.

DEFINITION. A curve $\gamma(t)$ parametrized by arc-length $t$ in a K\"ahler manifold
$M$ is said to be a holomorphic circle of curvature $\kappa$ if $\nabla_{l}\dot{\gamma}(t)=\pm\kappa J\dot{\gamma}(t)$ , where $J$

is the complex structure tensor of $M$.

In case where $M$ is an irreducible Hermitian symmetric space, an invariant
complex structure on $M$ is given at $0$ by $J_{0}=\pm ad(H_{0})$ for some element of the
center of .Yr Thus, in this case, any holomorphic circle belongs to the class of
circles of the first kind.

In case where $M=Q^{2}=CP^{1}(c)\times CP^{1}(c)$ , there are two choices of $H_{0}$ as
follows:
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$H_{0}=(\frac{0}{0,0}1$ $0001$ $0000$ $0000$ , or $H_{0}=(0000$ $0000$ $-1000$ $0001$

We have

THEOREM 2.1. Any circle $\gamma(t)$ of the first kind in $Q^{2}$ is a holomorphic circle
with respect to $J_{0}=\pm adH_{0}$ for some choice of $H_{0}\in \mathscr{K}$ Moreover, for a circle of
curvalure $\kappa$ wilh $\dot{\gamma}(0)=X=\left(\begin{array}{ll}0 & -{}^{t}A\\A & 0\end{array}\right)\in \mathscr{M}$ , where $A$ is a real square malrix of
order 2, we have the $fo$llowing:

(1) If rank $A<2$ then $\gamma(t)$ lies on $CP^{1}(c)$ and it is a simple closed curve of
prime period $2\pi/\sqrt{\kappa^{2}+c}$ .

(2) If ${}^{t}AA=(c/8)I_{2}$ then $\gamma(t)$ lies on $Q^{1}=CP^{1}(c/2)$ and it is a simple closed
curve of prime period $2\pi/\sqrt{\kappa^{2}+c}/2$ .

(3) Otherwise, let $\alpha_{1},$ $\alpha_{2}$ be the eigenvalues of ${}^{t}AA$ . Then $\gamma(t)$ is a simple closed
curve $lf$ and only $lf$ the ratio $\sqrt{\kappa^{2}+4\alpha_{1}}/\sqrt{\kappa^{2}+4\alpha_{2}}$ is a rational number. In this
case, the prime period is the least common integral multiple of $2\pi/\sqrt{\kappa^{2}+4\alpha_{1}}$ and
$2\pi/\sqrt{\kappa^{2}+4\alpha_{2}}$ .

PROOF. Any element $H\in\ovalbox{\tt\small REJECT}$ is represented by

$H=(000$ $a000$
$-b000$ $0b00$ , $(a, b\in R)$ .

For any $X=\left(\begin{array}{ll}0 & -{}^{t}A\\A & 0\end{array}\right)$ , where $A=\left(\begin{array}{ll}x & y\\Z & w\end{array}\right)$ with $x,$ $y,$ $z,$ $w\in R$ and $x^{2}+y^{2}+$

$z^{2}+w^{2}=c/4$ , if $\gamma(t)=\exp t(\kappa H+X)\cdot 0$ is a circle of curvature $\kappa$ then we must
have $[H, [H, X]]=-X$ , which is equivalent to the following equations:

(2.1) $\left\{\begin{array}{l}(a^{2}+b^{2})x-2abw=x, (a^{2}+b^{2})z+2aby=z,\\(a^{2}+b^{2})y+2abz=y, (a^{2}+b^{2})w-2abx=w.\end{array}\right.$

The normalization $\Vert X\Vert^{2}=\Vert[H, X]\Vert^{2}$ means that $c/4=(c/4)(a^{2}+b^{2})-4ab\det A$ .
Therefore, if rank $A<2$ then we have $a^{2}+b^{2}=1$ , which, together with (2.1),
yields $ab=0$ . Hence ad $H$ is an invariant complex stmcture of $Q^{2}$ . Next suppose
that rank $A=2$ . It follows from (2.1) that if $y^{2}\neq z^{2}$ or $x^{2}\neq w^{2}$ then $a^{2}+b^{2}=1$

and $ab=0$ , hence ad $H$ is an invariant complex structure. Thus, the remaining
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case is given by

