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THE EXTENSION PROBLEM FOR COMPLETE
$UV^{n}$-PREIMAGES

By

S. M. AGEEV, D. REPOV and E. V. EPIN

Abstract. We investigate the solvability of the extension problem for
complete preimages from the given class $\mathscr{F}$ of surjective, perfect
mappings of metric spaces, which consists of representing an
arbitrary mapping $f_{0}$ : $X_{0}\rightarrow Y_{0}\in \mathscr{F}$ as the restriction of another
mapping $f$ : $X\rightarrow Y\in \mathscr{F}$ , onto the complete preimage $f_{0}^{-1}(Y_{0})=X_{0}$ ,
where $Y$ is an arbitrary metric space, containing $Y_{0}$ as a closed
subset. We prove that this problem can be solved for the class of
open $UV^{n}$ -mappings. Along the way, we also establish that the
subset $\exp_{UV^{n}}(\ell_{2}(\tau))$ of the exponent $\exp(\ell_{2}(\tau))$ of the Hilbert space
$\ell_{2}(\tau)$ of density $\tau$ , consisting of $UV^{n}$ -compacta, belongs to the class
of absolute retracts.

1. Introduction

Let $\mathscr{F}$ be a class of perfect surjective mappings of metric spaces. If a map
$f$ : $X\rightarrow Y$ belongs to $\mathscr{F}$ and $Y_{0}\subset Y$ is any closed subset then quite often the
restriction $g$ of $f$ onto the complete preimage $f^{-1}(Y_{0})$ of the set $Y_{0}$ also belongs
to the class $\mathscr{F}$ . This is true for the following classes of interest:

(a) The class $\mathscr{F}_{a}$ of all open maps;
(b) The class $\mathscr{F}_{b}$ of all monotone open maps;
(c) The class $\mathscr{F}_{c}$ of all n-soft maps;
(d) The class $\mathscr{F}_{d}$ of all open $UV^{n}$ -maps;
(e) The class $\mathscr{F}_{e}$ of all locally trivial fibrations (cf. [8]); and
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(f) The class $\mathscr{F}_{f}$ of all G-mappings (where $Y_{0}$ is taken to be an invariant
subset of Y) (cf. [1, 2]).

In the present paper we shall be interested in the inverse problem, the exact
meaning of which we explain below:

DEFINITION (1.1). The extension problem for complete preimages from the
class $\mathscr{F}$ is said to be solvable, provided that for every map $g:X_{0}\rightarrow Y_{0}$ from $\mathscr{F}$

and every closed embedding of $Y_{0}$ into the metric space $Y$, there exist a closed
embedding of $X_{0}$ into the metric space $X$ and a map $f:X\rightarrow Y$ from $\mathscr{F}$ such
that:

(i) $f|_{X_{0}}=g$ ; and
(ii) $f(X\backslash X_{0})=Y\backslash Y_{0}$ .
It is clear that the map $g$ is the restriction of $f$ onto the complete preimage

$f^{-1}(Y_{0})=g^{-1}(Y_{0})=X_{0}$ . Consequently, this extension problem is equivalent
to the problem of representing an arbitrary map $g:X_{0}\rightarrow Y_{0}$ from $\mathscr{F}$ as the
restriction of another map $f:X\rightarrow Y$ from $\mathscr{F}$ onto the complete preimage
$g^{-1}(Y_{0})=f^{-1}(Y_{0})$ , where $Y_{0}\subset Y$ is an arbitrary embedding of $Y_{0}$ into the
metric space Y.

Extensions of complete preimages are closely connected with the extension
problem for maps into certain hyperspaces. To establish this connection let us
restrict ourselves to metric spaces of a fixed weight $\tau$ . It is well-known that all
such spaces are subspaces of the generalized Hilbert space $t_{2}(\tau)$ (cf. [10]). This
fact allows us to represent any map $f$ : $X\rightarrow Y$ from the class $\mathscr{F}$ as the re-
striction of the projection $pr_{1}$ : $l_{2}(\tau)\times l_{2}(\tau)\rightarrow l_{2}(\tau)$ onto some subset of the
product.

DEFINITION (1.2). A map $f$ : $X\rightarrow Y$ between metric spaces is said to have a
kernel $Z$ if any of the following two equivalent conditions is satisfied:

(1) There exists a map $g:X\rightarrow Z$ such that the diagonal map $ f\Delta g:X\rightarrow$

$Y\times Z$ is a topological embedding;
(2) There exists a homeomorphism $h:X\rightarrow T$ between $X$ and a subset $ T\subset$

$Y\times Z$ which maps every fiber $f^{-1}(y),$ $y\in Y$ , into the fiber $T\cap\{y\times Z\}$ of the
map $pr_{Y}|_{T}$ : $T\rightarrow Y$ , i.e. $f=(pr_{Y}|_{T})\circ h$ .

PROPOSITION (1.3). Every mapping between metric spaces of weight $\tau$ has the
kernel $Z=l_{2}(\tau)$ .

Therefore, every perfect surjective map $f$ : $X\rightarrow Y$ can be generated by a
subset $T\subset l_{2}(\tau)\times l_{2}(\tau)$ , which satisfies the following two conditions:
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(i) For every $ y\in Y\leftarrow\rangle$ $\ell_{2}(\tau)$ , the intersection $\Phi(y)=T\cap(y\times l_{2}(\tau))$ is
compact; and

(ii) The map $\Phi$ : $Y\rightarrow\exp(\ell_{2}(\tau))$ , given by $\Phi(y)=T\cap(y\times\ell_{2}(\tau))$ , is upper
semicontinuous, i.e. for every point $y\in Y$ and every $\epsilon>0$ , there exists a
neighborhood $\mathcal{O}(y)$ such that for every $y^{\prime}\in \mathcal{O}(y),$ $\Phi(y^{\prime})\subset N(\Phi(y), \epsilon)$ .

