FERMAT'S TYPE EQUATIONS IN THE SET OF 2×2 INTEGRAL MATRICES

By

Zhenfu Cao and Aleksander GRYTCZUK

1. Introduction.

Following recently result given by Wiles [6] we know that the equation of Fermat (*) $X^n + Y^n = Z^n$ has no solutions in positive integers X, Y, Z if n > 2. But in contrast to this situation Fermat's equation (*) has infinitely many solutions in 2×2 integer matrices for exponent n = 4. This fact has been discovered by Domiaty [2] in 1996. Namely, he remarked that if

$$X = \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 1 \\ b & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 1 \\ c & 0 \end{pmatrix}$$

where a, b, c are the integer solutions of the Pythagorean equation $a^2 + b^2 = c^2$ then $X^4 + Y^4 = Z^4$. Another results connected with Fermat's equation (*) in the set of matrices are described by Ribenboim [5]. Important problem in these investigations is to give a necessary and sufficient condition for solvability (*) in the set of matrices. Second Author proved (see; [3], Thm. 1) a necessary condition for solvability (*) in the set of 2×2 integral matrices. Moreover, Khazanov [4] founded a necessary and sufficient condition for solvability (*) when $X, Y, Z \in SL_2(Z)$, $SL_3(Z)$, or $GL_3(Z)$. In particular, he proved that there are solutions of (*) in $X, Y, Z \in SL_2(Z)$ if and only if the exponent n is not a multiple of 3 or 4. In this connection we consider the following set of integer matrices:

$$G(k, \pm 1) = \left\{ \begin{pmatrix} r & s \\ ks & r \end{pmatrix}; r, s \in \mathbb{Z}, \det \begin{pmatrix} r & s \\ ks & r \end{pmatrix} = \pm 1 \right\},\,$$

where k is a fixed positive integer which is not a perfect square. We note that if k < 0 or $k = a^2$, $a \in \mathbb{Z}$ then the condition $\det \begin{pmatrix} r & s \\ ks & r \end{pmatrix} = r^2 - ks^2 = \pm 1$ implies s = 0, $r = \pm 1$ and the set $G(k, \pm 1)$ reduces to trivial set:

Received July 7, 1997 Revised January 13, 1998

 $G_0(k,\pm 1)=\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix},\begin{pmatrix}-1&0\\0&-1\end{pmatrix}\right\}$. But if k>0 and $k\neq a^2$, $a\in Z$ then the set $G(k,\pm 1)$ is an infinite set. On the other hand it is easy to see that if $\det\begin{pmatrix}r&s\\ks&r\end{pmatrix}=1$ then the set G(k,1) is a subset of $SL_2(Z)$ considered by Khazanov in [4]. We prove the following:

THEOREM 1. The equation of Fermat (*) has no solutions in $X, Y, Z \in G(k, \pm 1)$ for any positive integer n.

Moreover, we consider more general situation when G(k, a) is the set of the form:

$$G(k,a) = \left\{ \begin{pmatrix} r & s \\ ks & r \end{pmatrix}, r, s \in \mathbb{Z}; \det \begin{pmatrix} r & s \\ ks & r \end{pmatrix} = a \right\},$$

where k is a fixed positive integer and a is a fixed integer.

We prove of the following:

THEOREM 2. If $X, Y, Z \in G(k, a)$ then the equation of Fermat (*) with positive integer exponent $n \ge 3$ does not hold, except when X = O or Y = O or Z = O.

Further, we prove

THEOREM 3. If $X, Y, Z, W \in G(k, a)$ and k > 1 is a fixed square-free integer then the equation:

$$(**) Xn + Yn + Zn = Wn; n \ge 1$$

does not hold, except when X + Y = O or Y + Z = O or Z + X = O and (n, 2) = 1.

