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Abstract. The formulas of the Bessel functions are applied to obtain
the estimates of the limiting absorption principle. As an application
we prove a result on smoothing effect for the Schroédinger equation.

1. Introduction

In the present paper, we are mainly concerned with the estimates of the
limiting absorption principle. However we also deal with restriction properties of
the Fourier transform and smoothing effects for dispersive wave equations. They
connect with each other deeply, and it can be said that all of them are the
estimates for Fourier multipliers with non-smooth symbols. The purpose of the
present paper is to improve the results of the previous paper [9] from such a point
of view.

We start with introducing some notations related to the polar coordinate. We
suppose throughout this paper that the space dimension »n satisfies n > 2. First let
A be the Laplace-Beltrami operator on the unit sphere S"~!. Namely
? n-106 A
or? roor r?’
where A is the Laplace operator in Euclidean space R” and r = |x|. It is known
that the eigenvalues of —A are

=k(k+n—2), k=01,2,...

A=

and the projection on to the eigenspace associated with A in L?(S™!) can be
expressed as follows if n > 3:

v+ k

(1.1) Hy f(w) = 35|

| cie-a)r@)do,
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where v = (n—2)/2, C}(z) is the Gegenbauer polynomial of degree k,w @ =
Z;'zl w;@;,d® and |S"~!| are respectively Lebesgue surface measure and the area
of the unit sphere.

Note that the operator Hy can be applied to the functions of R". Namely, we
can replace f(®) by f(r®). Also fractional power (I — A)*(a € R) can be written

as follows.
(I-A)*= Z(l + Ak) " Hy.
k=0
The first result of this paper is

THEOREM 1. Suppose that 0 < a < 1/2 and o' > a. Then we have
(12) I = AT D Pl gy < Ol (A = Ol re,

where the constant C may depend on n, a and o', but does not depend on ue
C(R™) and e C\[0, ).

The estimate (1.2) is an analogue of the estimate obtained by S. Agmon [I]
(see also Kato and Yajima [11]). Recall that Theorem 1.1 in [9] dealt with a
restriction property of the Fourier transform in a similar semi-norm as above.
Also note that the restriction property and the limiting absoption principle are
closely connected. Thus the estimate (1.2) is a variant of Theorem 1.1 in [9] to the
limiting absorption principle. The author expects that, in (1.2), o’ can be taken so
that « = «’. However he could not prove it by a technical reason.

We turn to state the next result. In the previous work [9], we have shown
some results concerning smoothing effects for the homogeneous initial value
problems. The next purpose is to improve it to the inhomogeneous one. Let
u(t,x) ((t,x) € R™"') be a solution to the Schrédinger equation as follows:

i?—zfﬁ- Au=f,
(1.3) ot
Uz = 0.

Then

THEOREM 2. Suppose that 0 < o < 1/2 and o’ > a. Then, concerning the
solutions of the initial value problem (1.3), we have

-1 1-2a’)/2 2 1-
11271 (1 = A2 D ul| o grery < Cl X Fll2ggnn)



On the estimates for Helmholz operator 133

where the constant C may depend on n, a and o', but does not depend on f €
C(f);o (Rn—H)‘

In Theorem 1.3 of [9], we have dealt with a case of the similar regularity
property as above. Theorem 2 says that, compared with the known results (cf.,
for example T. Kato and K. Yajima [11]), the solution u(#, x) has better property
on the smoothness of angular variables.

Next we turn to state the results, which are proved by another approach. The
following theorem is an improvement of the result given in section 3 of the

previous paper [9].

THEOREM 3. Suppose that n>3, 1/p—1/g<2/n, (n+1)/2<n/p—1/q
and n/q—1/p < (n—3)/2. Set

Then we have
(1.4) 1D ull Logmy < CII(=A = O)ull Logrr.
where the constant C may depend on n, p and q, but does not depend on

ue C°(R") and { e C\[0, 0).

Notice that the case « =0 in is contained in the results of C.
Kenig, A. Ruiz and C. D. Sogge [13], the purpose of which is to prove unique
continuation theorems for Schrédinger operators. Our approach here is applicable
to prove weighted L? — L7 estimates as follows.