Let us list some well-known facts conceming the relationship among the
classes of maps $\mathscr{F}$ and properties of the maps $\Phi$ :

$(\alpha)$ A map $f$ : $X\rightarrow Y$ is open if and only if the corresponding map $\Phi$ :
$Y\rightarrow\exp(\ell_{2}(\tau))$ is continuous in the Hausdorff metric $pH$ ;

$(\beta)$ A map $f$ is $UV^{n}$ if and only if for every $y\in Y,$ $\Phi(y)$ is a $UV^{n}$ -set; and
$(\gamma)$ A map $f$ is n-soft if and only if for every $y\in Y,$ $\Phi(y)$ is an $AE(n)$ -set and

$\Phi$ : $Y\rightarrow\exp(l_{2}(\tau))$ is continuous in the Kuratowski metric $pK$ (cf. [10]).
Denote by $\exp_{UV^{n}}X$ the subspace of $(\exp X,\rho H)$ consisting of all $UV^{n_{-}}$

compacta. For $n=0,$ $\exp_{UV^{n}}X$ is better known as $\exp_{c}X$ , the continual ex-
ponent of $X$, and for $n=-1,$ $\exp_{UV^{n}}X$ is just $\exp X$ . Denote by $\exp_{AE(n)}X$ the
space of all $AE(n)$ -compacta in $X$ with the Kuratowski metric.

PROPOSITION (1.4). The extension problem for complete preimages from the
class $\mathscr{F}_{a}$ (resp. $\mathscr{F}_{b},$ $\mathscr{F}_{c},$ $\mathscr{F}_{d}$ ) is equivalent to the question whether $\exp\ell_{2}(\tau)\in AE$

(resp. $\exp_{c}\ell_{2}(\tau)\in AE,$ $\exp_{AE(n)}\ell_{2}(\tau)\in AE,$ $\exp_{UV^{n}}(l_{2}(\tau))\in AE$).

For complete $AE(1)$ -spaces $X$, the exponent and the continual exponent are
absolute extensors (cf. [12]). Consequently, the extension problem for complete
preimages for the classes $\mathscr{F}_{a}$ and $\mathscr{F}_{b}$ is solvable. Conceming the property
$\exp_{AE(n)}(\ell_{2}(\tau))\in AE$ , we observe that this is an important open problem of the
theory of absolute extensors in finite dimensions (cf. [7]) and, consequently, the
same is true for the extension problem for complete preimages for the class $\mathscr{F}_{c}$ .
The main result of the present paper concems the last one of these four classes:

THEOREM (1.5). For every integer $n\geq-1$ , the space $\exp_{UV^{n}}(\ell_{2}(\tau))$ is an $AE$.

As a corollary of Theorem (1.5), we deduce for $n\geq-1$ the solvability of the
extension problem for complete preimages for $\mathscr{F}_{a}$ and $\mathscr{F}_{b}$ :

THEOREM (1.6). The extension problem for complete preimages for the class of
open $UV^{n}$ -maps is solvable, for every integer $n\geq-1$ .

QUESTION (1.7). What can one say about compacta $X$ such that $\exp_{UV^{n}}X\in$

$AE$? Is it true that $X$ must necessarily be a $UV^{n}$ compactum?
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2. Preliminaries

All spaces will be assumed to be metric and all maps to be continuous. A
space $X$ is said to be an absolute [neighborhood] extensor in dimension $n,$ $ X\in$

$A[N]E(n)$ , provided that $X$ has the following injectivity property: every map
$\varphi$ : $A\rightarrow X$ of a closed subset $A\subset Z$ of an n-dimensional space $Z$ can be extended
to a map $\hat{\varphi}$ : $Z\rightarrow X$ [ $\hat{\varphi}$ : $U\rightarrow X$ , for some neighborhood $U\subset Z$ of $A$ ], i.e. $\hat{\varphi}|_{A}=$

$\varphi$ . The map $\varphi$ will be called a partial n-map and will be denoted by $Z-A\rightarrow\varphi X$ .
For $ n=\infty$ , the class of $A[N]E(n)$ -spaces (or simply, $A[N]E$-spaces) coincides

with the class of absolute [neighborhood] extensors (cf. [5]). If a closed subset
$X_{0}\subset X$ of an ANE-space is an $AE(n)$ , then $X_{0}$ has the following $UV^{n-1}$ -property
in $X$ (cf. [11]):

DEFINITION (2.1). A closed subset $X_{0}\subset X$ is said to have the $UV^{k}$ -property
in $X,$ $ k<\infty$ , provided that for every neighborhood $U\subset X$ of $X_{0}$ , there exists a
neighborhood $V\subset U$ of $X_{0}$ such that embedding $i:V\rightarrow U$ induces the trivial
homomorphism of homotopy groups $\prod_{j}$ , for all $l\leq k$ .

DEFINITION (2.2). $X$ is said to be a $UV^{k}$ -compactum, $ k<\infty$ , if for every
embedding of $X$ into an $ANE(k+1)$ -space $\hat{X},$ $X$ has the $UV^{k}$ -property in $\hat{X}$ .

It is well-known that a compactum $X$ is $UV^{k}$ if and only if for some
embedding of $X$ into an $ANE(k+1)$ -space $\hat{X},$ $X$ has the $UV^{k}$ -property.
Moreover, $X$ is $UV^{k}$ if and only if for every (some) embedding of $X$ into an
$ANE(k+1)$ -space $\hat{X},$ $X$ has the following $UV^{k}$ -property in $\hat{X}$ :

$(\alpha)$ For every neighborhood $U\subset\hat{X}$ of $X$, there exists a neighborhood $V\subset U$

of $X$ such that every partial $(k+1)$ -map $Z-A\rightarrow\varphi V$ has an extension $\hat{\varphi}$ : $Z\rightarrow$

$ U,\hat{\varphi}|_{A}=\varphi$ .

PROPOSITION (2.3). Let $X$ be a compactum and $X_{0}\subset X$ any $UV^{k}$ -compactum.
Suppose there exists a homotopy $H:X\times I\rightarrow X$ such that $H_{0}=id_{X}$ and $ H_{1}(X)\subset$

$X_{0}$ . Then $X$ is a $UV^{k}$-compactum.

Therefore every cone over a compactum belongs to the $UV^{k}$ -class. As a
consequence, the $UV^{k}$ -compacta are a wider class than the $AE(k+1)$ -compacta.

