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CONFORMALLY FLAT MANIFOLDS WITH POSITIVE
RICCI CURVATURE
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Wu BINGYE

Abstract. In this paper by using Ros’s method we prove the fol-
lowing result which has been obtained by Tani M. [1]: An n-
dimensional $(n\geq 3)$ compact conformally flat manifold with positive
Ricci curvature and constant scalar curvature must be of constant
sectional curvature.

1. Introduction

In [1] Tani M. showed the following

THEOREM. Let $M$ be an n-dimensional $(n\geq 3)$ compact conformally flat
manifold with positive Ricci curvature and constant scalar curvature. Then $M$ must
be of constant sectional curvature.

The main aim of the present paper is to give a new proof for above Tani’s
theorem. Our method is the maximum principle which was first used by Ros $A$ .
(c.f. [2]).

2. Preliminaries

Let $M$ be an n-dimensional $(n\geq 3)$ Riemannian manifold with metric $\langle$ , $\rangle$ .
The Riemannian curvature transformation $R(X, Y),$ $X,$ $Y\in T_{p}M$ , where $T_{p}M$ is
the tangent space at $p\in M$ , is related by

$R(X, Y)=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]}$ ,

where $\nabla_{X}$ is the operation of covariant differentiation with respect to $X$. The
Riemannian curvature tensor $R(X, Y, Z, W)$ and the Ricci curvature tensor
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$Ric(X, Y)$ are defined by

$ R(X, Y, Z, W)=\langle R(X, Y)W, Z\rangle$ ,

and

$Ric(X, Y)=trace(Z\rightarrow R(Z, X)Y)$

respectively. We can define the first and the second covariant derivatives of $Ric$

by

( $\nabla$ Ric)(Z, $X,$ $Y$) $=Z(Ric(X, Y))-Ric(V_{Z}X, Y)-Ric(X, \nabla_{Z}Y)$

and

$(\nabla^{2}Ric)(W, Z, X, Y)=W$ ( ( $\nabla$ Ric)(Z, $X,$ $Y)$ ) $-(\nabla Ric)(\nabla_{W}Z, X, Y)$

$-$ ( $\nabla$ Ric)(Z, $\nabla_{W}X,$ $Y$ ) $-(\nabla Ric)(Z, X, \nabla_{W}Y)$

respectively. Put $S_{p}=$ { $(u,$ $v)$ : $u,$ $v\in T_{p}M,$ $\langle u,$ $v\rangle=0$ and $\langle u,$ $u\rangle=\langle v,$ $v\rangle=1$ }
and $S=\bigcup_{p\in M}S_{p}$ . We define a function $f$ : $S\rightarrow R$ by $f(u, v)=Ric(u, v)$ For any
$(u, v)\in S$ . If $M$ is compact, then so is $S$, and the function $f$ must attain its
maximum at some point in $S$. So there exists some $(u_{0}, v_{0})\in S_{p0}\subset S,$ $p_{0}\in M$ such
that

$f(u_{0}, v_{0})=Ric(u_{0}, v_{0})=\max_{(u,v)\in S}\{Ric(u, v)\}$ . (2. 1)

Obviously we have $f(u_{0}, v_{0})\geq 0$ . For any $w$ in $T_{P0}M$ , let $\gamma(t)$ be the geodesic in
$M$ given by the initial conditions $\gamma(0)=p_{0},$ $\gamma^{\prime}(0)=w$ . By parallel translating $u_{0}$

and $v_{0}$ along $\gamma(\iota)$ respectively we obtain vector fields $U(t)$ and $V(t)$ . Then the
function $f(t)=f(U(t), V(t))$ attains its maximum at $t=0$ . Thus we have (c.f.

[2])

$0=\frac{df(t)}{dt}t=0=(\nabla Ric)(w, u_{0}, v_{0})$ ,

$0\geq\frac{d^{2}f(t)}{dt^{2}}|_{f=0}=(\nabla^{2}Ric)(w, w, u_{0}, v_{0})$ . (2.2)

For any unit vector $w$ in $T_{p0}M$ with $\langle u_{0}, w\rangle=\langle v_{0}, w\rangle=0$ , let $\alpha(s)$ be a curve in
the sphere $\{u\in T_{p0}M:\langle u, u\rangle=1\}$ such that $\alpha(0)=v_{0},$ $\alpha^{\prime}(0)=w$ . The function
$g(t)=f(u_{0}, \alpha(t))$ attains its maximum at $t=0$ . So we find

$0=\frac{dg(t)}{dt}t=0=Ric(u_{0}, w)$ . (2.3)
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Similarly for the same $w$ we have

$Ric(w, v_{0})=0$ . (2.4)

Now we can choose a local field of orthonormal frame $e_{1},$
$\ldots,$

$e_{n}$ in $M$

around the point $p_{0}$ such that at the point $p_{0}$ we have $e_{1}=u_{0}$ and $e_{2}=v_{0}$ .
In terms of this frame the Riemannian curvature tensor, Ricci curvature
tensor and the first and the second covariant derivatives of $Ric$ can be
rewritten as $R_{ijkl}=R(e_{j}, e_{j}, e_{k}, e_{l}),$ $R_{ij}=Ric(e_{i}, e_{j}),$ $R_{ij,k}=(\nabla Ric)(e_{k}, e_{i}, e_{j})$ and
$R_{ij,kl}=(\nabla^{2}Ric)(e_{l}, e_{k}, e_{j}, e_{j})$ respectively. The following Ricci identity is well-
known:

