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1. Introduction

The following diagonalization problems are well-known. A Hermitian matrix
X e M(n,K) over K=R,C,H can be transformed to a diagonal form by some
element A4 of the groups SO(n), SU(n), Sp(n), respectively. Moreover we know
that a Hermitian matrix X € M(3,K) over K = €, €€ can be transformed to a
diagonal form by some element a of the compact Lie groups Fy, Eg, respectively
(Freudenthal [T], Yokota [9]). Now, in this paper, we show that an element P of
BC (which is a minimal dimensional representation space of the compact Lie
group E;) can be transformed to a diagonal form by some element a« of E7
(Theorem 3). In the last section, we give a canonical diagonal form of P of B¢
(Theorem 12). We would like to thank T. Miyashita for his calculation of
Lemma 3.

2. Notations and Preliminaries

Although, throughout this paper, we use the same notations and definitions
as in [10], we sketch briefly the definitions of the vector space PBC, the compact
Lie group E7 and its Lie algebra e;. Let € be the Cayley algebra and let I =
{XeM(@3,€)|X* =X} be the exceptional Jordan algebra with the Jordan
multiplication X o ¥ =1(XY + YX), the inner product (X,Y)=tr(XoY)
and the Freudenthal multiplication X x ¥ =1(2XoY —tr(X)Y —tr(Y)X +
(tr(X)tr(Y) — (X, Y))E). Let 3¢ be the complexification of 3 and define the
Hermitian inner product (X, Y) by <X, Y) = (zX, Y) where 7 is the complex
conjugation in I€. The simply connected compact Lie groups F4, Eg are defined
as
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Fy ={0€elsor(I)|a(XoY)=aXoaY},
Es = {aeIsoc(3) |tar(X x ¥) = aX x a¥,{aX,aY) = (X, YD},
respectively. The group Eg contains Fy as subgroup by
Fy={oa€ E¢|aE = E} = {a € E¢ | Tt = a}.
Moreover Fy, E¢ have subgroups Spin(9), Spin(10) as
Spin(9) = {a € Fy|aE, = E}, Spin(10) = {a € E¢|aE, = E},

respectively, where E, = diag(1,0,0) € 3 = 3€. The C-vector space PBC is defined
by

PC=3‘@3@Ca@C.

Hereafter, an element P of P,

&1 x3 X2 m Y »n

P:( X_3 62 X1 ) j’; b V1 ’67”)’ ék,ﬂk,é,ﬂEC,Xk,ykEGC
X X1 &3 Y2 Vi M3

is briefly denoted by

P= ((51,52,53;x1,x2,x3),(’71»’72,’73;yl,J’2,J’3),f,’7)~

. For geef, A,Be 3¢, ve C, we define a C-linear mapping ®(¢, A4, B,v) of
B~ by

X ¢X —IvX +2Bx Y +n4
O(p. 4. B.v) Y1 _|24xX-"¢Y +3vY +¢B

¢ (4,Y) +vé

n (B, X) —vn

For P=(X,Y,n),0=(Z,W,{,w) € BC, we define a C-linear mapping P x Q
of P by

(¢=—-3(XVW+ZVY),

A=-1Q2Y x W—-¢(Z-(X),
PXQ__-(D(¢7A7B’V)’<

B=1Q2X x Z - nW - 0Y),

| v=3((X, W)+ (Z,Y) = 3(¢w + {n))

where X v Weef is defined by (X v W)Z=1(W,Z2)X+}(X,W)Z-
2W x (X xZ), Ze€ 3€. Finally we define a Hermitian inner product (P, Q) in
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P by
(P,QY =LX,ZY+ Y, W)+ (2&){ + (mn)w,

where 7 is the complex conjugation in C = R¢. Now the simply connected
compact Lie group E; is obtained ([5]) as

E7 = {a e Tsoc(PC) |2(P x Q)a™" = «P x aQ, {aP,aQ> = (P, )},
and its Lie algebra e¢; is given by
¢7 = {®(p, 4, —14,v) € Homc(BE, B ) |geces, A€ 3¢, veiR}.

