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INDUCED MO-MAPPINGS

By

Janusz J. CHARATONIK and Wrodzimierz J. CHARATONIK

Abstract. A mapping $f$ : $X\rightarrow Y$ between continua $X$ and $Y$ is
called an MO-mapping provided that it can be represented as the
composition of two mappings, $f_{1}$ : $X\rightarrow Z$ and $f_{2}$ : $Z\rightarrow Y$ , such that
$f_{1}$ is open and $f_{2}$ is monotone. Induced MO-mappings, $2^{f}$ and $C(f)$ ,
between hyperspaces are studied. In particular an example is con-
structed of an open mapping $f$ : $[0,1]\rightarrow[0,1]$ for which $C(f)$ is not
an MO-mapping. This answers two questions asked by H. Hoso-
kawa.

All spaces considered in this paper are assumed to be metric. A mapping
means a continuous function. To exclude some trivial statements we assume that
all considered mappings are not constant. A continuum means a compact
connected space. Given a continuum $X$ with a metric $d$, we let $2^{X}$ denote the
hyperspace of all nonempty closed subsets of $X$ equipped with the Hausdorff
metric $H$ defined by

$H(A, B)=\max\{\sup\{d(a, B) : a\in A\}, \sup\{d(b, A) : b\in B\}\}$

(see e.g. [9, (0.1), p. 1 and (0.12), p. 10]). Further, we denote by $C(X)$ the hyper-
space of all subcontinua of $X$, i.e., of all connected elements of $2^{X}$ . The reader is
referred to Nadler’s book [9] for needed information on the structure of
hyperspaces.

Given a mapping $f$ : $X\rightarrow Y$ between continua $X$ and $Y$, we consider
mappings (called the induced ones)

$2^{f}$ : $2^{X}\rightarrow 2^{Y}$ and $C(f)$ : $C(X)\rightarrow C(Y)$
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defined by

$2^{f}(A)=f(A)$ for every $A\in 2^{X}$ and $C(f)(A)=f(A)$ for every $A\in C(X)$ .

A mapping $f:X\rightarrow Y$ between spaces $X$ and $Y$ is said to be:
–open, provided that the image of an open subset of the domain is open in the
range;
–monotone, provided that it has connected point-inverses;
$-OM$-mapping, provided that it can be represented as the composition of two
mappings, $f=f_{2}\circ f_{1}$ , such that $f_{1}$ is monotone and $f_{2}$ is open;
$-MO$-mapping, provided that it can be represented as the composition of two
mappings, $f=f_{2}\circ f_{1}$ , such that $f_{1}$ is open and $f_{2}$ is monotone;
–confluent, provided that for each subcontinuum $Q$ of $Y$ each component of
$f^{-1}(Q)$ is mapped onto $Q$ under $f$ .

Monotone, as well as open mappings of compact spaces are known to be
confluent, [12, Theorem 7.5, p. 148]. OM-and MO-mappings were introduced in
[7, Section 3, p. 104] and studied in [8]. It is known that OM-mappings coincide
with quasi-interior ones, as introduced in [13, p. 9], see [7, Corollary 3.1, p. 104],
and that all MO-mappings are OM-mappings, [7, Corollary 3.2, p. 104].

Let $\mathfrak{M}_{j}$ , where $i\in\{1,2,3\}$ be some three classes of mappings between
continua. A general problem which is related to a given mapping and to the two
induced mappings is to find all interrelations between the following three
statements:

(0.1) $f\in \mathfrak{M}_{1}$ ;

(0.2) $C(f)\in \mathfrak{M}_{2}$ ;

(0.3) $2^{f}\in \mathfrak{M}_{3}$ .

There are some papers in which particular results conceming this problem are
shown for various classes $\mathfrak{M}_{l}$ of mappings. In the present paper we will discuss
possibly implications between $(0.1)-(0.3)$ for the class of MO-mappings. We start
with recalling some related results.

The following results conceming induced mappings for the classes of
monotone, of open, and of OM-mappings are known. For monotone mappings
see [10, Lemma 2.1, p. 750]; compare [6, Theorem 1.1, p. 121], [3, Lemma 2.3,
p. 2], [2, Theorem 3.3, p. 4], and [5, Theorem 3.2, p. 241]. For open mappings
see [5, Theorem 4.3, p. 243]; compare also [4, Theorem 3.2]). For OM-mappings
see [5, Theorem 5.2, p. 244].
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1. THEOREM. Let a surjective mapping $f:X\rightarrow Y$ between continua $X$ and $Y$

be given. Then the following conditions are equivalen $t$ ;

(1.1) $f:X\rightarrow Y$ is monotone;

(1.2) $C(f):C(X)\rightarrow C(Y)$ is monotone;

(1.3) $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ is monotone.