DEFINITION (2.4). A map $f:X\rightarrow Y$ is said to be a $UV^{k}$ -map, provided that
every fiber of $f$ is a $UV^{k}$ -compactum.
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One of the most important properties of $UV^{k}$-maps is their approximate
$(k+1)$ -softness (cf. [13]):

PROPOSITION (2.5). Let $f;\hat{Y}\times\hat{X}\rightarrow\hat{Y}$ be the projection of the product
of ANE-compacta $\hat{X}$ and $\hat{Y}$ onto the first factor, $f:X\rightarrow f(X)=Y\subset\hat{Y}a$

restriction of $\hat{f}$ onto a compactum $X\subset\hat{Y}\times\hat{X}$ . Then $f\in UV^{k}lf$ and only $lf$ for
every sequence of maps $\psi_{l}$ : $Z\rightarrow\hat{Y}$ of a $(k+1)$ -dimensional metric space $Z$ and
sequence of the partial maps $\varphi_{j}$ : $A\rightarrow\hat{Y}\times\hat{X},$ $C1(A)=A\subset Z$ , such that $\psi_{j}|A=f\circ$

$\varphi_{j}$ , for every $i,$ $\lim_{j\rightarrow\infty}\varphi_{i}(A)\subset X$ , and $\lim_{i\rightarrow\infty}\psi_{j}(Z)\subset Y$, there exists a sequence of
maps $\hat{\varphi}_{j}$ : $Z\rightarrow\hat{Y}\times\hat{X}$ , such that the $fo$llowing three conditions are satisfied:

(1) $\lim_{i\rightarrow\infty}dist(\hat{\varphi}_{j}|_{A}, \varphi_{i})=0$ ;
(2) $\lim_{i\rightarrow\infty}\hat{\varphi}_{i}(Z)\subset X$ ; and
(3) $\lim_{i\rightarrow\infty}dist(\hat{f}0\hat{\varphi}_{i}, \psi_{i})=0$ .
The following well-known fact from shape theory is a consequence of

Proposition (2.5).

PROPOSITION (2.6). Let $f:X\rightarrow Y$ be a $UV^{k}$ -map of metric compacta. Then
(a) If $X\in UV^{k+1}$ then $Y\in UV^{k+1}$ ; and
(b) If $Y\in UV^{k}$ then $X\in UV^{k}$ .

In the Hilbert space $\ell_{2}(\tau)$ the unknotting theorem holds for Z-sets. We recall
some necessary definitions:

DEFINITION (2.7). A closed subset $A\subset Z$ of $a$ metric space is said to be $a$ Z-
set, provided that for every open cover $\omega\in covZ$ , there exists a map $h:Z\rightarrow Z$

which is $\omega$-close to $id_{Z}$ and such that $ A\cap{\rm Im} h=\emptyset$ .

THEOREM (2.8). Suppose that in the Hilbert space $\ell_{2}(\tau)$ we have a homeo-
morphism $h:A\rightarrow B$ of Z-sets $A$ and B. Then there exists a homeomorphism
$\hat{h}$ : $\ell_{2}(\tau)\rightarrow l_{2}(\tau)$ of the entire space $\ell_{2}(\tau)$ such that $\hat{h}|_{A}=h$ .

We complete this section by some definitions and facts conceming the notion
of homotopically negligible subsets:

DEFINITION (2.9). A subset $A\subset Z$ of a metric space $Z$ is said to be
homotopically negligible in $Z$, provided that there exists a homotopy $ H:Z\times$

$[0,1]\rightarrow X$ such that $H(Z\times(O, 1$ ]) $\cap A=\emptyset$ and $H_{0}=Id$ .
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The following are well-known facts conceming homotopically negligible sets
(cf. [15]):

PROPOSITION (2.10). Suppose that $Z\in A[N]E$ and that $A\subset Z$ is a homo-
topically negligible subset of Z. Then $Z\backslash A\in A[N]E$ .

PROPOSITION (2.11). Every $A[N]E$-space $X$ can be embedded into a complete
$A[N]E$-space $\hat{X}\supset X$ so that $\hat{X}\backslash X$ is homotopically negligible in $\hat{X}$ .

PROPOSITION (2.12). For every metric space $X$, there exists an $A[N]E$-space
$\hat{X}$ , containing $X$ as a closed subset and such that $X$ is homotopically negligible
in $\hat{X}$ .

3. Adjunction Spaces for $UV^{n}$-compacta

Let $X$ and $Y$ be metric spaces and let $X_{0}\subset X$ be $a$ closed subset. Any
continuous map $f$ : $X_{0}\rightarrow Y$ induces a decomposition on the topological sum
$Z=X\oplus Y$ , if for every $y\in f(x_{0})$ , we shrink the set $f^{-1}(y)\cup\{y\}$ to a point. The
resulting decomposition space is denoted by $X\bigcup_{f}Y$ and is called the adjunction
space of $X$ to $Y$ by $f$ If the map $f$ is perfect then the adjunction space $X\bigcup_{f}Y$ is
metrizable. Also, if $X,$ $X_{0}$ and $Y$ are $A[N]E$-spaces then the adjunction space
$X\bigcup_{f}Y$ is also an $A[N]E$-space (cf. [9]). We shall now prove an analogous result
conceming $UV^{n}$ -compacta:

THEOREM (3.1). Let $X\leftrightarrow X_{0}\rightarrow fY$ be a partial map such that $X$ and $Y$ are
$UV^{n}$ -compacta and $X_{0}\subset X$ is a $UV^{n-1}$ -compactum. Then the adjunction space
$Z=X\bigcup_{f}Y$ is a $UV^{n}$ -compactum.

REMARK (3.2). Theorem (3.1) was stated without proof in [3], where the-
orems on adjoining $A[N]E(n)$ and n-movable spaces were also proved.

A short proof of Theorem (3.1) can be derived from Proposition (2.6): Since
$X\rightarrow X/X_{0}$ is a $UV^{n-1}$ -map and $X\in UV^{n}$ , it follows that $X/X_{0}\in UV^{n}$ . Since
$X\bigcup_{f}Y\rightarrow(X\bigcup_{f}Y)/Y=X/X_{0}$ is $a$ $UV^{n}$ -map, it follows that $X\bigcup_{f}Y\in UV^{n}$ . As
this method is not applicable to prove the adjunction theorem for n-movable
spaces, we present the following expanded proof of Theorem (3.1).