For ae€ Es, if the mapping o: BC — BC is defined by aX,Y, En) =
(aX,tatY,&,n) then a € E7, so o and & will be identified. Hence the group E7
contains Eg as a subgroup by the identification:

E¢={d e E;|aeEs}.
We define a C-linear mapping o(= o,) : B¢ — ‘I}C by
o((&1, 82,835 x1, X2, X3), (11,12, M35 V15 Y2y ¥3), €, 1)
= ((&1, 82,835 X1, —x2, =X3), (M1, 12, M35 Y1, — Y2, —¥3), &, ).

o€ E; and %> = 1. And we know that the subgroup (E;)° = {x € E;|oa = ac}
of FE; is isomorphic to the group (SU(2) x Spin(12)/Z,) ([10], [8]) where
Spin(12)(= Spin;(12)) is a subgroup of E; given by

Spin(12) = {o € E7 | ko = o, prot = aupu}.
Here two C-linear mappings (= k1), u(= y;) : B¢ — P are defined by
K((&1, &2, 35 X1, X2, X3), (11,725 1135 V1, Y25 ¥3),€51)
= ((=¢1,¢2,¢3;%1,0,0), (171, =112, =133 = ¥1,0,0), =¢, 1),
1((&1, 2, &35 X1, X2, X3), (M15 7125 1135 V1, Y2, ¥3), 65 1)
= ((1,73,12; = 1,0,0), (&, &3, &5 —x1,0,0), 71, &1),

respectively. If « € FE7 satisfies xka = ax then o automatically satisfies oo = o,
because o = exp(nix), so Spin(12) is a subgroup of (E7)°. Hence Spin(12) leaves
invariant the spaces (P¢), = {Pe B |oP =P}, (B)_, = {Pe B |oP=-P}
and we have B = (P), ® (B)_,. Hence, if we define D;(P) for P e B by

Di(P) ={P1,P;>, P=P +P_,Pe(R°), Pie(B°)_,.
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LemMA 1. For Pe B¢ and o € Spin(12), we have D;(aP) = Di(P).

Similar to x,u we define C-linear mappings x»,x3 and u,, u; by
2P = ((¢1,=¢2,¢350,x2,0), (=11, 72, =135 0, = 2, 0), =&, m),
k3P = ((¢1,¢2,-¢3;0,0,x3), (=11, —12,13; 0,0, — y3), =<, 1)
P = ((n3,1,711;0, = ,,0),(&3,¢,£1;0, —x2,0), 775, &3)
3P = ((n2,11,1;0,0, —y3), (£2,¢1,&;0,0, —x3), 713, &3),

where P = ((£1,&,&55X1,%2,X3), (11,112,133 Y1, Y2, 3), &, 1) € BE and we  define
Spiny(12), Spin3(12) by Spini(12) = {a € E7|krot = arp, ot = apy}, k =2,3,
respectively.

3. Some elements of Spin(12)(< E7)

LemMma 2. ([9]). (1) For ae @, a # 0, the mapping a(a) : 3 — 3 defined by
ala)X = X',

(& =&
&+ é L -4 (a,x1) .
= cos2 sin2|a
&+ &H—&s (a,x1) .

P = — cos2|al — ———=sin2|a
\63 2 2 | | |a| I |
( -&)a . 2(a,xy)a .

Xp = x| — (62—53)—sm 2|a| - (—zllsm2 |a|
2|a| al
{ Xj = X2 €08 |a|-—)|c—;‘|1sin |a|
ax,; .
x5 = x3cos |al + 222 Gin |a|
\ |a|

belongs to Spin(9) < F4 < E;.
(2) For ae €, a+0, the mapping B(a) : 3¢ — 3IC defined by pla)X = X',

(& =& ‘
$H—-& até (a,x1)
1 _ 227
< & = 5 + > cos2|a| +i a sin 2|a]
- R - & +fz42"530082|a| +i%sin2|al
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2(a,x))a

. )
sin 2|a] P sin” |q|

( ! (62 +£3)a

X =Xx1+1 2|a|

{ x5 = x;co0s |d] +i22%in |a|

l |

ax; .
x5 = x3cos|a| + i—Zsin |al

\ |a
belongs to Spin(10) < E¢ < E;.