2. Lemmas.

In the proof of our results we use of the following:

LEMMA 1. For any positive integer n we have

where

(2)
$$R_n = \frac{1}{2}(\alpha^n + \beta^n), \quad S_n = \frac{1}{2\sqrt{k}}(\alpha^n - \beta^n), \quad \alpha = r + s\sqrt{k}, \quad \beta = r - s\sqrt{k}.$$

PROOF. The proof of (1) follows by the following equality:

$$\begin{pmatrix} r_1 & s_1 \\ ks_1 & r_1 \end{pmatrix} \begin{pmatrix} r_2 & s_2 \\ ks_2 & r_2 \end{pmatrix} = \begin{pmatrix} r_1r_2 + ks_1s_2 & r_1s_2 + s_1r_2 \\ k(r_1s_2 + s_1r_2) & r_1r_2 + ks_1s_2 \end{pmatrix} = \begin{pmatrix} R & S \\ kS & S \end{pmatrix}.$$

Let $A = \begin{pmatrix} r & s \\ ks & r \end{pmatrix}$, then by easy calculation we obtain that $\alpha = r + s\sqrt{k}$ and $\beta = r - s\sqrt{k}$ are the eigenvalues of the matrix A. On the other hand it is well-known that the matrix A^n has the eigenvalues α^n and β^n such that

(3)
$$TrA^{n} = \alpha^{n} + \beta^{n}, \quad \det A^{n} = \alpha^{n}\beta^{n}.$$

From (3) and (1) we obtain (2) and the proof of Lemma 1 is complete.

Moreover, we use of the following:

LEMMA 2. Let $r_1, r_2, r_3 \in \mathbb{Z}$ and $n \geq 3$ be a positive integer. If $r_1^n + r_2^n = r_3^n$ then $r_1r_2r_3 = 0$.

The proof of Lemma 2 follows by the result of Wiles [6].

3. Proof of Theorem 1.

Suppose that the equation (*) $X^n + Y^n = Z^n$ has a solution in the elements $X, Y, Z \in G(k, \pm 1)$ and let $X = \begin{pmatrix} r_1 & s_1 \\ ks_1 & r_1 \end{pmatrix}$, $Y = \begin{pmatrix} r_2 & s_2 \\ ks_2 & r_3 \end{pmatrix}$ and $Z = \begin{pmatrix} r_3 & s_3 \\ ks_3 & r_3 \end{pmatrix}$. Then we have det X, det Y, det $Z \in \{\pm 1\}$ and det $X = \det Y = \det Z$. From the theory of the equation $u^2 - kv^2 = \pm 1$ we know (see; e.g. [2]) that $r_i + s_i \sqrt{k} = \varepsilon^{m_i}$, i = 1, 2, 3 where $\varepsilon = u_0^{(i)} + v_0^{(i)} \sqrt{k}$ is the fundamental solution of the non-Pellian equation $u^2 - kv^2 = -1$ when this equation is solvable in integers u, v or otherwise ε is the fundamental solution of the Pell equation $u^2 - kv^2 = 1$. By Lemma 1 it follows that

$$X^{n} = \begin{pmatrix} R_{n}^{(1)} & S_{n}^{(1)} \\ kS_{n}^{(1)} & R_{n}^{(1)} \end{pmatrix}, \quad Y^{n} = \begin{pmatrix} R_{n}^{(2)} & S_{n}^{(2)} \\ kS_{n}^{(2)} & R_{n}^{(2)} \end{pmatrix}, \quad Z^{n} = \begin{pmatrix} R_{n}^{(3)} & S_{n}^{(3)} \\ kS_{n}^{(3)} & R_{n}^{(3)} \end{pmatrix}$$

where

(4)
$$R_n^{(i)} = \frac{1}{2} (\alpha_i^n + \beta_i^n), \quad S_n^{(i)} = \frac{1}{2\sqrt{k}} (\alpha_i^n - \beta_i^n), \quad i = 1, 2, 3$$

and

(5)
$$\alpha_i = r_i + s_i \sqrt{k} = \varepsilon^{m_i}, \quad \beta_i = r_i - s_i \sqrt{k} = (\varepsilon^{-1})^{m_i}, \quad i = 1, 2, 3$$