THEOREM 4. Suppose that n >3, (n—1)/2(n+1))<1/g<1/p<(n+3)/
2(n+1)), s+s' <2—-n(l/p—1/q), s/n+s" >—-1/p+n/q—(n—3)/2 and s +
s'/n>-n/p+1/g+(n+1)/2. Set

Then we have
_g’ 2
Il 1] = [ DI ull Lagrmy < Cll 1% (—=A = Out]| 1)

where the constant C may depend on n, p, q, s and s’, but does not depend on
ue C(R") and { e C\[0, ).
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This paper is organized as follows: In Section 2 we prove and
Theorem 2. They can be regarded as consequences of a restriction property as in
[9] with Hoélder continuity with respect to a parameter. Section 3 is devoted to the
proofs of and the technique of which is quite different
from the one of Section 2. In Appendix, we prove a proposition, which is
necessary for the proofs. As usual, the letter C will denote a constant that may be
different in different equations or inequalities.

Finally, the author would like to express his sincere graditude to the referee,
who pointed out an error in the proof of the original manuscript and kindly
suggested a way to recover it.

2. Weighted L? Estimates

In this section, we shall prove [Theorem I and Theorem 2. We begin the
proofs by introducing some operator related to the restriction of Fourier
transform to spheres. For f,ge€ C°(R") and 0 < a < 1/2, set

12-(1/2)
1) 401,0) =5 |, FOTD S

where dS ; is surface measure of S ; = {{ e R"|[{] = VA} and f, § are Fourier
transforms of f, g respectively. The operator A,(A) is useful to prove [Theorem 1,
because the expression by Fourier transform gives

(2.2) ID|*(~A— ) = r A1) 1.

0o A=¢

Also the right hand side of [2.1) can be represented by the projection operator Hj
in Introduction. Indeed, when n > 3 we have

(2.3) (Ax(A) f,9) %ij‘w‘ lda)J Jiry(VAN) "2 Hy f (r, ) dr

[0 @]
X J Jirv(Vap)p"/2Hyg(p, w) dp
0

where J,, is the Bessel function of order v+ k. This equality comes from the
classical formulas of the Bessel functions as follows (see A. Eldélyi et al. [6] and
T. Hoshiro [9]):
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¢ gg = Z0-1)/2 J iy-x)Vio g
e e [40]
Joose s

jo|=1

w2 Iy (Valx — y))

— }.("—1)/2(2%) ,
[Valx — yl|
Ju(|x — ) = Jorr(r) Iy ’
(2'4) (l J:l) =2 r(v) Z(V+k) +Ii’( ) +kv(p) Ck(wl . (,{)2),
lx - yl k=0 r p ‘
(x =rm, y=pw)
and

Cilor-m), (k=7),
0, (k # 2).

v+k ) , B
v S| J|w|=l Ce(w1 - 0)Cj (o - an) dw = {

Even if n=2 the equality holds, because the representation of the
operator Hj; should be replaced by

1 it it —

e ﬂjwzl f(@)da, k=0,
kJ\W) =
—J cosk(w - @) f(@)dd, k=1,2,...

Io)=1

T

and the addition formula should be replaced by

0

Jo(lx = ¥1) = Jo(r)Jo(p) +2 Y _ Jk(r)Jk(p) cos k(cr - 2),
k=0

(x = row1, y = paw,).

The representation tells us that the operator A4,(4) is uniformly bounded
and (locally) Holder continuous with respect to 4 > 0 in certain operator norm.
Precisely we have

LemMma 2.1.
(i) For f,ge Cy(R"),

(2.5 [(Heda(D)f,9)| < C(L+K) > x]' ™ Hicf | paamy 1 %1~ Hicgl 2 eny

where the constant C may depend on n and o, but does not depend on f,g,k and A.
(i) Let 0 be a real number satisfying 0 <6 <1 —20. Then, for f,ge
Gy’ (R),
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(2.6) |(Hk(4u(2) — 42()) [, 9)| < Co(1 + k)>*!
x (14 k)|A — pl /max (A, )| )| 1x|"~* Hi f | o gy I 1%]' ™ Higll 2 g »

where the constant Cy may depend on n, o, and 0, but does not depend on f, g, k, 1
and p.