LemMa 3. (1) For ae €, a #0, the mapping y(a) : PBC — PBC defined by
y(a)(X’ Yaé”]) = (X,v Y,,élaﬂl)a

(. _ &1 —¢ &i+¢ (a, 1)
= s2 in 2

¢ 5 =5 —cos la| + —=— a sin 2|a|

=&

& =28

: 2(a, :
\ X1 = X1 +£M’—7)—a51n2|a| ——LaxT])asm2 |a|
2|al |a|

X3 = X7 cos|a| ——%lc-lsin |a|

X3 = x3cos|a| — %sinlal
( -

n = ”12 ’7+’71;”cos2|a| —%’—;lc—l)sin2|a|

3 =1

n3 =13

. 2(a, .
1 Y1 =n _(Gi+6)a +§)asm2la| _ 2@ n)a yzl)asm2 |
2|a a|

/ X3d .

Yy = yycos|al +W5m |al

y3 = y3cos|al i @ | 2 sin ||
\
(f/ _512—§+51;£COS2|“,+(|)')1)Sln2'a|
S
\ n = -0 2_ T4 ”1;”c0s2|a| - —-——(a"aTI) sin 2|a|

belongs to Spin(12) < E;.
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(2) For ac €, a #0, the mapping d(a) : B¢ — BE defined by 5(a)(X, Y, &, n)
= (X", Y,¢n),

)
/ él+£ él_é .(avyl) .
= cos2|a|l —i sin 2|a
& =6
& =26
—-na . 2(a,x))a .
\ Xy =x) — im-———'z)—sm2|a| ———(————Zism2 |a|
2|a| |al
Xy = xpcos |a| + iilz—lasinla|
ay, .
X3 = X3 cos|a|+i£sm|al
\ |al
([, _ mt+n M7 (a,x1) .
= cos2|al —i sin 2|a
’7] 2 + 2 Ial l lal ] | I
ny =1
’73 =13
$ r_ —.(él_é)asinza —Z(a’yl)aSinzlal
y] yl 2|a| l | |a|2
, .X3a .
Y3 = y,cos|a| +1Wsm|a|
ax; .
Lyg = y; cos|a| +i—|a—l7'sm|a|
( H+¢E & -¢ a,yy) .
I — - 2 2
& 3 3 cos2|a| +i a sin 2|q|
g =1 ; n_h 2_ 7 cos 2]al + i(al,aTl) sin 2|a|

\

belongs to Spin(12) < E;.
Proor. (1) For ® = ®(0, F(a), —Fi(a),0) € spin(12) = e; (where Fi(a) =

0 00
(0 0 a) e 3), we have y(a) = exp®. Hence y(a) € Spin(12) < Ej.
0 a o

(2) For ® = ®(0,iF;(a),iF\(a),0) € spin(12) c e;, we have J(a) =exp®.
Hence d(a) € Spin(12) < E;.
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4. Diagonalization of P e B¢ by E;

PROPOSITION 4. (1) Any element P € B can be transformed to the following
Sform by some a e Spin(12):

0 x3 X3 0 y3 7
«P=([{xm 0 x|,{7 0 y ],0,0), xi y e€CC.
x» x1 0 y» 1 0

(2) Any element P € B can be transformed to the following form by some a €
Spin(12):

& ox3 X2 nm vz ¥
aP = ( 73- 0 O ) y_3 ’72 0 ’57’7)) f]ﬂ?k)éa” € Cax]ﬁyka EGC'
X2 0 0 V2 0 /K

Proor. (1) For a given element

P = ((&1,82, 835 x1,x2,%3), (11,125 1135 Y1y YV, ¥3),E:1)

of B, choose a; € € such that (a1,x1) = (a1, y,) =0, |a1| = n/4 and act y(a;) of
Lemma 3.(1) on P, then

& =&, =46,

P(@)P=((&],&5, &35 X1, %, %), (1, M3, 1% Y1, %, %), =&, —n) =P, 7 il
M=z, N3=13.