(6)
$$\varepsilon = u_0 + v_0 \sqrt{k}, \quad \varepsilon^{-1} = u_0 - v_0 \sqrt{k}.$$

From the assumption that $X^n + Y^n = Z^n$ it follows that

(7)
$$R_n^{(1)} + R_n^{(2)} = R_n^{(3)}, \quad S_n^{(1)} + S_n^{(2)} = S_n^{(3)}.$$

By (4) and (7) it follows that

(8)
$$\alpha_1^n + \beta_1^n + \alpha_2^n + \beta_2^n = \alpha_3^n + \beta_3^n$$

(9)
$$\alpha_1^n - \beta_1^n + \alpha_2^n - \beta_2^n = \alpha_3^n - \beta_3^n.$$

From (8) and (9) we obtain

(10)
$$\alpha_1^n + \alpha_2^n = \alpha_3^n, \quad \beta_1^n + \beta_2^n = \beta_3^n.$$

By (10) and (5) it follows that

(11)
$$\varepsilon^{nm_1} + \varepsilon^{nm_2} = \varepsilon^{nm_3}.$$

It is clear that $m_3 \ge \max\{m_1, m_2\}$ and we can assume without loss of generality that $m_1 \le m_2$. Then by (11) it follows that

$$(12) 1 + \varepsilon^{n(m_2-m_1)} = \varepsilon^{n(m_3-m_1)}.$$

Put $\varepsilon^t = a_t + b_t \sqrt{k}$ for non-negative integers t. Then it is easy to see that a_t and b_t are non-negative integers and from (12) we obtain

$$1 + a_{n(m_2 - m_1)} + b_{n(m_2 - m_1)} \sqrt{k} = a_{n(m_3 - m_1)} + b_{n(m_3 - m_1)} \sqrt{k}.$$

Hence, from the last equality we have

$$(13) 1 + a_{n(m_2 - m_1)} = a_{n(m_3 - m_1)}$$

$$(14) b_{n(m_2-m_1)} = b_{n(m_3-m_1)}.$$

By (14) follows that $m_2 = m_3$ and consequently from (13) we get a contradiction. The proof of the Theorem 1 is complete.

3. Proof of Theorem 2.

Suppose that $X = \begin{pmatrix} r_1 & s_1 \\ ks_1 & r_1 \end{pmatrix}$, $Y = \begin{pmatrix} r_2 & s_2 \\ ks_2 & r_2 \end{pmatrix}$, $Z = \begin{pmatrix} r_3 & s_3 \\ ks_3 & r_3 \end{pmatrix}$ is a solution of (*) with $\det X = \det Y = \det Z = a$. Then by Lemma 1 in similar way as in the proof of Theorem 1 we obtain

$$X^{n} = \begin{pmatrix} R_{n}^{(1)} & S_{n}^{(1)} \\ kS_{n}^{(1)} & R_{n}^{(1)} \end{pmatrix}, \quad Y^{n} = \begin{pmatrix} R_{n}^{(2)} & S_{n}^{(2)} \\ kS_{n}^{(2)} & R_{n}^{(2)} \end{pmatrix}, \quad Z^{n} = \begin{pmatrix} R_{n}^{(3)} & S_{n}^{(3)} \\ kS_{n}^{(3)} & R_{n}^{(3)} \end{pmatrix}$$

and

$$R_n^{(i)} = \frac{1}{2} (\alpha_i^n + \beta_i^n), \quad S_n^{(i)} = \frac{1}{2\sqrt{k}} (\alpha_i^n - \beta_i^n), \quad \alpha_i = r_i + s_i \sqrt{k}, \quad \beta_i = r_i - s_i \sqrt{k}; \quad i = 1, 2, 3.$$