$\left\{\begin{array}{l}y=z\\x=-w\\(a+b)^{2}=1\end{array}\right.$ or $\left\{\begin{array}{l}y=-z\\x=w\\(a-b)^{2}=1\end{array}\right.$

because the case where $y=z,$ $x=w$ or $y=-z,$ $x=-w$ implies that $a^{2}+b^{2}=1$

and $ab=0$ . However, a circle for the remaining case is also a holomorphic circle
because we have $[H, X]=\pm J_{0}X$ . Moreover, since ${}^{t}AA=(c/8)I_{2}$ the corre-
sponding circle lies on $Q^{1}$ . This fact and the rest of our claim follows from more
general result Theorem 2.2 below. q.e. $d$ .

Since any compact Hermitian symmetric space of rank greater than one
admits $Q^{2}$ as a totally geodesic K\"ahler submanifold, we obtain the following:

COROLLARY 2.1. On a compact Hermitian symmetric space of rank $r(\geq 2)$ ,

there exist closed holomorphic circles and open holomorphic circles of any given
curvature.

In the following, we determine the closedness or non-closedness of holomor-
phic circles in $G_{m}(C^{m+n})$ . We denote by $CP^{n}(r)$ an n-dimensional complex pro-
jective space of constant holomorphic sectional curvature $r(>0)$ .

THEOREM 2.2. Let $\gamma(t)=\exp t(\kappa H_{0}+X)\cdot 0$ be a holomorphic circle of
curvature $\kappa(>0)$ in $G_{m}(C^{m+n})$ with maximal sectional curvature $c$ .

(1) If $A^{*}A$ is unitary equivalent to $c/(4l)\left(\begin{array}{ll}I_{l} & 0\\0 & 0\end{array}\right)$ for some $l(1\leq l\leq m)$ ,

then $\gamma(t)$ lies on $CP^{1}(c/l)$ and is a simple closed curve of prime period
$2\pi/\sqrt{\kappa^{2}+c}/l$ .

(2) In general, let $\alpha_{1},$ $\alpha_{2},$
$\ldots,$

$\alpha_{s}$ be the non-zero eigenvalues of $A^{*}A$ which are

different from each other. Then $\gamma(t)$ is a simple closed curve if and only $\iota f$ each
ratio $\sqrt{\kappa^{2}+4\alpha_{j}}/\sqrt{\kappa^{2}+4\alpha_{k}}$ for $j,$ $k=1,2,$ $\ldots,$

$s$ is a rational number. In this case,
the prime period is the least common integral multiple of $2\pi/\sqrt{\kappa^{2}+4\alpha_{1}},$

$\ldots$ ,
$2\pi/\sqrt{\kappa^{2}+4\alpha_{s}}$ .

$PR\infty F$ . First of all, without loss of generality, we may suppose that

$H_{0}=\left(\begin{array}{ll}-(n/(m+n))\sqrt{-1}I_{m} & 0\\0 & (m/(m+n))\sqrt{-1}I_{n}\end{array}\right)$ .
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The initial tangent vector is $X=\left(\begin{array}{ll}0 & -A^{*}\\A & 0\end{array}\right)$ , where $A$ is an $n\times m$-complex

matrix with $tr(A^{*}A)=c/4$ . Since $J_{0}X=\left(\begin{array}{ll}0 & iA^{*}\\iA & 0\end{array}\right)$ , we have $[[X, J_{0}X],$ $X$] $=$