Choose a; e € such that (a,x]) = (a2,y]) =0, |az2| =n/4 and act d(az) of
Lemma 3.(2) on P, then

é 527 53’

5(‘12)})1 = ((Oa ég,é;,;x{/a*a*) (0 ’72a”37y1 ,*7*)7()’ 0) = PZs
772 - 772? 773 - ’73

Choose a3 € € such that (a3, x{) = (a3, y{) =0, |a3] =7n/4 and act f(a3) of
Lemma 2.(2) on P,, then

Blas)Py = (0,85, =& x{V, %, %), (0,15, =185 3V, %,%),0,0) =
Choose a4 € € such that (a4,x1 )) = (a4, 02 )=O, |as| = n/4 and act afas) of
Lemma 2.(1) on P3, then

a(as)Ps = ((0,0,05x1", %, ), (0,0,0; {", %,),0,0) = Py.

This P4 is the required form of (1). ‘
(2) In the form of (1), let x; = P+ig,p,ge€ @ and assume g # 0. Put
as = nq/4|q| and act d(as) of Lemma 3.(2) on P4, then
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8(as)Ps = ((€17,0,0; p’, %, %), (117,0,0; »1V %, %), =P, —'¥y = Py

where P’ € €. Assume p’ # 0. Let ag = np’/4|p’| and act y(ag) of Lemma 3.(1)
on Ps, then

y(as)Ps = ((£2,0,0;0, %, %), (#1¥,0,0; 9 x, %), &6 4©®) = pg.

Let yss) =u+iv,u,ve® and assume u # 0. Let a; = nu/4|u| and act f(a;) of
Lemma 2.(2) on Pg, then

7 7 7 7 7
Blar)Ps = ((£1,0,0;0,%, ), (0", 0, s iv' %, %), ED D) = Py, 5P = 4

where v’ € €. Assume v’ # 0. Put ag = nv’/4|v’| and act a(ag) of Lemma 2.(1) on
P;, then

a(ag)Pr = ((€¥,0,0;0,%,%), (1Y, 7, 150, %, %),E®  n®) = Pg.

This Pg is the required form of (2).

THEOREM 5. Any element P € BE can be transformed to a diagonal form by
some o € E7:

A 00 vi 0 0
0!P=((0 /12 0),(0 V2 0),).,\)), lk,vk,,l,veC.
0 0 As 0 0

Proor. For a general element P = (X, Y, &,5) € BC, we denote by D(P) the
square sum of the absolute values of the diagonal elements of X, Y,& and #:

D(P) = &1 + & + &1 + Im 1P + [ma)* + Ins? + €12 + |nl*.
Then D,(P) of Section 2 is
D,(P) = D(P) +2|x1| +2|}’1| P e PB€.

Now, for a given P e B, consider a space X = {aP|ac E;}. Since E7 is
compact, X is also compact. Let D(P) be the maximal values of {D(P’)| P’ € X}.
Then we show that P = (X, Y, &, #) is diagonal. Suppose that % #0 of X or
7, #0 of Y. From [Proposition 4.(2), P can be transformed to the form

aP = ((£],0,0;0,%, %), (7}, 73, 713 0, %, %), €', ) (1)

by some « € Spin(12). Then
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D(P) < D1 (P) = Dy (aP) = D(aP)

( X #0 ) o € Spin(12) .
ory, #0 and Lemma 1 (1)

This contradicts the maximality of D(P). Hence we get X; = y; = 0. Similarly we
can prove that the other entries of X and Y except the diagonals are zero by
means of Spini(12), k =2,3. Thus the proof of is completed.