2. THEOREM. Let a surjective mapping $f$ : $X\rightarrow Y$ between continua $X$ and $Y$

be given. Consider the following conditions:

(2.1) $f:X\rightarrow Y$ is open;

(2.2) $C(f):C(X)\rightarrow C(Y)$ is open;

(2.3) $2^{f}$ : $2^{X}\rightarrow 2^{Y}$ is open.

Then (2.1) and (2.3) are equivalent, and each of them is implied by (2.2).

3. THEOREM. Let a surjective mapping $f$ : $X\rightarrow Y$ between continua $X$ and $Y$

be given. Then the following conditions are equivalent:

(3.1) $f:X\rightarrow Y$ is an OM-mapping;

(3.2) $C(f):C(X)\rightarrow C(Y)$ is an OM-mapping;

(3.3) 2 $f$ : 2 $x\rightarrow 2^{Y}$ is an OM-mapping.

An example is known [5, Section 4, Example, p. 244] of an open surjective
mapping $f$ : $X\rightarrow Y$ between locally connected continua $X$ and $Y$ such that the
induced mapping $C(f):C(X)\rightarrow C(Y)$ is not open. It is so because of the
following result, [1, Theorem 1].

4. THEOREM. If a continuum $X$ is locally connected, and for a mapping
$f$ : $X\rightarrow Y$ the induced mapping $C(f)$ : $C(X)\rightarrow C(Y)$ is open, then $f$ is monotone.

As a consequence of this theorem the following corollary has been shown in
[1, Corollary 2].

5. COROLLARY. Let a continuum $X$ be hereditarily locally connected, and a
mapping $f:X\rightarrow Y$ be such that the induced mapping $C(f):C(X)\rightarrow C(Y)$ is
open. Then $f$ is a homeomorphism.



248 J. J. CHARATONIK and W. J. CHARATONIK

The following result is a consequence of Theorems 1 and 2, see [5, Theorem
5.3, p. 245].

6. COROLLARY. If a mapping $f:X\rightarrow Y$ between continua $X$ and $Y$ is an
MO-mapping, then $2^{f}$ is also an MO-mapping.

Investigating the class $\mathfrak{M}$ of MO-mappings, H. Hosokawa asked in [4,
Remark 3.7] if the condition $f\in \mathfrak{M}$ implies that $C(f)\in \mathfrak{M}$ . Later, in [5, Section
8, Problem 2, p. 249] he asked if the implication holds under an additional
assumption that the mapping $f$ is open. Our next result presents a negative answer
to both these questions. To formulate it we recall a countable family of open
mappings of the closed unit interval onto itself. Let a positive integer $k$ be given
and let $m\in\{0,1, \ldots, k-1\}$ . Define a surjection

(7) $g_{k}$ : $[0,1]\rightarrow[0,1]$

by the following conditions.
(7.1) If $m$ is even, then $gk(m/k)=0$ , and if $m$ is odd, then $gk(m/k)=1$ .
(7.2) For each $m$ the restriction $ gk|[m/k, (m+1)/k]:[m/k, (m+1)/k]\rightarrow$

$[0,1]$ is defined to be linear.
Thus this restriction, and hence the mapping $gk$ is a surjection. Note that
$gk(0)=0$ and $gk(1)$ is either 1 or $0$ according to $k$ is either odd or even. Observe
that $g1$ is the identity, and $g2$ is the tent mapping defined by

(7.3) $g2(x)=\left\{\begin{array}{l}2x, forx\in[0,1/2],\\2-2x, forx\in[1/2,1].\end{array}\right.$

Recall that two mappings $f_{1}$ : $X_{1}\rightarrow Y_{1}$ and $f_{2}$ : $X_{2}\rightarrow Y_{2}$ are said to be
topologically equivalent provided that there exist homeomorphisms $h_{X}$ : $X_{1}\rightarrow X_{2}$

and $h_{Y}$ : $Y_{1}\rightarrow Y_{2}$ such that $f_{2}(h_{X}(x))=h_{Y}(f_{1}(x))$ for each point $x\in X$ . Observe
that this relation is an equivalence in the class of mappings between topological
spaces (see [12, p. 127]). It is known (see [12, (1.3), p. 184]) that a mapping of
$[0,1]$ into itself is open if and only if it is topologically equivalent to
$gk^{I}[0,1]\rightarrow[0,1]$ for some positive integer $k$ .