$PR\infty F$ . Embed $Y$ in an ANE-compactum $\hat{Y}$ as $a$ homotopically negligible
set. Therefore there is a homotopy $H_{t}$ : $\hat{Y}\rightarrow\hat{Y}$ such that $H_{0}=Id$ and for every
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$f>0,$ $ H_{l}(\hat{Y})\cap Y=\emptyset$ . Extend the map $f$ to a map $f^{\prime}$ : $\hat{X}_{0}\rightarrow\hat{Y}$ , defined on some
ANE-compactum $\hat{X}_{0}\supset X_{0}$ . By means of $H_{t}$ we can define a new extension of $f$ as
follows:

$\hat{f}(x)=H(f^{\prime}(x),p(x, X_{0}))$ , $x\in\hat{X}_{0}$ .

Clearly, $\hat{f}(\hat{X}_{0}\backslash X_{0})\cap Y=\emptyset$ .
We may assume that $\hat{X}_{0}$ and $X$ intersect precisely at $X_{0}$ . Embed $\hat{X}_{0}\cup X$ into

the ANE-compactum $\hat{X}$ . It follows by the adjunction space theorem for ANE-
compacta [5] that $\hat{Z}=\hat{X}\bigcup_{\hat{f}}\hat{Y}\in ANE$ . Since the embedding of compacta into
$ANE$ is done with a great degree of freedom, it suffices, in order to verify $UV^{n_{-}}$

properties of the compactum $Z=X\bigcup_{f}Y$ in $\hat{Z}$ , to take $\hat{Z}$ instead of $U$ and to
prove that there exist neighborhoods $V\subset\hat{X}$ of $X$ and $W\subset\hat{Y}$ of $Y$ such that:

(a) $(f)^{-1}(w)=V\cap\hat{X}_{0}$ ; and
(b) The embedding $V\bigcap_{\hat{f}}W\rightarrow\hat{Z}$ induces a trivial homomorphism of

homotopy groups $\prod_{i}$ , for all $i\leq n$ .
Since $X\in UV^{n}$ , there is a neighborhood $V_{1}\subset\hat{X}$ of $X$ such that:

(c) Every partial $(n+1)$ -map P$-) $A\rightarrow\varphi V_{1}$ extends to a global map $P\rightarrow\hat{X}$ .
We now apply the fact that $Y\in UV^{n}$ . There exist neighborhoods $V_{2}\subset V_{1}$ of $X_{0}$

and $W_{2}\subset\hat{Y}$ of $Y$ such that:
(d) $(f)^{-1}(W_{2})=V_{2}\cap\hat{X}_{0}$ ; and
(e) Every partial $(n+1)$ -map $P\propto A\rightarrow\varphi V_{2}\bigcap_{\hat{f}}W_{2}$ extends to a global map

$P\rightarrow\hat{Z}$ .
Finally, the hypothesis $X_{0}\in UV^{n-1}$ implies the existence of neighborhoods
$V_{3}\subset V_{1}$ of $X_{0}$ and $W\subset W_{2}$ of $Y$ such that:

(f) $(f)^{-1}(W)=V_{3}\cap\hat{X}_{0}$ ; and
(g) Every partial n-map P$-A\rightarrow \varphi $\nabla_{3}$ extends to a global map $P\rightarrow V_{2}$ .

Let $V\subset\hat{X}$ be a neighborhood of $X$ such that $V\subset V_{1}$ and $ V\cap\hat{X}_{0}=V_{3}\cap$

$\hat{X}_{0}=(f)^{-1}(W)$ . We claim that $V$ and $W$ possess properties (a) and (b) above.
Let $\varphi:S^{n}\rightarrow V\bigcup_{\hat{f}}W$ be any n-spheroid (i.e. a continuous map of $S^{n}$ into

$V\bigcup_{\hat{f}}W)$ . An $(n+1)$ -membrane spanning this n-spheroid is any extension of $\varphi$

onto the ball $B^{n+1}$ whose boundary is $S^{n}$ . It is easy to find an $(n-1)$ -dimensional
piecewise-linear separator $F\subset S^{n}$ homeomorphic to $S^{n-1}$ , which decomposes $S^{n}$

into two closed subsets $A\cup B=S^{n}$ , such that $A\cap B=F$ and

$\varphi(F)\subset V_{3}\backslash \hat{X}_{0}$ , $\varphi(A)\subset V\backslash \hat{X}_{0}$ , and $\varphi(B)\subset V_{2}\bigcup_{\hat{f}}W_{2}$ .

It follows by (g) above, that the partial n-map $A\leftrightarrow F\rightarrow\varphi V_{3}$ extends to a map
$\psi$ : $A\rightarrow V_{2}$ .
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The separator $F$ on the sphere $S^{n}$ can be extended to a separator $\hat{F}\cong A$ on
the ball $B^{n+1}$ which will decompose $B^{n+1}$ into two closed subsets $\hat{A}\cup\hat{B}=$

$B^{n+1},$ $A\subset\hat{A},$ $B\subset\hat{B}$ , and $I\hat{4}\cap\hat{B}=\hat{F}\cong A$ . Due to (c), the partial $(n+1)$ -map

$\hat{A}\leftarrow A\cup\hat{F}\rightarrow^{\varphi 1_{\Lambda}\cup\psi}V_{2}\rightarrow V_{1}$

extends to a global map $\hat{A}\rightarrow\xi\hat{X}$ .
By (e) above, the partial $(n+1)$ -map

$\hat{B} B\cup\hat{F}\rightarrow^{\varphi|_{B}\cup\pi\circ\psi}V_{2}\bigcup_{f}W_{2}$

extends to a global map $\zeta:\hat{B}\rightarrow\hat{Z}$ (here, $\pi:\hat{X}\cup\hat{Y}\rightarrow\hat{X}\bigcup_{\hat{f}}\hat{Y}=\hat{Z}$ is the ca-
nonical projection). Gluing together maps $\pi\circ\xi$ and $\zeta$ along their common
domain $\hat{F}$ , we obtain the desired extension $\hat{\varphi}$ : $B^{n+1}\rightarrow\hat{Z}$ of the n-spheroid $\varphi$ .

