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INDUCED MO-MAPPINGS

By

Janusz J. CHARATONIK and Wlodzimierz J. CHARATONIK

Abstract. A mapping f: X — Y between continua X and Y is
called an MO-mapping provided that it can be represented as the
composition of two mappings, f; : X — Z and f, : Z — Y, such that
£, is open and f, is monotone. Induced MO-mappings, 2/ and C(f),
between hyperspaces are studied. In particular an example is con-
structed of an open mapping f : [0,1] — [0, 1] for which C(f) is not
an MO-mapping. This answers two questions asked by H. Hoso-
kawa.

All spaces considered in this paper are assumed to be metric. A mapping
means a continuous function. To exclude some trivial statements we assume that
all considered mappings are not constant. A continuum means a compact
connected space. Given a continuum X with a metric d, we let 2% denote the
hyperspace of all nonempty closed subsets of X equipped with the Hausdorff
metric H defined by

H(A, B) = max{sup{d(a,B) : ae A}, sup{d(b,A) : b € B}}

(see e.g. [9, (0.1), p. 1 and (0.12), p. 10]). Further, we denote by C(X) the hyper-
space of all subcontinua of X, i.e., of all connected elements of 2¥. The reader is
referred to Nadler’s book for needed information on the structure of
hyperspaces.

Given a mapping f:X — Y between continua X and Y, we consider
mappings (called the induced ones)

27:2% 52 and C(f): C(X) — C(Y)
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defined by
2/(A4) = f(A) for every A€2* and C(f)(4) = f(A) for every A e C(X).

A mapping f: X — Y between spaces X and Y is said to be:

— open, provided that the image of an open subset of the domain is open in the
range;

— monotone, provided that it has connected point-inverses;

— OM-mapping, provided that it can be represented as the composition of two
mappings, f = f, o f}, such that f; is monotone and f, is open;

— MO-mapping, provided that it can be represented as the composition of two
mappings, f = f, o f;, such that f; is open and f, is monotone;

— confluent, provided that for each subcontinuum Q of Y each component of
f71(Q) is mapped onto Q under f.

Monotone, as well as open mappings of compact spaces are known to be
confluent, [12, Theorem 7.5, p. 148]. OM- and MO-mappings were introduced in
[7, Section 3, p. 104] and studied in [8]. It is known that OM-mappings coincide
with quasi-interior ones, as introduced in [13, p. 9], see [7, Corollary 3.1, p. 104],
and that all MO-mappings are OM-mappings, [7, Corollary 3.2, p. 104].

Let 9M;, where ie {1,2,3} be some three classes of mappings between
continua. A general problem which is related to a given mapping and to the two
induced mappings is to find all interrelations between the following three
statements:

(0.1) feMy;
(0.2) C(f) e My;
(0.3) 2f Ggﬁy

There are some papers in which particular results concerning this problem are
shown for various classes I; of mappings. In the present paper we will discuss
possibly implications between (0.1)—(0.3) for the class of MO-mappings. We start
with recalling some related results.

The following results concerning induced mappings for the classes of
monotone, of open, and of OM-mappings are known. For monotone mappings
see [10, Lemma 2.1, p. 750]; compare [6, Theorem 1.1, p. 121], [3, Lemma 2.3,
p. 2], [2, Theorem 3.3, p. 4|, and [5, Theorem 3.2, p. 241]. For open mappings
see [S, Theorem 4.3, p. 243]; compare also [4, Theorem 3.2]). For OM-mappings
see [5, Theorem 5.2, p. 244].
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1. THEOREM. Let a surjective mapping f : X — Y between continua X and Y
be given. Then the following conditions are equivalent:
(1.1) f: X — Y is monotone;
(1.2) C(f): C(X) — C(Y) is monotone,
(1.3) 2/ : 2% — 2Y is monotone.
2. THEOREM. Let a surjective mapping [ : X — Y between continua X and Y
be given. Consider the following conditions:
(2.1) f: X — Y is open;
(2.2) C(f): C(X) — C(Y) is open;
(2.3) 2/ :2% = 2Y s open.
Then (2.1) and (2.3) are equivalent, and each of them is implied by (2.2).
3. THEOREM. Let a surjective mapping f : X — Y between continua X and Y
be given. Then the following conditions are equivalent:
(3.1) f: X - Y is an OM-mapping;
(3.2) C(f): C(X) — C(Y) is an OM-mapping;
(3.3) 2/ : 2% - 2Y is an OM-mapping.
An example is known [5, Section 4, Example, p. 244]| of an open surjective
mapping f : X — Y between locally connected continua X and Y such that the

induced mapping C(f): C(X) — C(Y) is not open. It is so because of the
following result, [1, Theorem 1].

