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1. Introduction.

Following recently result given by Wiles [6] we know that the equation of
Fermat (x) X" 4+ Y" = Z" has no solutions in positive integers X, Y,Z if n > 2.
But in contrast to this situation Fermat’s equation (x) has infinitely many
solutions in 2 x 2 integer matrices for exponent n = 4. This fact has been dis-
covered by Domiaty in 1996. Namely, he remarked that if

0 1 0 1 0 1
*=(a0) 7=(5 o) 7=(c )

where a,b,c are the integer solutions of the Pythagorean equation a? + b2 = ¢2
then X4 + Y* = Z*. Another results connected with Fermat’s equation () in the
set of matrices are described by Ribenboim [5] Important problem in these
investigations is to give a necessary and sufficient condition for solvability (*) in
the set of matrices. Second Author proved (see; [3], Thm. 1) a necessary condition
for solvabilty (x) in the set of 2 x 2 integral matrices. Moreover, Khazanov
founded a necessary and sufficient condition for solvabilty (x) when X, Y,Z e
SLy(Z), SL3(Z), or GL3(Z). In particular, he proved that there are solutions of
(*) in X,Y,Z € SLy(Z) if and only if the exponent » is not a multiple of 3 or 4.
In this connection we consider the following set of integer matrices:

r s ros
G(k,il)—{(ks r),r,seZ, det(ks r)_il},

where k is a fixed positive integer which is not a perfect square.

We note that if Kk <0 or k = a2, ae Z then the condition det( ]:S i) =

r? —ks?> = +1 implies s =0, r = +1 and the set G(k, +1) reduces to trivial set:
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1 _
Go(k,il)———{(o (1)),( 01 _01)} But if k >0 and k # a?, ae Z then the

set G(k, +1) is an infinite set. On the other hand it is easy to see that if

det( krs “: ) =1 then the set G(k,1) is a subset of SL,(Z) considered by

Khazanov in [4] We prove the following:

THEOREM 1. The equation of Fermat (x) has no solutions in X,Y,Z e
G(k, +1) for any positive integer n.

Moreover, we consider more general situation when G(k,a) is the set of the

form:
r s r s
G(k,a) = {(ks r)’ r,seZ; det(ks r) = a},

where k is a fixed positive integer and a is a fixed integer.
We prove of the following:

THEOREM 2. If X,Y,Z € G(k,a) then the equation of Fermat (x) with positive
integer exponent n > 3 does not hold, except when X = O or Y =0 or Z = O.

Further, we prove

THEOREM 3. If X,Y,Z , W € G(k,a) and k > 1 is a fixed square-free integer
then the equation:

(*x) X"+Y"+Z"=W", n>1

does not hold, except when X + Y =Oor Y +Z =0o0rZ+ X = O and (n,2) = 1.

2. Lemmas.

In the proof of our results we use of the following:

LeEMMA 1. For any positive integer n we have

g (6 )= (s =)
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where

@ Re=3@ 4B, S, B, a=r+svk, p=r—svk

_L(an
vk

Proor. The proof of (1) follows by the following equality:

s rn s\ _ rira + ksi15» risy + 8112 ) _ ( R S)
ksi n ks; 1 o k(7'1S2 + s1r2) rirz + ksi1s; S \kS S/
r

Let 4 = ( :) , then by easy calculation we obtain that o = r + sv/k and f =

s
r — sv'k are the eigenvalues of the matrix 4. On the other hand it is well-known
that the matrix A” has the eigenvalues «” and f” such that

(3) TrA" = o" + ", detd” =a"p".
From (3) and (1) we obtain (2) and the proof of [Lemma 1 is complete.

Moreover, we use of the following:

LeMMA 2. Let ri,r2,r3€ Z and n >3 be a positive integer. If r{ +r5 =rj
then rirary = 0.

The proof of follows by the result of Wiles [6].

3. Proof of Theorem 1.
Suppose that the equation (x) X" + Y” = Z”" has a solution in the elements
X,Y,ZeG(k,£1) and let X = ( n sl), Y = ( r2 sz) and Z =

kS1 ri kS2 r3

(kr; i3).ThenwehavedetX, detY,detZe {+1} and detX =detY = detZ.
3 T3

From the theory of the equation u? —kv? = +1 we know (see; e.g. [2]) that
ri+sivk=¢m, i=1,273 where ¢ = u(()') + v(()')\/E is the fundamental solution of
the non-Pellian equation u? — kv? = —1 when this equation is solvable in integers

u,v or otherwise ¢ is the fundamental solution of the Pell equation u? — kv? = 1.
By it follows that

yi [ RYSVY L (RY SPY L. _ (R sy
ks RY )’ kS RY )’ kS RS
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where

) RO =L@repn, SO =@ -, i=123
n 2 1] /) n 2\/[; i il y Ly

and

(5) awi=ri+sivk=em pi=ri—svk=@E"" i=12.3
(6) e=up+vovk, &'=uy—wVk.

From the assumption that X" + Y”" = Z" it follows that

(7) R + R = RO s 4 5@ — §(3),

By (4) and (7) it follows that

(8) oaf +B7 +o; + By =3 + B3
9) af — B + a3 — By = o3 — B3,
From (8) and (9) we obtain

(10) af +of =of, Pr+p3 =p;.