8. PROPOSITION. If $g_{2}$ : $[0,1]\rightarrow[0,1]$ is the tent mapping, then the induced
mapping $C(g2)$ is an MO-mapping which is neither open nor monotone.

PROOF. Since any nonempty subcontinuum of $[0,1]$ is a closed interval $[x, y]$

with $0\leq x\leq y\leq 1$ , where $[x, x]=\{x\}$ , hence one can assign to $[x, y]\subset[0,1]$ a
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point $(x, y)$ of the triangle

$T=\{(x, y)\in R^{2} : 0\leq x\leq y\leq 1\}$ ,

and, under this correspondence, the topology induced by the Hausdorff metric on
$C([0,1])$ coincides with the Euclidean topology inherited from the plane $R^{2}$ on $T$

(see e.g. [11, p. 62]). To simplify notations we omit the homeomorphism between
$C([0,1])$ and $T$. Thus the formula (7.3) for $g2$ implies the following one for the
induced mapping $C(g_{2}):T\rightarrow T$ :

$C(g2)((x, y))=\left\{\begin{array}{l}(2x,2y) if0\leq y\leq 1/2,\\(\min\{2x,2-2y\},1) if0\leq x\leq 1/2\leq y\leq l,\\(2-2y,2-2x) if1/2\leq x\leq 1.\end{array}\right.$

To see that $C(g_{2})$ so defined is an MO-mapping let us consider two ad-
ditional triangles: $T^{\prime}=\{(x, y)\in T:x+y\leq 1\}$ with vertices $(0,0)$ , $(0,1)$ ,
(1/2, 1/2), and $T^{\prime\prime}=\{(x, y)\in T^{\prime} : 0\leq y\leq 1/2\}$ with vertices $(0,0),$ $(0,1/2)$ ,

(1/2, 1/2). Define a surjection $f_{1}$ : $T\rightarrow T^{\prime}$ such that $f_{1}|T^{\prime}$ is the identity and
$f_{1}|$ $(T\backslash T‘)$ is the symmetry with respect to the straight line $x+y=1$ . Thus $f_{1}$ is
open, and we have

$f_{1}((x, y))=\left\{\begin{array}{l}(x,y)\\(1-y,1-x)\end{array}\right.$ $ififx+y\geq 10\leq x+y.\leq 1$

,

Next define a surjection $f_{2}$ : $T‘\rightarrow T^{\prime\prime}$ such that $f_{2}|T^{\prime\prime}$ is the identity, and
$f_{2}|(T^{\prime}\backslash T^{\prime\prime})$ projects points on the side of $T^{\prime\prime}$ that joins $(0,1/2)$ with (1/2, 1/2).
Thus $f_{2}$ is monotone, and its formula is

$f_{2}((x, y))=\left\{\begin{array}{l}(x,y) if0\leq y\leq 1/2,\\(x,1/2) ify\geq 1/2.\end{array}\right.$

Finally, let $h:T^{\prime\prime}\rightarrow T$ be a homeomorphism defined by $h((x, y))=(2x, 2y)$

for all $(x, y)\in T^{\prime\prime}$ . It can be verified (details are left to the reader) that $C(g_{2})=$

$(h\circ f_{2})\circ f_{1}$ . Thus $C(g_{2})$ is an MO-mapping. The proof is complete.

9. PROPOSITION. Let a mapping $gk:[0,1]\rightarrow[0,1]$ be as in (7). Then for each
integer $k\geq 3$ the induced mapping $C(gk)$ is not an MO-mapping.

PROOF. Suppose on the contrary that for some $k\geq 3$ the induced map-
ping $C(gk):C([0,1])\rightarrow C([0,1])$ can be represented as the composition of two
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mappings, $C(gk)=f_{2}\circ f_{1}$ , where $f_{1}$ is open and $f_{2}$ is monotone. Let $Y=$

$f_{1}(C([0,1]))$ , and put

$A=[0,\frac{1}{2k}]$ , $B=[\frac{2}{k}-\frac{1}{2k},\frac{2}{k}]$ , $C=[\frac{2}{k}$ $\frac{2}{k}+\frac{1}{2k}]$ .