$\blacksquare$

4. A Reduction to Local Connectedness

As it was also pointed out in Chapter 1, the fact that $\exp_{UV^{n}}(l_{2}(\tau))$ is in the
class $AE$ implies that the extension problem for complete open $UV^{n}$ -preimages is
solvable. Let $us$ give a proof of this fact.

PROPOSITION (4.1). If $\exp_{UV^{n}}(\ell_{2}(\tau))\in AE$ then the extension problem for
complete perfect open $UV^{n}$ -preimages with kernel $\ell_{2}(\tau)s$ solvable.

PROOF. Suppose that $f:X\rightarrow Y$ is any perfect open $UV^{n}$-map and $i$ :
$Y\rightarrow\hat{Y}$ is any closed embedding. Sinoe $f$ has the kemel $\ell_{2}(\tau)$ , there exists $a$

closed embedding $v:X\rightarrow Y\times l_{2}(\tau)$ such that $v(x)\in f(x)\times l_{2}(\tau)$ , for all $x\in X$ .
Denote the projection of $Y\times l_{2}(\tau)$ onto $l_{2}(\tau)$ by $q$ . Then the formula

$g(y)=q(v(f^{-1}(y)))$ defines a continuous map $g:Y\rightarrow\exp_{UV^{n}}(l_{2}(\tau))$ which, by
hypothesis, has an extension $\hat{g}$ : $\hat{Y}\rightarrow\exp_{UV^{n}}(l_{2}(\tau))$ over all of $\hat{Y}$ . Inside the
product $\hat{Y}\times l_{2}(\tau)$ we consider the subset $\hat{X}=\{(y,\hat{g}(y))|y\in\hat{Y}\}$ which contains,
in a natural way, $X\cong\{v(x)|x\in X\}$ . The desired map $f;\hat{X}\rightarrow\hat{Y}$ is then defined
by $f((y, x))=y$ , for every $(y, x)\in\hat{X}$ . $\blacksquare$

The deformation retraction $F_{f}$ : $l_{2}(\tau)\rightarrow l_{2}(\tau),$ $F_{l}(\ell)=t\cdot l,$ $0\leq t\leq 1$ , of the
Hilbert space $l_{2}(\tau)$ to a point, induces a deformation retraction $expF_{l}$ of the
space $\exp_{UV^{n}}(l_{2}(\tau))$ to a point. Consequently, to verify that $\exp_{UV^{n}}(\ell_{2}(\tau))\in AE$ ,
it suffices to prove that $\exp_{UV^{n}}(l_{2}(\tau))$ belongs to $a$ wider class of $ANE$ . But this is
not all. As it follows from results of this chapter everything reduces to the local
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connectedness of $\exp_{UV^{n}}(\ell_{2}(\tau))$ in dimension $n$ , the verification of which is the
subject of our last chapter.

PROPOSITION (4.2). If $\exp_{UV^{n}}(\ell_{2}(\tau))\in LC^{n}$ then $\exp_{UV^{n}}(l_{2}(\tau))\in AE$ .

First, let us see how to represent a metric space as a factor space of an n-
dimensional space via a $UV^{n-1}$ -decomposition.

PROPOSITION (4.3). For every integer $n\geq 1$ and every metric space $X$ there
exist:
$(a)_{n}$ An n-dimensional metric space $\hat{X}$ of the same weight as $X$; and
$(b)_{n}$ An open perfect $UV^{n-1}$ -surjection $p_{X}$ : $\hat{X}\rightarrow X$ , which is n-invertible ( $i.e$. for

every map $\varphi:Z\rightarrow X$ from an n-dimensional metric compactum $Z$ into $X$,
there exists a map $\psi$ : $Z\rightarrow\hat{X}$ , such that $ p_{X}\circ\psi=\varphi$).

PROOF. (Our argument is analogous to [6] and uses the Dranishnikov
resolution [7].) Let $g:X\rightarrow Q$ be any completely O-dimensional map into the
Hilbert cube $Q$ and let $d_{n}$ : $M_{n}\rightarrow Q$ be the Dranishnikov resolution, from the
n-dimensional Menger compactum $M_{n}$ onto $Q$ . The fiberwise product $\hat{X}=$

$X_{g}\times d_{n}M_{n}$ has dimension $n$ , since the projection $g^{\prime}$ : $\hat{X}\rightarrow M_{n}$ is parallel to $g$ and
hence by [4], it is a completely O-dimensional map into $M_{n}$ . Therefore, the
projection $d_{n}^{\prime}$ : $\hat{X}\rightarrow X$ , parallel to $d_{n}$ , is the desired open n-invertible perfect
$UV^{n-1}$ -surjection. $\blacksquare$

As a corollary of Proposition (4.3) we obtain a criterion for $UV^{n}$-compacta:

PROPOSITION (4.4). Let $p_{X}$ : $\hat{X}\rightarrow X$ be a surjection satisfying the conditions
$(a)_{n}$ and $(b)_{n}$ , let $X$ be an $ANE$ and $F$ a compactum in X. Then $F\in UV^{n}lf$ and
only $lf$ the map $p_{F}=p_{X}|_{p_{F}^{-1}(f)}=\hat{F}$ : $\hat{F}\rightarrow F$ is homotopic to the constant map
inside any neighborhood of $F$ in $X$.

PROOF. The necessity follows by the property $(\alpha)$ from Chapter 2 so it
remains to prove the sufficiency. Fix a neighborhood $U$ of the compactum $F$.
Since $X\in ANE$ , there exists a smaller neighborhood $V\subset U$ such that:

(c) The map $p_{V}$ : $\hat{V}\rightarrow V$ is homotopic to the constant map into $U$, i.e.
$p_{V}$ : $\hat{V}\rightarrow V\rightarrow U\simeq const$ .
Let $\varphi$ : $S^{j}\rightarrow V,$ $i\leq n$ , be an i-spheroid. Since $p_{X}$ is n-invertible, there exists an i-
spheroid $\hat{\varphi}$ : $S^{j}\rightarrow\hat{V}$ such that $\varphi=p_{V}o\hat{\varphi}$ . Finally, it follows by (c) above that
$p_{V}\circ\hat{\varphi}\simeq const$ in U. $\blacksquare$
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PROPOSITION (4.5). Let $Con(\ell_{2}(\tau))$ be a metric cone $\ell_{2}(\tau)\times(0,1$ ] $\cup\{v\}$ over
$\ell_{2}(\tau)$ with vertex $v$ . Then the following pairs of spaces are homeomorphic:

(d) $(\ell_{2}(\tau)\times\ell_{2}(\tau), \ell_{2}(\tau)\times\{0\})\cong(l_{2}(\tau)\times[0,1], l_{2}(\tau)\times\{0\})$ ; and
$(e)(l_{2}(\tau), \{0\})\cong(Con(l_{2}(\tau)), v)$ .