REMARK. The inequality (2.5) implies

[(Aa(D) £, 9)] < C'lL xS Nl gyl I 2 = AP gl ooy,

by taking the summation with respect to k (notice that 1, = O(k?) as k — o0).
Also the inequality (2.6) implies

|((4a(4) — 4u()) f, 9)|

6/2 1- — o— 0
< Cgl |4 — pl /max(A, )| 2|l 1% £l Logrm Il 1) ~5( = A) DO g)| L .

Proor. First notice that

(HeAz(A)f,g) = igjlwl:l do Jj Jen (VI Hy f (r, ) dr

QO
x jo Jerr(Vp)p"/2Hig(p, o) dp.

Hence by Schwarz inequality, we obtain

o

(A0 < 5 ([ Tt VB ar)

_ - 1/2
X ( r" 17272 g £ (r, ) drdcu)
lwl=1 JO

1/2
. 00
X rn—1+2—2a|Hkg(r’ CI))IZ drda)
Jjw|=1J0
I 2 2a-1 1 1
- — o
< EJO Jv+k(r) re*=‘dr. H |x| ka”LZ(R")” |XI Hkgan(n")-

We quote now the formula of Weber-Schaftheitlin (see A. Erdélyi er al. [6]),
namely
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1 —-20)C(v+k+a)
21-2(1 — 20)*T(v+k+1—a)

[ee)
J Jv+k(r)2r2°‘_1dr =
0

Hence the above integral is asymptotically O((1 +k)**7!) as k — co. Thus the

inequality (2.5) follows.
The proof of (2.6) is similar to the above. Notice that

(Hi(Ax(2) — Aa()) S 9)

(e o]
= J dow ( J (A% T, 1 (Vor) — u?* T, (Var) Y 2 Hy f (r, ) dr
lw|=1 0
0O )
x| 227, (VAp)p™? Hig(p, ) dp

+ Jo ﬂa/z-]v+k(\//7")rn/2ka(r, w) dr

"0
<] {220,k (V2p) — p* T, 1k (\/1P) }p"? Hig (p, ) dp)-

D

Hence by a similar argument as in the proof of (2.5), we obtain

|(Hi(Aa(2) — Au()) £, 9)| < C - Bt ks 2, )| X" ™ Hicf | oy 1 131~ Hiegll 2 )
where

o 1/2
B(aa k9 j'a,u) = (JO Jv+k(r)2r2“‘1dr)

o0 1/2
< ([ 12 ee V) — e B0 )
Moreover observe that

JO 1A% 0,k (VAp) — p i (\Jaap)|?p® dp

—2f [ k0o = ()2 [ D VBp) i)
0 0

and recall the classical formula as follows (see A. Eldélyi [6]):
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@.7) | " Jap) s up)p= dp

_ A Ir(l/2(a+b—-c+1))
T 20 pa—t1 T(a+ DI(1/2(=a+ b+ c + 1))

(a+b—c+1a—b—c+1 /12)
x F :

1._
2 ’ 2 7a+ aﬂz

ifa>0,b>0,a+b+1>c>0and 0<i<p.
Hence we obtain

Bla, ki p) < CA+ k)N Fv+k+a,a5v+k+151)

. (v+k+2)/2 .
_ (mint, @) F v+k+a,a;v+k+1;————mln(l’”)
max (4, u) max (4, u)

1/2

where the constant C does not depend on A, u and k.
Thus the remaining task is to show that

lF(V+k+oz,oc;v+k+ 1;1)
: (vk+%)/2 -
_ (min(4, ) Flviktaomys k1, mnhe
max (4, u) max(4, 1)

< Ch(1 +K)*|(1 + k)| A — ul /max(4, w)|°.

The proof for the case § = 0 is easy, because 0 < (min(4, x«)/max(4,u)) <1, and

F(v+k+oc,a;v+k+ l;mm(l,,u))

max(4, 4)
<Fv+k+aov+k+1;1)

_ Tv+k+1) T(1-2aq)
T T(v+k+1—a) T(1—a

< C(1+k)"

(Note that, F(a,b;c;z) is monotone increasing for 0 <z < 1, and F(a,b;c;1) =
F(c—a—-»5b)/(T(c—a)'(c—»b)) if c>0 and c—a—b > 0 are satisfied.)
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Let us now abbreviate
F(l)=Fv+k+oa,uv+k+151),
Fzy=F(v+k+a,a;v+k+1;2),

and

_ min(4, )
 max(4,p)

Then, since
[F(1) = 20492 (2)] < |F(1) = F(2)| + F(2)]1 - 244972
<|F(1) = F(z)| + F(D)|1 = 20H+0/2),
the assertion comes from
IF(1) = F(z)] < CJ(1 + k)1 - 2|°
and
11— 20972 < (1 4 k) |1 — 2)°.