$4\left(\begin{array}{ll}0 & iA^{*}AA^{*}\\iAA^{*}A & 0\end{array}\right)$ . If $A^{*}A$ is unitary equivalent to $c/(4l)\left(\begin{array}{ll}I_{l} & 0\\0 & 0\end{array}\right)$ , then we

see that $A^{*}AA^{*}=c/(4l)A^{*}$ and $g(R(X, J_{0}X)J_{0}X,$ $X$) $=g([[X, J_{0}X], X],J_{0}X)=$

$c/l$ . Note that the prime period of circle of curvature $\kappa$ in $CP^{1}(c/l)$ is equal
to $2\pi/\sqrt{\kappa^{2}+c}/l$ . Next we show (2). Set $V=\kappa H_{0}+X$ . Let $P=$

$\left(\begin{array}{llll}u_{1}^{f} & u_{2}^{f} & \cdots & u_{m+n}^{f}\\u_{1}^{b} & u_{2}^{b} & \cdots & u_{m+n}^{b}\end{array}\right)\in U(m+n)$ be a unitary matrix such that each $\left(\begin{array}{l}u_{j}^{f}\\u_{j}^{b}\end{array}\right)$ is

an eigenvector of $V$ with eigenvalue $\lambda_{j}$ for $j=1,2,$ $\ldots,$ $m+n$ , where $u_{j}^{f}$ (resp. $u_{j}^{b}$ )
is a complex m-dimensional (resp. $n$-dimensional)column vector. Then the

condition $V\left(\begin{array}{l}u_{j}^{f}\\u_{j}^{b}\end{array}\right)=\lambda_{j}\left(\begin{array}{l}u_{j}^{f}\\u_{j}^{b}\end{array}\right)$ leads to

(2.2) $\left\{\begin{array}{l}-\frac{n\sqrt{-1}}{m+n}\kappa u_{j}^{f}-A^{*}u_{j}^{b}=\lambda_{j}u_{j}^{f}\\Au_{j}^{f}+\frac{m\sqrt{-1}}{m+n}\kappa u_{j}^{b}=\lambda_{j}u_{j}^{b}\end{array}\right.$ $(j=1,2, \ldots, m+n)$

.

Therefore, we obtain $(A^{*}A)u_{j}^{f}=-(\lambda_{j}-m\sqrt{-1}\kappa/(m+n))(\lambda_{j}+n\sqrt{-1}\kappa/(m+n))u_{j}^{f}$ .
Hence, the eigenvalues of $V$ consist of the set

$\{\frac{m\sqrt{-1}\kappa}{m+n},$ $-\frac{n\sqrt{-1}\kappa}{m+n},\frac{\sqrt{-1}}{2}(\frac{m-n}{m+n}\kappa\pm\sqrt{\kappa^{2}+4\alpha_{1}}),$
$\ldots$

$\frac{\sqrt{-1}}{2}(\frac{m-n}{m+n}\kappa\pm\sqrt{\kappa^{2}+4\alpha_{s}})$

Denoting by $\langle, \rangle$ the usual Hermitian inner product on $C^{m}$ or $C^{n}$ and noting
that $\langle u_{j}^{b}, u_{l^{b}}\rangle=\delta_{jl}-\langle u_{j}^{f}, u_{l}^{f}\rangle$ for $1\leq j,$ $l\leq m+n$ , we obtain by (2.2) that

$\left\{\begin{array}{l}\lambda_{j}\langle u_{j}^{f},u_{l^{f}}\rangle=(\frac{m-n}{m+n}\sqrt{-1}\kappa+\overline{\lambda_{l}})\langle u_{j}^{f},u_{l}^{f}\rangle forj\neq l,\\(\lambda_{j}+\frac{n}{m+n}\sqrt{-1}\kappa)\Vert u_{j}^{f}\Vert^{2}=-(\overline{\lambda_{j}}+\frac{m}{m+n}\sqrt{-1}\kappa)||u_{j}^{b}\Vert^{2} forj=1,2,\ldots,m+n.\end{array}\right.$