4. THEOREM. If a continuum X is locally connected, and for a mapping'
f X — Y the induced mapping C(f): C(X) — C(Y) is open, then f is monotone.

As a consequence of this theorem the following corollary has been shown in
[1, Corollary 2].

5. COROLLARY. Let a continuum X be hereditarily locally connected, and a
mapping f : X — Y be such that the induced mapping C(f): C(X) — C(Y) is
open. Then f is a homeomorphism.
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The following result is a consequence of Theorems 1 and 2, see [5, Theorem
5.3, p. 245).

6. COROLLARY. If a mapping f: X — Y between continua X and Y is an
MO-mapping, then 2/ is also an MO-mapping.

Investigating the class M of MO-mappings, H. Hosokawa asked in [4,
Remark 3.7] if the condition f € M implies that C(f) € M. Later, in [5, Section
8, Problem 2, p. 249] he asked if the implication holds under an additional
assumption that the mapping f'is open. Our next result presents a negative answer
to both these questions. To formulate it we recall a countable family of open
mappings of the closed unit interval onto itself. Let a positive integer k be given
and let me {0,1,...,k — 1}. Define a surjection

(7) gk [0,1] = [0,1]

by the following conditions.
(7.1) If m is even, then gx(m/k) =0, and if m is odd, then gix(m/k) = 1.
(7.2) For each m the restriction gi|[m/k,(m-+1)/k]:[m/k,(m+1)/k] —
[0,1] is defined to be linear.
Thus this restriction, and hence the mapping gx, is a surjection. Note that
gx(0) = 0 and gx(1) is either 1 or 0 according to k is either odd or even. Observe
that g, is the identity, and g, is the tent mapping defined by

2x, for xe[0,1/2],
(7.3) g2(x) = {

2 —2x, for xe[l/2,1].

Recall that two mappings f;: X; — Y, and f,: X, — Y, are said to be
topologically equivalent provided that there exist homeomorphisms Ay : X — X
and hy : Y] — Y, such that f,(hx(x)) = hy(fi(x)) for each point x € X. Observe
that this relation is an equivalence in the class of mappings between topological
spaces (see [12, p. 127]). It is known (see [12, (1.3), p. 184]) that a mapping of
[0,1] into itself is open if and only if it is topologically equivalent to
gk = [0,1] — [0,1] for some positive integer k.

8. PropPoOSITION. If g»:[0,1] — [0,1] is the tent mapping, then the induced
mapping C(g2) is an MO-mapping which is neither open nor monotone.

PrROOF. Since any nonempty subcontinuum of [0, 1] is a closed interval [x, y]
with 0 < x < y < 1, where [x,x] = {x}, hence one can assign to [x,y] < [0,1] a
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point (x, y) of the triangle
T={(x,y)eR*:0<x<y<l}

and, under this correspondence, the topology induced by the Hausdorff metric on
C([0, 1]) coincides with the Euclidean topology inherited from the plane R? on T
(see e.g. [11, p. 62]). To simplify notations we omit the homeomorphism between
C([0,1]) and T. Thus the formula for g, implies the following one for the
induced mapping C(g;): T — T

(2x,2y) if 0<y<1/2,
Clg2)((x,y)) = § (min{2x,2 -2y}, 1) if 0<x<1/2<y<]I,
(2-2y,2 - 2x) if 1/2<x<1.

To see that C(g;) so defined is an MO-mapping let us consider two ad-
ditional triangles: 7' = {(x,y)eT:x+ y <1} with vertices (0,0), (0,1),
(1/2,1/2), and T" ={(x,y)e T’ :0 < y <1/2} with vertices (0,0), (0,1/2),
(1/2,1/2). Define a surjection f; : T — T’ such that f;|T’ is the identity and
SLI(T\T') is the symmetry with respect to the straight line x + y = 1. Thus f] is
open, and we have

(x,») f 0<x+y<l,

Sillx, p)) = {(1——y,1—x) if x+y>1.