The latter inequality for 1/2 <z <1 can be seen quite easily, because the left
hand side is not larger than 2 and C(1 +k)|1 —z| for 1/2 <z < 1. To show the
former one, recall Euler’s integral representation:

I'(c) : b—1 c—b—1 —a
. _ - 1-— dt.
F(a,b;c;z) = T (e ) Jo "7 (1 —1) (1 —tz)“dt
Also notice that

21049

(1—t2)"—(1-0)79 < ltz—t|6~(1——)m for 0<t<l,
—t

N —
IA
N
IA

holds if a >0 and 0 < 68 < 1. Hence we have

|[F(1) — F(2)] < I(c) Jl P11 - t)c"’“|(1 —1z) = (1 —-0)""dt

L(@)T(c—b) Jo

I'(c)
= TB)T(c=b)
. I'(c) rb+0)Ir(c—a—->b-10)
~ T(h)(c—b) I'(c—a)

| 1
210401 — ZIHJ (pH0-1(] _ pye-b-l-a0y,
0

. 21—9a0'1 _ Zlga
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where a=v+k+a, b=o and ¢ =v+ k + 1. Note that

Frb+6)Ir(c—a—>b-0)
r'®)I(c—b)I'(c —a)

fc—a—-b—60=1-2a—-60>0, and

< C(1+k)*

a’® < C'(1+k)°.

Thus we see that the former inequality holds for 1/2 <z < 1. The proof for
0 <z<1/2 will be similar to that of the case § = 0. O

Let us choose 0 < & < 1/2 and a' > a. Define the function spaces as follows:
Fo={f e &' (R")|Ix'"f e L*(R")}
and
Guw = {f € #'(RM|1xI"7' (I = A)' ™2 f € L2(R)}.
shows that the operator A,(A) is a bounded operator from F, to
G,..r, and moreover, in the operator norm, it is (locally) Holder continuous with

respect to A > 0 (take 8 > 0 so that 2a — 1 + (/2) < 2o’ — 1). Roughly speaking,
these facts and relation imply [Theorem 1. As the first step, we shall prove

the following proposition:
PROPOSITION 2.2. Suppose that 0 < o < 1/2. Then we have
[ADPPE0 1, N < CIU = 8D 1 = £1| 2 gy,

where the constant C does not depend on f € C{°(R").

ProoF. As in the proof of Lemma 2.1, our task is to estimate
(He|D|**™ V£, £). First it follows from [2.1)] and [2.3) that

(He|DI**7V 1, £)

= [“tauns %

0

o0 pOC
=%J dCOJ J K(a,k;rap)rn/szf(r,w)pn/szf(p,a))drdp
lw|=1 o Jo

where

K@ kirp) = | 2 ViV Ep) di.
0
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Moreover, if 0 < a < (1/2), by the formula we have

K (2, k; 7, p)| < C(1 + k)% max(r, p)| .
Thus

(PP s < C 4k [ oo | Kt RS 0] it ()

x P/ 24— 1)/ 241~ g

where
Ka(r> P) = ra—(l/z)p“_(l/z)lmax(r’ p),—Za.

Let us note that K,(r,p) satisfies K,(Ar,Ap) = A"'K,(r,p) for A >0 and
* dp Jl _ dp © 5, dp
AL e (1/2)_+J w=(1/2) =22 9P _ o
L |Ku(1, p)| 7P p A p Y

if 0 <o < 1. Hence by Hardy-Littlewood-Pdlya inequality we obtain

1/2
0
J |Hy f(r, w)|2r"-'+2<1—“>drdw)
0

|(He [PV £, )] < €(1 + k)2 ! (j

|eo|=1

1/2
[e 0]
x (J! | IJ e f (py o) |p" 1207 dpdw)
wl=

0

= C(1+ k) |x|"*Hi f |72 (gn)-

Taking the summation of the above inequality with respect to k immediately
implies the result of Proposition 2.2 O