5. The group Ez and subgroups SU(2) < E;, SU(2) < Eg

As is mentioned in Introduction, any element X € 3¢ can be transformed to
a diagonal form by some a € Eg:

AL 0 0

O(X=<0 lz 0), ﬂkEC.
0 0 4;

However, A1,4,,43 are not eigenvalues of X. (These depend on the choice of

a € Eg). In fact, we can choose o € Eg so that two of A;,43,43 are non-negative
real numbers. Moreover some o«X has the following canonical form:

re? 0 0
aX = 0 rzeie 0 , 0,rreR, 0<ri <r,<rs.

0 0 rze?

Now, we shall find a canonical form of an element P of BE. For this purpose, we
prepare subgroups isomorphic to SU(2) in E; and Es.
Let ef = e @ P D B D C® C @ C be the complex Lie algbera of type
Eg with the Lie bracket
[(‘D],Pl,Ql,rl,Sl,tl), (®21P29Q2ar2as2’t2)] = (q)’Pa Qarasa t)a

(@ = [0, D]+ P1 x Q2 — Py x Oy

P=01P,—OP +1r1Py — 1P+ 5102 — 5201

Q=00 — 0,01 —1nQa+nQi+4uP,— 6P

r= -—%{Pl, Qz} —I—%—{Pz, Ql} + 81l — 821

s = %{Pl,Pz} + 2r150 — 2rs
| 1=—1{01,0:} — 2r1t2 + 2n1y

where {Pi,P,} is defined by {Pi, P} = (X1, Y2) — (X2, Y1) + &1y — &omy for
Py = (X, Yi,S,mp) € B, k =1,2. The Killing form Bs of el is given by
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B3(Ry,Ry) = %37((131, D,) + 15{Qy, P2} — 15{ Py, Q2} + 120r,ry + 601,55 + 60s17

(Rk = (@, Pr, Ok, Tk, Sk, ti) € e,k = 1,2), where B is the Killing form of the Lie

algebra e£. We define C-linear transformations 4 : B — B, 1: e — ef and R-

linear transformations 7 : B¢ — PE, 7: egc — esc by

AX,Y,&m) = (Y, —X,n,-¢),
D, P,Q,r,s,1) = (APA™1,AQ, —AP, —r, —t, —s3),
(X, Y,&,n) = (:X,7Y,7¢,mm),
(D, P, Q,r,s,t) = (t®1,7P,1Q, 1, T8, 1),

respectively, and a Hermitian inner product (R;,R;> of ef by (Ry,Ry) =
—]—ls-Bg(fiRl,Rz). Then the group

Eg = {O( € Isoc(egc) I Ot[Rl,Rz] = [OlR], OCRz], <dR1, OCR2> = <R1, R2>}

is a simply connected compact Lie group of type Eg. The Lie algebra eg of Eg has
the form

eg = {(D, P, —1tAP,r,5,—15) | D €es, P€ B, reiR, se C}.

For ae€ E;, if the mapping o:el — el is defined by &(®,P,Q,rs,1) =
(a®@a~!, aP,aQ,r,s,1), then & € Eg so a and & will be identified. Hence the group
Eg contains E7 as a subgroup by the identification:

E; = {&€E3|O(€E7}.
LEMMA 6. (1) ([8]). The group E; has a subgroup $(SU(2)) = {¢(A4) € E7 |

A € SU(2)} which is isomorphic to the group SU(2) = {Ae M(2,C)|(t'A)A = E,
det A = 1}, where ¢(A) : BE — BC is defined by

¢(A)((élaé2v f3;X1,X2,X3), (771,'72a773; Y1, Y2 y3)’§”7)

= ((&], &5, &5 x1, x5, X5), (M1, M5 M3 Y12 V2 ¥3), &' m'),
0)=1(5) ()=a(r) (B)=4(2) (2)-=4(%)
('7' n , 77{ m ’ f; &3 ’ fé & ’