Next define a surjection f,: 7’ — T” such that f,|T" is the identity, and
LHI(T'\T") projects points on the side of 7" that joins (0,1/2) with (1/2,1/2).
Thus f, is monotone, and its formula is

(x, y) if 0 < y<1/2,

(%)) = { (x,1/2) if y>1/2.

Finally, let A: T” — T be a homeomorphism defined by A((x, y)) = (2x,2y)
for all (x, y) e T”. It can be verified (details are left to the reader) that C(g,) =
(ho f3) o fi. Thus C(gz) is an MO-mapping. The proof is complete.

9. PROPOSITION.  Let a mapping gy : [0,1] — [0,1] be as in (7). Then for each
integer k > 3 the induced mapping C(gx) is not an MO-mapping.

PROOF. Suppose on the contrary that for some k >3 the induced map-
ping C(gx) : C([0,1]) — C([0,1]) can be represented as the composition of two
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mappings, C(gx) = f5 0 f|, where f; is open and f, is monotone. Let Y =
£1(€([0,1])), and put

1 2 1 2 22 1
4= [Oﬁ] B= [E‘ﬂ’%]’ €= [E’E+ﬁ]'
Observe that C(gx)(A) = C(gr)(B) = C(gk)(C) =[0,1/2]. Let % = {P € C([0,1]) :
H(P,A) < 1/4k}. Then

(9.1) the restriction C(gx)|% is one-to-one,

whence f,|% is one-to-one. We claim that
92) f1i(4) = f1(B).

Indeed, if not, we have f,(4) # f1(B), but £,(f,(4)) = £,(f;(B)) =[0,1/2], and
since f, is monotone, there is a continuum M < Y with f,(4), f,(B) e M and
f,(M) ={[0,1/2]}. Let € < C([0,1]) be the component of f;'(M) which
contains A. Since f; is open, it is confluent, [12, Theorem 7.5, p. 148], so
fi(6) = M, and thus ¥ is a nondegenerate continuum containing 4. Then
C(gr)(6N%) is a one-point set {[0,1/2]}, contrary to (9.1). Thus is
established.

Let v ={Pe C(B) : H(P,B) < 1/4k}. Then C(gx)|¥ is one-to-one, whence
fil¥" is one-to-one as well. Note that ¥~ is not a neighborhood of B.

Let {B,.} be a sequence of continua in [0,1] satisfying B,, = B and 2/k ¢ B,
for each m € N, and B = Lim B,,. Observe that (C(gx)) ™ (C(gx)(B»)) has exactly
k points. Therefore f7'(f;(Bm)) is a subset of the finite set (C(g1)) " (C(gr) (Bnm)),

so it is finite. Openness of f; implies that f7' is continuous, see [12, Theorem
4.32, p. 130], so

(9.3) fTN(f(B)) is finite.

Let o/ be the (unique) order arc in C([0,1}) from B to BUC. By the
set fi(«/) is a nondegenerate - subcontinuum of Y. By we see that
Ae fi'(fi(«)). Then the component X of f1'(fi(«)) which contains A4 is
a nondegenerate subcontinuum of C([0,1]) by confluence of f;. Note that
C(gr)() = {[0,1/2]}, whence C(gi)(A") = C(gk)() = {[0,1/2]}, contrary to
(9.1). Thus the proof is finished.

As a consequence of Propositions 8 and 9 we have the following result.

10. THEOREM. The identity g, and the tent mapping g, are the only two (up to
equivalence) open mappings f :(0,1] — [0, 1] for which the induced mapping C(f)
is an MO-mapping.
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11. Remarks. (11.1) Taking as a mapping f : X — Y the mapping g for
some integer k > 3 we see, by Proposition 9, that even in the case when f'is open,
the induced mapping C(f) need not be an MO-mapping.

(11.2) Since openness of f is equivalent to that of 2/ (see Theorem 2), it
follows from (11.1) that even if 2/ is an open mapping (an MO-mapping, in
particular), then C(f) need not be an MO-mapping.

The following three questions remain open. The first two of them were asked

in [5, Section 8, Problem 2, p. 249].

12. Questions. (12.1) If 2/ is an MO-mapping, must f be an MO-mapping?
(12.2) If C(f) is an MO-mapping, must f be an MO-mapping?
(12.3) If C(f) is an MO-mapping, must 2/ be an MO-mapping?
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