$R_{ij,kl}-R_{ij,lk}=\sum_{m}(R_{mj}R_{mikl}+R_{im}R_{mjkl})$ . (2.5)

By (2.2), (2.3) and (2.4) we get

$0\geq R_{12,kk}$ , (2.6)

$R_{1k}=R_{2k}=0$ for $k\geq 3$ (2.7)

at the point $p_{0}$ .
From now on we assume that $M$ is a conformally flat manifold with constant

scalar curvature. Then we have

$R_{ijkl}=\frac{1}{n-2}(R_{ik}\delta_{jl}+R_{jl}\delta_{ik}-R_{il}\delta_{jk}-R_{jk}\delta_{il})$

$+\frac{\rho}{(n-1)(n-2)}(\delta_{il}\delta_{jk}-\delta_{ik}\delta_{jl})$ (2.8)

and

$R_{ij,k}=R_{ik,j}$ , (2.9)

where $\rho=\sum_{i}R_{ii}$ is the scalar curvature.

3. The Proof of the Theorem

Now we shall complete the proof of the theorem. Throughout this section all
conditions included in the theorem are assumed to be satisfied. We restrict
ourselves to the point $p_{0}$ . Taking sum about $k$ in (2.6) and using (2.5), (2.7) and
(2.9) together with the fact that the scalar curvature is constant, we obtain

$0\geq\sum_{k}R_{12,kk}=R_{12}(R_{11}+R_{22}+R_{1212})+\sum_{m,k\geq 3}R_{km}R_{m12k}$ . (3.1)
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Since the $(n-2)\times(n-2)$ -matrix $(R_{ij})_{i,j\geq 3}$ is symmetric, we can assume that the
orthonormal frame chosen above satisfies

$R_{ij}=\lambda_{i}\delta_{ij}$ for $i,j\geq 3$ . (3.2)

Introducing (2.8) and (3.2) into (3.1) we have

$0\geq\frac{nR_{12}}{(n-1)(n-2)}((n-2)(R_{11}+R_{22})-\sum_{k\geq 3}\lambda_{k})$ . (3.3)

From (2.7) and (3.2) we see that the vectors $e_{3},$
$\ldots,$

$e_{n}$ are eigenvectors of the
matrix $(R_{ij})_{1\leq i,j\leq n}$ . Let $E_{1},$ $E_{2}$ be other two eigenvectors and set $\lambda_{1}=$

$Ric(E_{1}, E_{1}),$ $\lambda_{2}=Ric(E_{2}, E_{2})$ . Without loss of generality we may assume that
$\lambda_{1}\geq\lambda_{2}$ . It is easy to see that $e_{1},$ $e_{2}$ can be linearly represented by $E_{1},$ $E_{2}$ ,
say $e_{1}=\cos\theta E_{1}-\sin\theta E_{2}$ and $e_{2}=\sin\theta E_{1}+\cos\theta E_{2}$ . Thus, we have $R_{12}=$

$Ric(e_{1}, e_{2})=\cos\theta\sin\theta(\lambda_{1}-\lambda_{2})$ . Since by (2.1), $R_{12}=f(u_{0}, v_{0})=\max_{(u,v)\in S}$ .
$\{Ric(u, v)\}$ , we must have $\theta=\pi/4$ and $R_{12}=1/2(\lambda_{1}-\lambda_{2})$ . Therefore we con-
clude that $R_{11}=R_{22}=1/2(\lambda_{2}+\lambda_{2})$ . For any $k\geq 3$ , set $u(\theta)=\cos\theta E_{1}-\sin\theta e_{k}$

and $v(\theta)=\sin\theta E_{1}+\cos\theta e_{k}$ , then we get $Ric(u(\theta), v(\theta))=\cos\theta\sin\theta(\lambda_{1}-\lambda_{k})$ .
Also by (2.1) and the fact that $\max_{\theta\in[0,\pi|}\{Ric(u(\theta), v(\theta))\}=1/2|\lambda_{1}-\lambda_{k}|$ we get

$\frac{1}{2}|\lambda_{1}-\lambda_{k}|\leq R_{12}=\frac{1}{2}(\lambda_{1}-\lambda_{2})$ for $k\geq 3$ . (3.4)

Similarly we have

$\frac{1}{2}|\lambda_{2}-\lambda_{k}|\leq\frac{1}{2}(\lambda_{1}-\lambda_{2})$ for $k\geq 3$ . (3.5)

Thus, by (3.4) and (3.5) we see that $\lambda_{1}\geq\lambda_{k}\geq\lambda_{2}$ for any $k\geq 3$ . Now (3.3) can be
rewritten as

$0\geq R_{12}(\sum_{k\geq 3}(\lambda_{1}-\lambda_{k})+(n-2)\lambda_{2})\geq(n-2)\lambda_{2}R_{12}$ . (3.6)

Since $M$ has positive Ricci curvature, so $\lambda_{2}>0$ and we must have $R_{12}=$

$\max_{(u,v)\in S}\{Ric(u, v)\}=0$ . Thus $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}$ everywhere and the conclusion
of the theorem now follows easily.
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