G=eo() G)=0Gn) G)=G)
b4 N Y2 Y2 Y3 Y3

(2) ([6)). The group Eg has a subgroup o(SU(2)) = {p(4A) e Es| A€ SU(2)}
which is isomorphic to the group SU(2), where ¢(A) : e& — ef is defined by
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/1 0 0 0 0 0\

0 al —bl 0 0 0

a —1b 0 bl a4 0 0 0
(”((b v ))= 0 0 0 (a)a—(wh)b —(za)b a(ch)
0 0 0 2a(zh) a2 —(1b)?
\0 0 0 2(za)b b2 (tb)? )

We identify P e B¢ with P = (0, P, —tAP,0,0,0) € e hereafter. Then the groups
#(SU(2)) and ¢(SU(2)) act on P and we have
LemMA 7. For Pe B€ and A,Be SU(2), we have

¢(4)p(B)P = ¢(B)p(A)P, Di(p(B)p(A)P) = Di(P).

6. A canonical diagonal form of P e BE by E;

PROPOSITION 8. Any element P e BC can be transformed to the following
form by some o € E7:

0 0 0 0 0 0
ocP:((O 0 x),(O 0 y),0,0), x,yeCC.
0 x 0 07 0

PrOOF. We start from a diagonal form of P of and repeat the
same process in the proof of [Proposition 4,(1). Then we have the required form.

LEMMA 9. In the form of aP of Proposition 8, let x =p+iq,y = u+iv,
Dp,q,u,v € € Then we may assume that (p,u) = (p,v) = (q,u) = (q,v) = 0, under
the action of ¢(B)¢(A),A,Be SU(2).

B e 0 __(cosB —sinf
PrOOF. We denote ¢(DC)¢(BA), A= ( 0 e—ioc)’ B= (sinﬁ cos 8 )’

0 e sinéd cosd
0,0),(0,0,0;u + iv,0,0),0,0), let

iy —sind
C— <e 0‘ ), D— (cosé sin ) by ¢(d,y,8,). For P=((0,0,0;p + ig,

L =(p,v)+(q,u), 12=(p’u)_(q’v)’ 13: (p,v)—(q,u),
l4=(p,u)+(q,v), 15:(p’q)—(uvv), 16:(p’Q)+(u’v)'
ki =4(p* + lgl> — [ul®> = o%), k2 =3(pl> = Igl* = lul® + v]?),

2 2 2 2
ks =3(Ipl" = lgI” + |ul” — Jo]%).
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Let P' = ¢(d,7,B,a)P, then P’ has also the form
P’ =((0,0,0; p’ +iq’,0,0),(0,0,0;u’ + iv',0,0),0,0).

We shall show that /[ = [ =] = I; = 0 under some actions of type ¢(J,7,f, ).
Step 1. We can deform to kjki + Islg =0, kylj — I)l5 = 0. In fact, let =0,
0 = n/4 and choose y such that

—(kals + lalg) sin 2y + (k3ly — I3ls) cos2y = 0,
then we have kjkj + [{l; = 0. Next choose a satisfying
(Ll sin2y + Bl cos 2y — kylg sin 2y + k1k3 cos 2y) sin 2a
— (I3l sin 2y + I4]y cos 2y + kyky sin 2y + kyls cos 2y) cos 2a = 0.

then we have kj/{ — i = 0.
Step 2. We can deform to k; =/ =[; = 0. In fact, it can be assumed that
kaks + Islg = 0, kyly — bhls =0 by Step 1. Choose y satisfying

kiysin2y + lgcos2y =0, Issin2y —kycos2y=0 and [/ sin2y— Lhcos2y=0.