By and (5) it follows that
(11) gMmM 4 M = "™,

It is clear that m3 > max{m;,m,} and we can assume without loss of generality
that m; < m,. Then by it follows that

(12) R pa—

Put ¢’ = a, + b,v/k for non-negative integers ¢. Then it is easy to see that a, and b,
are non-negative integers and from [(12) we obtain

1+ duimy—rmy) + Brion—m) VE = Guioms —my) + Bn(my—my) VK
Hence, from the last equality we have
(13) L+ @nimy—m1) = Animy—m)
(14) bn(my—m) = Onms —m)-

By follows that m; = m3; and consequently from we get a contradiction.
The proof of the is complete.
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3. Proof of

ry S1 ra 52 r3 53 .
frend = Z pd 1 -
Suppose that X ( kst ), Y < ks rz)’ ( s r3> 1s a solu

tion of (x) with det X = det Y = det Z = a. Then by in similar way as
in the proof of we obtain

M o) @ @ ® <)
X" = R"(l) S’(’l) , Y=o S’&) , 2= R"(a) S’Ezs)
kSn n kSn Rn kSn Rn

Rf,i):%(oc{'+,3f), Sr(:i)=2\1/1?(0€§1‘/3,‘"), w=ri+sivk, Bi=ri—sivk; i=1,2,3.

Thus by the assumption we have

and

(15) R 4+ RD = R® = g 4 &) _ g0
and consequently we obtain
(16) af +oy = a3, B +B; =P

On the other hand we have detX =detY =detZ =a=r? — ks} = a;f; for i =
1,2,3. But from [16) we get (af + of)(B] + B3) = (363)" and consequently we
obtain

(17) a" + (o fy)" + (a2fy)" = 0.

If a =0 then o = 0 or f; =0 and we have R’ =2""!r] for i = 1,2,3. Hence, by
it follows that

(18) ril —|— r;’ — rgl

From and we get that ryryr; = 0, because rq,r2,r3 € Z. This fact
implies that X = O or Y = O or Z = O. Now, we can assume that a # 0.
Since a = a1 8; = a8, then by it follows that

(19) 1+ (B)+(B) -0

Putting (8,/B;)" = x in the equality we obtain the equation x? + x+ 1= 0.
It is easy to observe that x = (—1 + v/—3)/2 and consequently we obtain that
(B,/B;)" = (—1 + v/=3)/2. But the last equality is impossible for any positive
integer n > 1. The proof of the is complete.
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4. Proof of Theorem 3.

Suppose that

r 51 r Ay) rs 53 ry 54
X = bl Y = ) Z = b W = )
(ks1 r ) (k82 r ) (kS3 r3 ) (kS4 ra )
where detX =detY =detZ =det W =a is a solution of the equation (xx).
First, we note that since k > 1 is a square-free integer then the condition a =0

implies X = Y =Z = W = O. Thus, we can assume that a # 0. Using Lemma 1
by similar way as in the proof of the Theorem 2 we obtain

(20) af +of +of =af, B+BS+PB5=8

Since detX =detY =detZ=detW =a=r? —ks? =a;f; i=1,2,3 then by
it follows that

21 2a" + ()" + (0B3)" + (02B1)" + (02B3)" + (a31)” + (a3B,)" = 0.

One the other hand we have a # 0 and «; = (a/f;) for i = 1,2,3 thus from (21)
we get

ﬂz)" (ﬂz)" (ﬁx)" (ﬂa)" (/31)" (ﬂz)"

22 2+<—+—+—+—+—+—=0.

22 5) &) "\&) &) *\5) * 5

Denoting by x; = (8,/8,)", x2 = (B5/B,)" and x3 = (B,/B;)" we obtain x;xyx3 =
1 and consequently the equation reduces to the following equation:

(23) 24+ x1 + x3 + x3+ X1x2 + x2%x3 + x3%x1 = 0.

Since x;x;x3 = 1 then by it follows that x; = —1 or x = —1 or x3 = —1. By
the symmetry of we can assume without loss of generality that x; = —1.
Since B, =r —sivVk, B, =r» —s:vk and x; = (f,/B,)" then we obtain

r; — Sz\/ic- n_ _
24) (rl _Sl \/;;) -

It is easy to see that if the exponent n is an even positive integer then the
equation is impossible. Suppose that n is an odd positive integer, so
(n,2) = 1. Then from we obtain

(25) ((r1r2 — ks182) + (5172 — ris2)Vk)" = (—a)".
Since k > 1 is a square-free integer then by it follows that

(26) rir; —ksiso = —a, s1rp—ris2 =0.
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From we obtain r, = —r; and s, = —s; and therefore we have

oo 8 ry +r St + 82 0 0
X+Y= = = = 0.
* (kS1 r1)+<ks2 rp_) (k(sl—i—Sz) r1+r2) (0 O)
The proof of is complete.

REMARK. Similar result to the one can obtain for the following
equation X"+ X'+ ---+ X} = Y", when X1,X>,...,X,, Y € G(k,a) and k > 1
is a fixed square-free integer and n > 1, m > 2 are arbitrary fixed integers.
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