PROOF. According to Henderson’s theorem, $Con(l_{2}(\tau))\cong l_{2}(\tau)$ and $ l_{2}(\tau)\times$

$\ell_{2}(\tau)\cong l_{2}(\tau)\times[0,1]\cong l_{2}(\tau)$ . Now, the assertion follows by the Unknotting
theorem for Z-sets in $\ell_{2}(\tau)$ . $\blacksquare$

PROPOSITION (4.6). There exists a retraction

$r:l_{2}(\tau)\times[0,1]\rightarrow l_{2}(\tau)\times\{0\}$

such that its restriction onto the complement $l_{2}(\tau)\times(0,1$ ] is injective.

PROOF. Represent the index set $\tau$ as a disjoint union of a countable number
of equipolent sets $\tau_{n}$ . Clearly, $l_{2}(\tau)$ is homeomorphic to every $l_{2}(\tau_{n})$ as well as to
the product $\prod_{i}\ell_{2}(\tau_{i})$ .

Let $l=(l_{1}, l_{2}, \ldots)\in\prod_{i}\ell_{2}(\tau_{i})$ , let $h_{n}:\prod_{i}l_{2}(\tau_{i})\times[0,1]\rightarrow l_{2}(\tau_{n})$ be a
homeomorphism, and let $\{a_{n}\}$ be a monotone decreasing sequence of real
numbers converging to zero. Every number $t\in[a_{n+1}, a_{n}]$ can be uniquely rep-
resented in the form:

$t=a_{n+1}+s\cdot(a_{n}-a_{n+1})$ , where $0\leq s\leq 1$ .

The desired retraction is then defined by the following formula:

$r(\ell, t)=(l_{1}, l_{2}, \ldots, l_{n},s\cdot h_{n+1}(\ell, t)+(1-s)\cdot l_{n+1}, h_{n+2}(\ell, t), \ldots)\times\{0\}$ . $\blacksquare$

PROPOSITION (4.7). There exist retractions

$r:l_{2}(\tau)\times l_{2}(\tau)\rightarrow l_{2}(\tau)\times\{0\}$

and

$R:l_{2}(\tau)\times Con(l_{2}(\tau))\rightarrow l_{2}(\tau)\times\{v\}$

such that

$r|_{J_{2}(\tau)\times(f_{2}(\tau)\backslash \{0\})}$ and $R|_{\swarrow_{2}(\tau)\times(Con(t_{2}(\tau))\backslash \{v\})}$

are injective (here $v$ is the cone point of $Con(l_{2}(\tau))$ ).

PROOF. This is an obvious consequence of Propositions (4.5) and (4.6). $\blacksquare$
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PROPOSITION (4.8). Let $W$ be a metric space of weight $\tau$ and $A\subseteq W$ a closed
set. Then for every map $f:W\rightarrow\ell_{2}(\tau)$ , there exists a map $g:W\rightarrow\ell_{2}(\tau)$ such
that $g|_{A}=f|_{A}$ and $g|_{W\backslash A}$ is injeclive.

PROOF. Without loss of generality, we may assume that diam $W<1$ and
that $W$ lies in $\ell_{2}(\tau)$ , via the embedding $h:W\rightarrow\ell_{2}(\tau)$ . Then we can define the
desired map $g$ by $g|_{A}=f|_{A}$ and $g(x)=R(f(x), h(x),$ $dist(x, A))$ , for $x\in W\backslash A$

(here the retraction $R:\ell_{2}(\tau)\times Con(\ell_{2}(\tau))\rightarrow\ell_{2}(\tau)\times\{v\}=\ell_{2}(\tau)$ is taken from
Proposition (4.7)). $\blacksquare$

PROOF OF PROPOSITION (4.2). Suppose that we have $a$ partial map $ Z\leftarrow$

$A\rightarrow f\exp_{UV^{n}}(\ell_{2}(\tau))$ which we wish to extend over Z. Since $ w(\exp_{UV^{n}}(\ell_{2}(\tau)))=\tau$ ,
this fact suffices to get a proof for $Z=\ell_{2}(\tau)$ (cf. [9]). Applying Proposition (4.3),
we introduce a perfect open $UV^{n}$ -surjection $p:\hat{Z}\rightarrow Z$ of the $(n+1)$ -dimensional
metric space $Z,$ $ w(\hat{Z})=\tau$ . Let $\tilde{A}=p^{-1}(A)$ . Then the formula $f(\hat{a})=f(p(\hat{a}))$ ,
$\hat{a}\in\hat{A}$ , gives a partial $(n+1)$ -map $\hat{Z}\simeq\hat{A}\rightarrow\exp_{UV^{n}}(\ell_{2}(\tau))f$ . Due to the fact that
$\exp_{UV^{n}}(\ell_{2}(\tau))\in LC^{n}\cap C^{n}$ , there exists a global extension $g:\hat{Z}\rightarrow\exp_{UV^{n}}(\ell_{2}(\tau))$ ,
$g|_{A^{\wedge}}=f$ .