Next let f =0, 6 =n/4, then we have k| =53 =1, =0.
Step 3. We can deform to /[ =1, =3 =1I; =0. In fact, it can be assumed
that ky =3 =14 =0 by Step 2. Let 6 =0, then /5 = I, = 0. Choose « such that

Iy (s sin 20 + ka cos 26) + I (ks sin 2a — Is cos 2a1) = 0.
Next choose y satisfying
(lg sin 2o + kg cos 2a) sin 2y — (k3 sin 2o — /s cos 2a) cos2y = 0
and l,sin2y + [y cos 2y = 0.
Then we have /{ = 0. Finally choose f such that
((ls cos 2y + k3 sin 2y) sin 2a — (Is sin 2y — kj cos2y) cos 2a) sin2f
— (l; sin2y — L cos2y)cos2f = 0.

Then we have [, = 0.

LemMa 10. (1) ([9]). For te R, the mapping (1) : 3¢ — 3€,

f] e,it/zx3 e—it/zx—2
(X = | e'?x3 e, X1
e—u/zx2 X7 e—tt§3

belongs to Spin(10) c E¢ < E;.
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(2) ([5]) For t€ R, the mapping €(t) : BE - P,

eZitél eitx3 eitfz' e—Zit’71 e —ity3 e-ity—2
> i —2ity 2i
G(l)(X, Ya f» 77) = ( e”x3 62 X1 ’ e lty3 M, 1 )€ lté» e ”’7)
e'xy X1 & ey, W 13

belongs to E;.

PROPOSITION 11. Any element P e BE can be transformed to the following
form by some o € ¢(SU(2))E;(< Eg),

0 00 rn 0 0
aP=(<O 0 0),(0 r O),O,r), re,reR,0<r <rmn<r<r

0 0 O 0 0 n

Proor. We start from the form of P of Proposition 8. Let x =p+ig, y =
u+iv, p,qu,veC. We may assume (p,u)= (p,v)=(q,u)=(q,v) =0 from
[Lemma 9. Repeat the same process in the proof of [Proposition 4.(2), then we
have the form

((0,0,0;0,0,0), (11,7,73;0,0,0),0,77) = Py.
We give the polar expression of P;:
P1=((0,0,0,0,0,0), (rie, r.e%, r;3';0,0, 0),0,re®), 0,0k,r,rieR,0<r,,0<r.
Using ¢, ¢ of and ¢ in the proof Lemma 9, we have
Y (0,14,0,13)e(t2)e(th) Py = ((0,0,0;0,0,0), (ry,72,73;0,0,0),0,7) = P,,
where
n=1(0,-65), t=1%1(6-0),
3=301—60,—6;+0), ta=-101+6,+65+0).

If necessary we can change the order of r,r;,r,r3 of P,, using elements
of Spink(9), Spink(12), k =1,2,3. For example, a(n/2) of Lemma 2. (1) changes
r, for r3 and y(n/2) of [Lemma 3.(1) changes r; for r. Thus we have required form
of [Proposition 11.

THEOREM 12.  Any element P € B€ can be transformed to the following form
by some o€ E;:
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ary 0 0 bry 0 0 5 b2 | b
fXP: (( O ar2 O ),( 0 br2 0 )’ar’br)’ Ial +| | - )aa € 3

O<ri<m<n<r.
0 0 ar 0 0 br shsnsnsr

b -a

Proor. For a given element P e P, there exist 4 = < b
a T

and « € E7 such that

) e SU(2)

(D(A—l)ap = ((0707()’ 07070)7 (rlv r, r3; Oa Oa 0), Ov r)

from [Proposition 11. Therefore

aP = ¢(A4)((0,0,0;0,0,0), (r1,r2,r3;0,0,0),0,r)
= ((ar,ars,ar3;0,0,0), (bry, bry, br3;0,0,0), ar, br).

Thus the proof is completed.

7. Appendix

In the above sections, is proved as a generalization of Yokota
[9] Now, we show that can be also obtained from the following
universal result.

LemMa 13 (cf. (2], [3], [4), [7]). Let G be a real semisimple Lie group with the
Lie algebra g with a Cartan decomposition g =t @ m, that is, there exists an
involutive automorphism 1 of g such that

f={Xeg|iX=X}, m={Xeg|tX =-X}

and the corresponding Lie subgroup K of G with the Lie algebra ¥ is compact. If a
is a maximal abelian subspace of m, then K -a = m with respect to the adjoint
action - of K on m.