[Proposition 2.2 shows that the operator |D|**(—A—¢)~' is a bounded
operator from F, to G, for {¢[0,00). Indeed it is easy to see that

&
11> ~¢

< cj 1120017 19(E)] de

£ (&)]1§(8)| dé

« _ 1
1D (-8 =0)"f.0)| = 355 |

< C(|D|2(a—1)(l — A)(I—Za)/2f, f)]/2(|D|2(“_1)
x (I — A)2D2g g)1/2

_ —a 2a—1)/2
< Cll el fll gy | X175 = A) D 2] o .
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Hence the remaining task is to show that the value of | |D|*-
(—A—-(1+ is))"||_g,(pmG ,) 1s bounded even if ¢ — 0. This is because the scaling

argument induces that

sup || IDI**(=A— (At i) |l g,.q,.)

O<e<o
is bounded and the bound does not depend on 4 > 0.
Now let us decompose the operator |D|**(A — (1 +ie))™" as follows

(2.8) ID|**(=A = (1 +ig)) ™"

o Aq(2) °° Aq(4)

= JO X(l)m di+ JO (1 —X(D)m dA

= R; + Ry,
where x(A) € C[1/2,2] satisfies x(1) = 1 in a neighborhood of A = 1. We remark
that the value of || R;| & Fu Gy o) remains bounded even if ¢ — 0. This can be easily
seen by the similar argument as above. To estimate the value of ||R;|| P(Fa Gy 1)
we quote now the following proposition, the proof of which will be given in
Appendix.

PROPOSITION 2.3. Let F, and F, be Banach spaces. Suppose that A(4) is a
¥ (F\,F,) valued Holder continuous function of A > 0, support of which is con-
tained in [1/2,2]. Set

© A(A
(2.9) B() = J A4 4.
0o A—=¢

Then the set {B(1 + ig)},. is bounded in £ (Fy,F,).

Notice that A(A) = A4,(A)x(A) is a L(F,, Gy «) valued Holder continuous
function because of Lemma 2.1. Thus follows for Im¢ > 0. Also the
proof for Im{ < 0 is completely similar. This finishes the proof of Theorem 1.

O

PrOOF OF THEOREM 2. We are in a position to prove Theorem 2. The
argument here is essentially due to C. Kenig, G. Ponce and L. Vega [12]. First let
us set

— _ —n—1 ix~é+itrl 1 1 N
us(t, x) = —(2m) Jje 3 (|f|2 (et i) + 7 (e is))f(r,é) dzd¢

= —(2n)™"" Jei"%{(—/l —(t+ie) " + (A - (r—ie) T} (z, -)dr
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where f(z, -) is the partial Fourier transform with respect to 7. We are going to
show that

o, 0

(2.10) P, i, < ¢ [t i

with a constant C independent of & > 0. Hence u(z, x) = lim,jou.(t, x) exists, and
enjoys the same estimate as {2.10). Also it is easy to see that

(2.11) u(0,x) = %Jw sgns - e f (s, x) ds.

—00

The idea to show is to regard the map f +— u, as a Fourier multiplier with
an operator-valued symbol. Set now

|D|2a

me(t) = — o ((~A = (t+ie)) ' + (~A = (r —ie)) ).

Then from [Theorem 1, it follows
Ime(2)fllg, ,, < Clfllg,

where the constant C does not depend on f, ¢ and . Hence by Planchérel’s
theorem we obtain

| noPrueond =5 Imi@i 12, e

—00

C? .
< 5| Wi ke

= sl

We are in a position to ﬁnish the proof of Theorem 2. By duality argument it
follows from Theorem 1.2 (i) of [9] and the expression ) that f € F, implies
ID|*(1 — A)12/44(0, x) eLZ(R") (notice that the operator |D|*(I — A)U-2/4
commutes with id, + A). Finally applying Theorem 1.2 of [9] again and using
(2.10), we obtain Theorem 2. : O

3. L? — L9 Estimates

In this section we shall prove Theorem 3 and [Theorem 4. Both of them are
results on the estimates for |[D|**(—A — ¢)™'. So the proofs will become similar to
the one of Theorem 1.
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At first, let us show that the estimate holds if the parameter { is away
from the spectrum [0,c0). This immediately comes from Hardy-Littlewood-
Sobolev inequality. Indeed, by the similar argument as in the previous section, we
obtain

(D= =01, < € [P D171 13)1de
< C(|D|"(l_(2/p))f, f)1/2(|D|n((2/¢1)—1)g’ g)1/2

< Cllf Nl ormyllgll Lo Ry

(¢ is defined by 1/q+1/¢'=1) if 1<p<2<qg<oo and l/p-1/q=
2(1 — a)/n, which are more generous than the assumptions of Theorem 3.