If we can find a map $\tilde{g}$ : $\hat{Z}\rightarrow\exp_{UV^{n}}(\ell_{2}(\tau))$ such that $\tilde{g}|_{A^{\wedge}}=g|_{A^{\wedge}}$ and $\tilde{g}(\hat{z})\cap$

$\tilde{g}(\hat{z}_{1})=\emptyset$ , whenever $p(\hat{z})=p(\hat{z}_{1})\not\in A$ and $\hat{z}\neq\hat{z}_{1}$ , then the formula $\varphi(z)=f(z)$ if
$z\in A$ and $\varphi(z)=\tilde{g}(p^{-1}(z))$ if $z\not\in A$ , will give the desired extension $\varphi$ : $Z\rightarrow$

$\exp_{UV^{n}}(\ell_{2}(\tau))$ .
Let us construct such a map $\tilde{g}$ . Consider the set $\tilde{W}=\{(\tilde{z}, g(\tilde{z}))|\tilde{z}\in\hat{Z}\}\subset$

$\hat{Z}\times\ell_{2}(\tau)$ of the weight $\tau$ , whose projection $\tilde{p}$ : $\tilde{W}\rightarrow\tilde{Z}$ is a perfect open sur-
jection. Let $\tilde{A}=\tilde{p}^{-1}(\hat{A})$ . Apply Proposition (4.8) to the projection $q:\tilde{W}\rightarrow\ell_{2}(\tau)$

onto the second factor and obtain the map $\tilde{q}$ : $\tilde{W}\rightarrow\ell_{2}(\tau),\tilde{q}|_{A^{-}}=q|_{A^{-}}$, whose
restriction onto the fiber $(\tilde{p})^{-1}(\hat{z}),\hat{z}\not\in\hat{A}$ , is injective. Then $\tilde{g}(\tilde{z})=\bigcup_{\overline{p}(\overline{\omega})=\hat{z}}\tilde{q}(\tilde{\omega})$ is
a compactum, homeomorphic to $g(\hat{z})\in UV^{n}$ . $\blacksquare$

5. Local Connectedness of $\exp_{UV^{n}}(\ell_{2}(\tau))$

PROPOSITION (5.1). For every integer $m,$ $\exp_{UV^{n}}(l_{2}(\tau))\in LC^{m}$ .

PROOF. In order to establish the local m-connectedness of $\exp_{UV^{n}}(\ell_{2}(\tau))$

let us fix a compactum $F\in UV^{n}$ in $\ell_{2}(\tau)$ and a number $\epsilon>0$ . We must find a
number $\delta>0$ such that for every k-spheroid $\varphi$ : $S^{k}\rightarrow\exp_{UV^{n}}(l_{2}(\tau)),$ $k\leq m$ ,
whose image ${\rm Im}\varphi$ is contained in $N_{\exp}(F,\delta)=\{F^{\prime}|\rho_{H}(F, F^{\prime})<\delta\}$ , shrinks via
some $(k+1)$ -membrane $\hat{\varphi}$ : $B^{k+1}\rightarrow\exp_{UV^{n}}(l_{2}(\tau))$ with ${\rm Im}\hat{\varphi}\subset N_{\exp}(F,\epsilon)$ .
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Apply Proposition (4.3) to obtain an open perfect $UV^{n-1}$ -surjection $ p:T\rightarrow$

$\ell_{2}(\tau)$ such that $\dim T\leq n$ . Since $F\in UV^{n}$ it follows by Proposition (4.4) that
there is a homotopy $H:\hat{F}\times[0,1]\rightarrow N(F, \epsilon/2)=\{l|\rho(l, F)\leq\epsilon/2\}$ , from $H_{0}=$

$p$ to $H_{1}=const$ .
By the Borsuk Homotopy extension theorem, $H$ can be slightly extended:

there exist a number $\Delta>0$ and $a$ homotopy $G:\hat{V}\times[0,1]\rightarrow N(F, \epsilon/2)$ , where
$\hat{V}=p^{-1}(V=N(F, \Delta))$ , such that $G|_{\hat{F}\times[0,1]}=H,$ $G_{0}=p$ , and $G_{1}=const$ . For $\delta$

take $\min\{\Delta/3,\epsilon/4\}$ .

LEMMA (5.2). For every spheroid $\varphi$ : $S^{k}\rightarrow\exp_{UV^{n}}(l_{2}(\tau)),$ $k\leq m$ , there exists
a $\delta$-homotopy $\varphi_{l}$ : $S^{k}\rightarrow\exp_{UV^{n}}(l_{2}(\tau))$ , from $\varphi_{0}=\varphi$ to the k-spheroid $\varphi_{1}$ , such that
the following conditions are satisfied:

(i) For every $s\in S^{k},$ $\varphi(s)$ is homeomorphic to $\varphi_{1}(s)$ ;
(ii) For every $s\neq s^{\prime},$ $\varphi_{1}(s)\cap\varphi_{1}(s^{\prime})=\emptyset$ ; and
(iii) The image $\cup\{\varphi_{1}(s)|s\in S^{k}\}=\varphi_{1}(S^{k})$ of the spheroid $\varphi_{1}$ is a Z-set in

$l_{2}(\tau)$ .

PROOF. Consider the graph $E=\cup\{(s, \varphi(S))|s\in S^{k}\}\subset S^{k}\times l_{2}(\tau)$ of the
multivalued map $\varphi$ , which is a compactum. Then apply the Tom\’{n}czyk theory of
Hilbert cube manifolds [14] and compose the projection $q:E\rightarrow l_{2}(\tau)$ onto the
second factor, with a $\delta$-homotopy of some Z-embedding of $E$ into $l_{2}(\tau)$ . We shall
need a more precise result:

(iv) There exists a $\delta$-homotopy $q_{l}$ : $E\rightarrow l_{2}(\tau)$ such that $q0=q$ and for every
$t>0$ , the map $q_{l}$ is a Z-embedding.