Consider the real simple Lie group Eg with the Lie algebra eg with the
Cartan decomposition eg = f @ m with respect to the involutive automorphism
v:eg — e¢g defined by

o(®, P,—tAP,r,s,—15) = (O, —P,7AP,r,s, —15).
Then
= {(9,0,0,r,5,—75) | D €es,reR,se C},

m = P = {P = (0, P, —1AP,0,0,0) € eg | P € P }.
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Note that the corresponding Lie subgroup K of G with the Lie algebra f is equal
to the compact Lie subgroup E7¢(SU(2)), where E; = {d € Isoc(ef) | o € E7} (see
Section 5 for the notation &), and the adjoint action on m is equivariant to the
action on BE with respect to the correspondence:

B —m =P, P+ P=(0,P,—74P,0,0,0).

r,rkeR}.

ProoF. From the straightforward computation of the Lie bracket of the
realized eg, it is observed that

a={PeP°|[P,a] =0}

PROPOSITION 14. Denote a = {P|P € a} such that

0 0 0 rn 0 0
az{((o : o),<o ; 0>,o,r)
0 0O 0 0 rs

Then a is a maximal abelian subspace of m.

(The detail computation is concerned with the ones on 3, so it is omitted).

Because of combined with [Proposition 14, we have m =K -a =
(E79(SU(2))) - a.

PropoSITION 15. (E79(SU(2)))-a = (E;9(SU(2)))-8,, where &, =
{P|Pea,} such that

Ay = {((OaOaO;O,an)v(rlar2,73;070a0),0ar) € C(IO <Sns<n<rnn< r}'
PROOF. As similar to the last half of the Proof of Prop. 11, it can be proved

that any element of a can be transformed to an element of a, by the action of
e(R)e(R)¢(SU(2))p(SU(2))(< E19(SU(2))), as required.

Note that ¢(SU(2)))- & = b, where b = {P|P eb} such that
ari 0 0 bri 0 0 ja]* + |b* =1,
b= Pz((O ar 0),(0 br, O),ar,br) rnreRabeC
0 0 ars 0 0 brs

O0<rn<rn<rn<r

Then E7-b= E; - (9(SU(2)) - &,) = m = PC. Hence P = E; - b. Thus
12 is proved.
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Now, we show that the above proof of leads to some gen-
eralization. For K = R, C, H and the Cayley Algebra €, let 3x = {X e M(3,K) |
X*=X}, P =3 @3 @ Cd C and

Erx = {a e Isoc(PL) |a(P x Q)a~! = aP x aQ, (aP,aQ) = (P, 0D}

Then we have

THEOREM 16. Any element of %ﬁ can be transformed to an element of b by
Eqk.

ProOF. For K = R,C,H and the Cayley algebra @, let
esx = {# € Homc(35,35) | t9t(X x X) = 20X x X,{$X,Y)> = —(X,4Y)D},
erx = {O(9, 4, —1A4,v) € Homc(‘iB,C(, ‘B,C<) |§ € ek, A € SE, v € iR},
ek = OPrOPLOCADC,
egx = egﬂefx,fx = fﬂeSCK,mK = mﬂeSCK = ‘B,C{

Then egx = tx @ mg is a Cartan decomposition, and that a is a maximal abelian
subspace of mg by Proposition 14, Hence

(E7xo(SU(2))) - & = mg = B§.

Because of the similar argument to the proof of [Proposition 15, any ele-
ment of a can be transformed to an element of a, by the action of
(e(R)e(R)P(SU(2)p(SU(2))) | B = Erxp(SU(2)) | B Then

Erx - ((SU(2))) - &) = (Ezxe(SU(2))) - &, = BE.

Because of b= {P|Peb} =¢(SU(2))-d,, one has that Esx-b=PE, so that
E:x -b = ‘B,C<, as required.
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