Thus the remaining task is to consider the behavior of the estimate when {
approaches the spectrum [0, 00). Notice that the scaling argument allows to
devote ourselves to the case { =1+ ie(¢>0). Also on the decomposition
(2.8), the similar argument as in the previous section gives that the value of
| R2|l ¢ (Lo (R"), Lo(r™)) Temains bounded even if ¢ — 0. On the other hand, con-
cerning R, the expression does not seem to be useful for the proof. Instead
we make some preparations.

At first, let K;:(x—y) denote the kernel of the operator 1/T(z)-
(=A = ¢)* ™2 Then

LeMMA 3.1. Suppose that the both { and {' are contained in T, or T'_, where

I'y ={{eC| Im{20,5 <[ <2}

Then, for —1/2 < Rez < 1/2 and max(0,2Rez) < u < Rez+ 1/2, there exists a
constant C such that

eC|Imz|
(3.1) |Kz,c(x)] < C'W
and
16
(3.2) Ko o(x) — K ()| < CeClmet o= C 1

El
*®

where 6 = Rez+ (1/2) — pu.

ProoOF. First let us note that the kernel K; ((£) has the following expression:

~ (\/__Oz Kz(\/:_C|x|)
KZ,C(X) T gn/2 . on—1-z, [‘((n/2) - Z)F(Z) . |x|z ’
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where K, (w) is the modified Bessel function of the second kind (see I. M. Gelfand
and G. E. Shilov [7]). Also recall that, if Rew >0,

|K.(w)| < Ce™ |72 for |w| > 1

and
[K:(w)| < ClélecumzllwrlR“I for jw| < 1.

(see C. Kenig, A. Ruiz and C. D. Sogge [13]) These facts immediately imply
3.1).

To show [3.2), we quote now the classical formula of the Bessel functions as
follows:

K1) = 5 (Kert (#) = Kera ().

Hence we obtain

0
'a‘ZKz,C(x)

{ CeCmzl|g — ') |x|™, |x| <1,
<

Ceclmalir — ¢ x|, | > 1,

Kz, ¢ (%) = K, o ()] < 1€ = '] sup
{el'y

where u; = max(0,2Rez) and u, = Rez — (1/2). Also it is clear that
1Kz,0(%) — K o (%) < |Ke, 0 (x)] + | Ky (X))
CeClme|x|™, |x| <1,
<
CeClma|x|™s,  [x| 2 1,
where y; = Rez + 1/2. Interpolating these estimates by Hoélder’s inequality, we

obtain [(3.2). .

The inequalities in induce that the resolvent operator R({) =
(-A—¢ )_1 is Holder continuous with respect to {e 'y (or {eT'_) in certain
operator topology. Precisely,

PrOPOSITION 3.2.  Suppose that n > 3. Also suppose that the exponents p and
q satisfy the assumptions in Theorem 3. Then we have

(3.3) : ”R(C)u”Lq(R") < C”””LP(R")v
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and
(3.4) IIR&) = RNl Logmy < CIC =47 1ull ooy,
for some 6 >0, where the constant C does not depend on ue Cy°(R") and
C’ C, € Fi .

Proor. [Lemma 3.1 and Hardy-Littlewood-Sobolev inequality induce that,
for —1/2<Rez<1/2 and {,{' ey,

b =)
Hr<z>( A-OT

< Ce ™| ul| Ly gy
L9(R")

and

“ F (A= 0T — (A -y

Cllmz||p _ #10
T < Ce™™ANL = O ||ull Lo(gmys

Le(R")

where 1< p<g<oo, max(0,2Rez)<n(l1-1/p+1/q) <Rez+1/2 and
@=Rez+1/2-n(l —1/p+1/9q).
One the other hand, since

|(JE> = ¢)7| < e™! for{ e C,yeR,

Planchérel’s theorem gives

(A~ 0)"u

< Ce“M|u]| g

1
H [(n/2 + iy) L2(R")

These estimates and complex interpolation theorem by E. M. Stein induce the
estimates [3.3) and [3.4) with p and ¢ satisfying