Observe that $C(gk)(A)=C(gk)(B)=C(gk)(C)=[0,1/2]$ . Let $\mathscr{U}=\{P\in C([0,1])$ :
$H(P, A)<1/4k\}$ . Then

(9.1) the restriction $C(gk)|\mathscr{U}$ is one-to-one,

whence $f_{1}|\mathscr{U}$ is one-to-one. We claim that

(9.2) $f_{1}(A)=f_{1}(B)$ .

Indeed, if not, we have $f_{1}(A)\neq f_{1}(B)$ , but $f_{2}(f_{1}(A))=f_{2}(f_{1}(B))=[0,1/2]$ , and
since $f_{2}$ is monotone, there is a continuum $M\subset Y$ with $f_{1}(A),$ $f_{1}(B)\in M$ and
$f_{2}(M)=\{[0,1/2]\}$ . Let $\mathscr{C}\subset C([0,1])$ be the component of $f_{1}^{-1}(M)$ which
contains $A$ . Since $f_{1}$ is open, it is confluent, [12, Theorem 7.5, p. 148], so
$f_{1}(\mathscr{C})=M$ , and thus $\mathscr{C}$ is a nondegenerate continuum containing $A$ . Then
$C(gk)(\mathscr{C}\cap \mathscr{U})$ is a one-point set $\{[0,1/2]\}$ , contrary to (9.1). Thus (9.2) is
established.

Let $\gamma\nearrow=\{P\in C(B) : H(P, B)<1/4k\}$ . Then $ C(gk)|\gamma$ is one-to-one, whence
$ f_{1}|\gamma$ is one-to-one as well. Note that $\gamma$ is not a neighborhood of $B$ .

Let $\{B_{m}\}$ be a sequence of continua in $[0,1]$ satisfying $B_{m}\subset B$ and $2/k\not\in B_{m}$

for each $m\in N$ , and $B=LimB_{m}$ . Observe that $(C(gk))^{-1}(C(gk)(B_{m}))$ has exactly
$k$ points. Therefore $f_{1}^{-1}(f_{1}(B_{m}))$ is a subset of the finite set $(C(gk))^{-1}(C(gk)(B_{m}))$ ,
so it is finite. 0penness of $f_{1}$ implies that $f_{1}^{-1}$ is continuous, see [12, Theorem
4.32, p. 130], so

(9.3) $f_{1}^{-1}(f_{1}(B))$ is finite.

Let $\mathscr{A}$ be the (unique) order arc in $C([0,1])$ from $B$ to $B\cup C$ . By (9.3) the
set $f_{1}(\mathscr{A})$ is a nondegenerate subcontinuum of $Y$. By (9.2) we see that
$A\in f_{1}^{-1}(f_{1}(\mathscr{A}))$ . Then the component $\mathscr{K}$ of $f_{1}^{-1}(f_{1}(\mathscr{A}))$ which contains $A$ is
a nondegenerate subcontinuum of $C([0,1])$ by confluence of $f_{1}$ . Note that
$C(gk)(\mathscr{A})=\{[0,1/2]\}$ , whence $C(gk)(\mathscr{K})=C(gk)(\mathscr{A})=\{[0,1/2]\}$ , contrary to
(9.1). Thus the proof is finished.

As a consequence of Propositions 8 and 9 we have the following result.

10. THEOREM. The identity $g_{1}$ and the tent mapping $g2$ are the only two (up to
equivalence) open mappings $f:[0,1]\rightarrow[0,1]$ for which the induced mapping $C(f)$

is an MO-mapping.
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11. REMARKS. (11.1) Taking as a mapping $f$ : $X\rightarrow Y$ the mapping $gk$ for
some integer $k\geq 3$ we see, by Proposition 9, that even in the case when $f$ is open,
the induced mapping $C(f)$ need not be an MO-mapping.

(11.2) Since openness of $f$ is equivalent to that of $2^{f}$ (see Theorem 2), it
follows from (11.1) that even if $2^{f}$ is an open mapping (an MO-mapping, in
particular), then $C(f)$ need not be an MO-mapping.

The following three questions remain open. The first two of them were asked
in [5, Section 8, Problem 2, p. 249].

12. QUESTIONS. (12.1) If $2^{f}$ is an MO-mapping, must $f$ be an MO-mapping?
(12.2) If $C(f)$ is an MO-mapping, must $f$ be an MO-mapping?
(12.3) If $C(f)$ is an MO-mapping, must $2^{f}$ be an MO-mapping?
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