We now define our homotopy $\varphi_{t}$ : $S^{k}\rightarrow\exp_{UV^{n}}(l_{2}(\tau))$ to be $\varphi_{l}(s)=$

$q_{l}(s, \varphi(s))$ . It is easy to veri$fy$ that the required properties $(i)-(iii)$ indeed hold.
$\blacksquare$

We continue the proo $f$ of Proposition (5.1). Observe that the image $\varphi_{1}(S^{k})$ is
a Z-set, hence the homotopy $G|_{p^{-1}(\varphi_{1}(S^{k}))\times I}$ can be approximated by a new
homotopy $G$ ‘ : $p^{-1}(\varphi_{1}(S^{k}))\times I\rightarrow N(F, \epsilon/2)$ such that

(1) $G_{0}^{\prime}=p=G_{0}$ and $G\{=const$ ;
(2) The restriction of $G^{\prime}$ onto $p^{-1}(\varphi_{1}(S^{k}))\times(0,1)$ is an injection into $l_{2}(\tau)$ ;

and
(3) The image $G^{\prime}(p^{-1}(\varphi 1(S^{k}))\times(0,1$ ]) does not intersect $\varphi_{1}(S^{k})$ .
Finally, let the k-spheroid $\varphi$ : $S^{k}\rightarrow N_{\exp}(F,\delta)\cap\exp_{UV^{n}}$ be shrunk via a

$(k+1)$ -membrane $\hat{\varphi}$ : $B^{k+1}\rightarrow N_{\exp}(F, \epsilon)\cap\exp_{UV^{n}}$ , for $k\leq n$ . Since by Lemma
(5.2), the homotopy $\varphi_{l}$ is realized inside $N_{\exp}(F, 2\delta)\cap\exp_{UV^{n}}$ , it suffices to shrink
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the k-spheroid

$\varphi_{1}$ : $S^{k}\rightarrow N_{\exp}(F, 2\delta)\cap\exp_{UV^{n}}\subset N_{\exp}(F,\frac{\epsilon}{2})$

by a $(k+1)$ -membrane $\hat{\varphi}$ . $\blacksquare$

LEMMA (5.3). There exist a homotopy $\varphi_{l}$ : $S^{k}\rightarrow N_{\exp}(F, \epsilon/2)\cap\exp_{UV^{n}},$ $ 1\leq$

$t\leq 3$ , from $\varphi_{1}$ to a spheroid $\varphi_{3}$ and a point $\{*\}$ such that:
(v) $\varphi_{3}(s)\cap\varphi_{3}(s^{\prime})=*\iota f$ and only $lfs\neq s^{\prime}$ ; and
(vi) $\varphi_{3}(S^{k})\in UV^{n}$ .

PROOF. Define the homotopy $\varphi_{t}$ by the formula

$\varphi_{t}(s)=G^{\prime}(\tilde{\varphi}(s)\times[0, t-1])$ , for $1\leq t\leq 2$

and

$\varphi_{t}(s)=G^{\prime}(\tilde{\varphi}(s)\times[(t-2)/A, 1])$ , for $2\leq t\leq 3$ ,

where $\tilde{\varphi}(s)=p^{-1}(\varphi_{1}(s))\in UV^{n-1}$ , and $A$ is large enough number so that for all
$s\in S^{k}$ , the set $G^{\prime}(\tilde{\varphi}(s)\times[1/A, a])$ lies in $N_{\exp}(F, \epsilon/2)$ .

It is clear from the formulae for $\varphi_{t}$ that the homotopy lives in some
neighborhood of $N_{\exp}(F, \epsilon/2)$ . Let us verify this for $\varphi_{t}(s)\in UV^{n}$ . The compactum
$\varphi_{t}(s)$ contracts in itsel $f$ inside $G^{\prime}(\tilde{\varphi}(s)\times\{0\})=G(\tilde{\varphi}(s)\times\{0\})=\varphi_{1}(s)\in UV^{n}$ , for
$1\leq t<2$ , whereas for $2<t\leq 3$ it contracts in itself to the point $const_{1}=$

$G^{\prime}(\tilde{\varphi}(s)\times\{1\})$ . Therefore by Proposition (2.3), $\varphi_{t}(s)\in UV^{n}$ , for all $t\neq 2$ .
For $t=2$ , the compactum $\varphi_{f}(s)$ is the result of the adjoining the cone

$Con(\tilde{\varphi}(s))\in UV^{n}$ and the $UV^{n}$ -set $\varphi_{1}(s)$ by the partial map $Con(\tilde{\varphi}(s))\leftrightarrow\tilde{\varphi}(s)\times$

$\{0\}\rightarrow p\varphi_{1}(s)$ . Since $\tilde{\varphi}(s)\in UV^{n-1}$ it follows by the theorem on adjoining $UV^{n}$ -sets
that

$Con(\tilde{\varphi}(s))U_{p}\varphi_{1}(s)=\varphi_{2}(s)\in UV^{n}$ .

Finally, $\varphi_{3}(S^{k})=G^{\prime}(\tilde{\varphi}(S^{k})\times[1/A, 1])$ , where $\tilde{\varphi}(S^{k})=p^{-1}(\varphi_{1}(S^{k}))$ , contracts
in itself to a point $*=G^{\prime}(\tilde{\varphi}(S^{k})\times\{1\})$ , by the formula

$G^{\prime}(\tilde{\varphi}(S^{k})\times[(1-1/A)\cdot s+1/A, 1],$ $0\leq s\leq 1$

and is therefore a $UV^{n}$ -set. The property (v) follows from the property (2) of the
homotopy $G$ ‘ and the property (ii) of the k-spheroid $\varphi l$ . $\blacksquare$

We can now complete the proo $f$ of Proposition (5.1). It is clear that it suffices
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to shrink the k-sphere $\varphi_{3}$ by the $(k+1)$ -membrane $\hat{\varphi}$ . Fix a continuous
multivalued retraction $D:B^{k+1}\rightarrow S^{k}=\partial B^{k+1}$ from [7], such that $D(O)=S^{k}$ ,
$D(r\cdot s)\cong B^{k}$ and $D(1\cdot s)=s$ , for $0<r<1,$ $s\in S^{k}$ .

The desired $(k+1)$ -membrane $\hat{\varphi}$ : $B^{k+1}\rightarrow N_{\exp}(F, \epsilon/2)\cap exp_{UV^{n}}$ is given by
the formula $\hat{\varphi}(r\cdot s)=\varphi_{3}(D(r\cdot s))$ . Continuity of $\hat{\varphi}$ follows from the continuity of
$D$ and $\varphi_{3}$ . Clearly, $\hat{\varphi}(B^{k+1})\subset N_{\exp}(F, \epsilon/2)$ . Since $\hat{\varphi}(r\cdot s)$ contracts in itself to $a$

point $\{*\},\hat{\varphi}(r\cdot s)$ is a $UV^{n}$ -compactum, for all $r\neq 0$ and $s\in S^{k}$ . $\blacksquare$
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