These imply that $\lambda_{j}\neq(m/(m+n))\sqrt{-1}\kappa$ if and only if $u_{j}^{f}\neq 0$ . Moreover,
if $\langle u_{j}^{f}, u_{k}^{f}\rangle\neq 0$ for $j\neq k$ then $\lambda_{j}+\lambda_{k}=((m-n)/(m+n))\sqrt{-1}\kappa$ holds. There-
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fore, if $\langle u_{j}^{f}, u_{k}^{f}\rangle\neq 0$ for $j\neq k$ then we must have $\{\lambda_{j}, \lambda_{k}\}=\{(\sqrt{-1}/2)$ .
$(((m-n)/(m+n))\kappa+\sqrt{\kappa^{2}+4\alpha_{d}}),$ $(\sqrt{-1}/2)(((m-n)/(m+n))\kappa-\sqrt{\kappa^{2}+4\alpha_{d}})$ }
for some $1\leq d\leq s$ . On the other hand, the eigenvectors which correspond to the
eigenvalues $\{-(n/(m+n))\sqrt{-1}\kappa,$ $(\sqrt{-1}/2)(((m-n)/(m+n))\kappa+\sqrt{\kappa^{2}+4\alpha_{1}}),$

$\ldots$ ,
$(\sqrt{-1}/2)(((m-n)/(m+n))\kappa+\sqrt{\kappa^{2}+4\alpha_{s}})\}$ counting with their multiplicities
form an orthonormal basis for $C^{m}$ . But, since the eigenvector corresponding to
the eigenvalue $(\sqrt{-1}/2)(((m-n)/(m+n))\kappa-\sqrt{\kappa^{2}+4\alpha_{d}})$ is orthogonal to any
vector of the basis except the eigenvector corresponding to the eigenvalue
$(\sqrt{-1}/2)(((m-n)/(m+n))\kappa+\sqrt{\kappa^{2}+4\alpha_{d}})$ , for any $d$ with $1\leq d\leq s$ we see that
a pair of the eigenvalues with the inner product of the corresponding eigenvectors
being non-zero must be of the form $\{(\sqrt{-1}/2)(((m-n)/(m+n))\kappa+\sqrt{\kappa^{2}+4\alpha_{d}})$ ,
$(\sqrt{-1}/2)(((m-n)/(m+n))\kappa-\sqrt{\kappa^{2}+4\alpha_{d}})\}$ . Now, $\gamma(0)=\gamma(t_{0})$ is equivalent to
Ad $\exp t_{0}$ V. $E_{1}=E_{1}$ . Set $Z_{1}=P^{-1}E_{1}P$ and $D_{t}=diag(e^{\lambda_{1}}{}^{t}e^{\lambda_{2^{f}}}, \ldots, e^{\lambda_{m+n}t})$ , where
diag $(a_{1}, a_{2}, \ldots, a_{m+n})$ is a diagonal matrix with $a_{1},$ $a_{2},$

$\ldots,$ $a_{m+n}$ as the diagonal
elements. Then, we see that $\gamma(0)=\gamma(\iota_{0})$ is equivalent to $D_{l_{0}}Z_{1}=Z_{1}D_{l_{0}}$ , which
is also equivalent to $(\lambda_{j}-\lambda_{k})t_{0}\in 2\pi iZ$ for $\langle u_{j}^{f}, u_{k}^{f}\rangle\neq 0$ . This means that
$\sqrt{\kappa^{2}+4\alpha_{d}}t_{0}\in 2\pi Z$ for $1\leq d\leq s$ , so that $\sqrt{\kappa^{2}+4\alpha_{j}}/\sqrt{\kappa^{2}+4\alpha_{k}}$ is rational for
$1\leq j,$ $k\leq s$ . In this case, the prime period is equal to the least common integral
multiple of $2\pi/\sqrt{\kappa^{2}+4\alpha_{1}},$

$\ldots,$

$2\pi/\sqrt{\kappa^{2}+4\alpha_{s}}$ . q.e.d.
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