Thus by the assumption we have

(15)
$$R_n^{(1)} + R_n^{(2)} = R_n^{(3)}, \quad S_n^{(1)} + S_n^{(2)} = S_n^{(3)}$$

and consequently we obtain

(16)
$$\alpha_1^n + \alpha_2^n = \alpha_3^n, \quad \beta_1^n + \beta_2^n = \beta_3^n.$$

On the other hand we have $\det X = \det Y = \det Z = a = r_i^2 - ks_i^2 = \alpha_i\beta_i$ for i = 1, 2, 3. But from (16) we get $(\alpha_1^n + \alpha_2^n)(\beta_1^n + \beta_2^n) = (\alpha_3\beta_3)^n$ and consequently we obtain

(17)
$$a^{n} + (\alpha_{1}\beta_{2})^{n} + (\alpha_{2}\beta_{1})^{n} = 0.$$

If a = 0 then $\alpha_i = 0$ or $\beta_i = 0$ and we have $R_n^{(i)} = 2^{n-1}r_i^n$ for i = 1, 2, 3. Hence, by (15) it follows that

$$(18) r_1^n + r_2^n = r_3^n$$

From (18) and Lemma 2 we get that $r_1r_2r_3 = 0$, because $r_1, r_2, r_3 \in \mathbb{Z}$. This fact implies that X = O or Y = O or Z = O. Now, we can assume that $a \neq 0$.

Since $a = \alpha_1 \beta_1 = \alpha_2 \beta_2$ then by (17) it follows that

(19)
$$1 + \left(\frac{\beta_2}{\beta_1}\right)^n + \left(\frac{\beta_1}{\beta_2}\right)^n = 0.$$

Putting $(\beta_2/\beta_1)^n = x$ in the equality (19) we obtain the equation $x^2 + x + 1 = 0$. It is easy to observe that $x = (-1 \pm \sqrt{-3})/2$ and consequently we obtain that $(\beta_2/\beta_1)^n = (-1 \pm \sqrt{-3})/2$. But the last equality is impossible for any positive integer $n \ge 1$. The proof of the Theorem 2 is complete.

4. Proof of Theorem 3.

Suppose that

$$X = \begin{pmatrix} r_1 & s_1 \\ ks_1 & r_1 \end{pmatrix}, \quad Y = \begin{pmatrix} r_2 & s_2 \\ ks_2 & r_2 \end{pmatrix}, \quad Z = \begin{pmatrix} r_3 & s_3 \\ ks_3 & r_3 \end{pmatrix}, \quad W = \begin{pmatrix} r_4 & s_4 \\ ks_4 & r_4 \end{pmatrix},$$

where $\det X = \det Y = \det Z = \det W = a$ is a solution of the equation (**). First, we note that since k > 1 is a square-free integer then the condition a = 0 implies X = Y = Z = W = O. Thus, we can assume that $a \neq 0$. Using Lemma 1 by similar way as in the proof of the Theorem 2 we obtain

(20)
$$\alpha_1^n + \alpha_2^n + \alpha_3^n = \alpha_4^n, \quad \beta_1^n + \beta_2^n + \beta_3^n = \beta_4^n$$

Since $\det X = \det Y = \det Z = \det W = a = r_i^2 - ks_i^2 = \alpha_i\beta_i$; i = 1, 2, 3 then by (20) it follows that

$$(21) 2a^n + (\alpha_1\beta_2)^n + (\alpha_1\beta_3)^n + (\alpha_2\beta_1)^n + (\alpha_2\beta_3)^n + (\alpha_3\beta_1)^n + (\alpha_3\beta_2)^n = 0.$$

One the other hand we have $a \neq 0$ and $\alpha_i = (a/\beta_i)$ for i = 1, 2, 3 thus from (21) we get