2 1 1 1 1 2 1
rmarer (1 a (Re43) ) <54 = mames (15 max0.2Re)

and

1 n-—2—2Rez<l<l<1 n+2-2Rez

2 n-—2Rez q p 2 n-2Rez
(The assumption n > 3 is necessary for the interpolation.) Taking the foliation
when Rez goes from —1/2 to 1/2, we obtain [Proposition 3.2, O

Now we are in a position to finish the proof of [Theorem 3. First recall the
following relation (see e.g. S. Agmon [I]):
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Ao(2) = ﬁlgil%l[R(/l +ig) — RO — ie)].

Hence it follows from [Proposition 3.2| that Ay(A) is Holder continuous with
respect to A € [1/2,2] in operator topology of #(L?(R"),L4(R")), if p and g satis-
fy the assumptions of Theorem 3. This implies so does for A,(A) = A*A4¢(4). Thus
the argument in the last part of previous section gives that ||Ri||gLs(rm), Le(r™)
is bounded even if & — 0. This finishes the proof of Theorem 3. O

Proor oF THEOREM 4. Here we explain the difference between the proofs
of and briefly. It is observed before that the estimate
for Ao(A) comes from those for 1/T'(n/2+ iy)(—A—¢)?(yeR) and 1/I'(z)-
(=A =)= WD (1 /2 < Rez < 1/2). Moreover the latter estimate follows from
the fact that the kernel of the operator 1/T'(z)(—A — {)* ™% can be estimated by
the one of Riesz operator. Then we have used Hardy-Littlewood-Sobolev in-
equality. Instead, in the proof of we use the following fractional
estimate by E. M. Stein and G. Weiss [16]. This is the difference.

ProrosiTiION 3.3 (E. M. Stein and G. Weiss). Let

Tof(x) = J f(y)

R |x = y|”

dy,

for 0 < u < n. Suppose that 1 < p<q< oo, s<n/p', s’ <n/q, s+ =0 and

u+s+s
n

1 1
—=— 1.
9 P
Then

1™ Tuf llzarny < CIIXE Sl o
where the constant C does not depend on f € C{(R"), but may depend on p,q,s,s’
and n.

Appendix

Here we shall prove [Proposition 2.3 by the method of harmonic analysis.
First denote ¢, > by the coupling between F> and F,'. Define ®(4)(4 > 0) and
¥({)((e C,Im{ > 0) respectively by ®(4) =<A(4)f,g> and ¥({) =<B()f,9>
for f e Fi and F). Notice that the relation implies
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(A1) W) = J: %% di.

Moreover, for 0 < 8 < 1, denote ||®||, by

D(4) — D1
jlly = sup [PA = AN
a2 A=A

Then assumptions in [Proposition 2.3 imply that ®(4) is a compactly supported
continuous function satisfying ||®||, < oo.

Observe now that the relation (A.1) tells that the operation ®(1) — W .(u) =
W(u + ie)(u € R) can be written by Fourier multiplier with symbol

¢ 0, ¢>0,
a(e) = 2mie®s, &< 0.

Since the set {a.(¢)},,, is bounded in Mihlin-Hérmander’s class (cf. L.
Hormander [8] page 243 (7.9.8)), the multiplier theorem of the Lipschitz class (cf.
L. Hormander [8] Theorem 7.9.6) can be applied. Thus there exists a constant Cp
independent of ¢ > 0 such that

IPellg < Col|D@]|-

On the other hand, since supp ® < [1/2,2], it is clear that

2

_| [ __®W 1
[¥e(4)| = JO T @+ d,l\ < Jl/z m\dl X sgp]d)(l)l
< % sgpld)(/l)l.

Thus we obtain
|‘P£(l)| < |\Ps(4)| + I\Ps(4) - \Pe(l)|
3
< ZS‘;P |®(4)] + 30C0||(D||o,

and this implies that the set {<{B(1 +i¢)f,g)>},. is bounded. Note that, in the
above argument, all the constants are independent of f € F, and g € F;. This
proves [Proposition 2.3,
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