(22)
$$2 + \left(\frac{\beta_2}{\beta_1}\right)^n + \left(\frac{\beta_3}{\beta_1}\right)^n + \left(\frac{\beta_1}{\beta_2}\right)^n + \left(\frac{\beta_3}{\beta_2}\right)^n + \left(\frac{\beta_1}{\beta_3}\right)^n + \left(\frac{\beta_2}{\beta_3}\right)^n = 0.$$

Denoting by $x_1 = (\beta_2/\beta_1)^n$, $x_2 = (\beta_3/\beta_2)^n$ and $x_3 = (\beta_1/\beta_3)^n$ we obtain $x_1x_2x_3 = 1$ and consequently the equation (22) reduces to the following equation:

$$(23) 2 + x_1 + x_2 + x_3 + x_1x_2 + x_2x_3 + x_3x_1 = 0.$$

Since $x_1x_2x_3 = 1$ then by (23) it follows that $x_1 = -1$ or $x_2 = -1$ or $x_3 = -1$. By the symmetry of (23) we can assume without loss of generality that $x_1 = -1$. Since $\beta_1 = r_1 - s_1\sqrt{k}$, $\beta_2 = r_2 - s_2\sqrt{k}$ and $x_1 = (\beta_2/\beta_1)^n$ then we obtain

$$\left(\frac{r_2 - s_2\sqrt{k}}{r_1 - s_1\sqrt{k}}\right)^n = -1.$$

It is easy to see that if the exponent n is an even positive integer then the equation (24) is impossible. Suppose that n is an odd positive integer, so (n,2) = 1. Then from (24) we obtain

$$((r_1r_2 - ks_1s_2) + (s_1r_2 - r_1s_2)\sqrt{k})^n = (-a)^n.$$

Since k > 1 is a square-free integer then by (25) it follows that

$$(26) r_1r_2 - ks_1s_2 = -a, s_1r_2 - r_1s_2 = 0.$$

From (26) we obtain $r_2 = -r_1$ and $s_2 = -s_1$ and therefore we have

$$X + Y = \begin{pmatrix} r_1 & s_1 \\ ks_1 & r_1 \end{pmatrix} + \begin{pmatrix} r_2 & s_2 \\ ks_2 & r_2 \end{pmatrix} = \begin{pmatrix} r_1 + r_2 & s_1 + s_2 \\ k(s_1 + s_2) & r_1 + r_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O.$$

The proof of Theorem 3 is complete.

REMARK. Similar result to the Theorem 3 one can obtain for the following equation $X_1^n + X_2^n + \cdots + X_m^n = Y^n$, when $X_1, X_2, \dots, X_m, Y \in G(k, a)$ and k > 1 is a fixed square-free integer and $n \ge 1$, $m \ge 2$ are arbitrary fixed integers.

ACKNOWLEDGEMENT. We would like to thank the referee for his suggestions for the improvement the exposition of this paper.

References.

- [1] Z. F. Cao, Introduction to Diophantine equations, Harbin Institute Techn., 1989
- [2] R. Z. Domiaty, "Solution of $x^4 + y^4 = z^4$ in 2×2 integral matrices", Amer. Math. Monthly 73(1966), 631.
- [3] A. Grytczuk, "On Fermat's equation in the set of integral 2×2 matrices", Period. Math. Hung. 30(1995), 67-72.
- [4] A. Khazanov, "Fermat's equation in matrices", Serdica Math. J. 21(1995), 19-40.
- [5] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer-Verlag, 1979.
- [6] A. Wiles, Modular elliptic curves and Fermat's Last Theorem", Annals of Math. 141(1995), 443-551.

Zhenfu Cao Department of Mathematics Harbin Institute of Technology Harbin-150001, PR China

Aleksander Grytczuk
Institute of Mathematics
Department of Algebra and Number Theory
T. Kotarbiński Pedagogical University
65-069 Zielona Góra,
Poland
1991-Mathematics Subject Classification-11C20, 11D41