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ON SECOND SOCLES OF FINITELY COGENERATED
INJECTIVE MODULES

By

Kazutoshi KOIKE

$\ln$ [ $3$ , Theorem] Clark and Huynh proved that a right and left perfect right
self-injective ring $R$ is $QF$ if and only if the second socle of $R_{R}$ is finitely
generated as a right R-module. In this note, using the technique in the proof of
this theorem, we prove that if $E(T)/T$ is finitely cogenerated for every simple
right R-module $T$, then every finitely cogenerated seminoetherian right R-module
is of finite length (Theorem 5). Here, seminoetherian modules mean modules
whose every nonzero submodule contains a maximal submodule. As a corollary,
we obtain the theorem of Clark and Huynh (Corollary 7). Also we point out a
condition for certain right perfect rings to have Morita duality (Corollary 10). In
the last part of this note, we mention a dual of Theorem 5 (Theorem 13).

Throughout this note, $R$ always denotes a ring with $J=Rad(R)$ . For an
R-module $X,$ $Soc_{k}(X)$ denotes the kth socle of $X$ for each positive integer $k$ . For
notations, definitions and familiar results conceming the ring theory we shall
mainly follow [1] and [10].

First we begin with the following lemma.

LEMMA 1. Let $X$ and $Y$ be right R-modules. Then
(1) $Soc_{2}(X\oplus Y)/Soc(X\oplus Y)$ is finitely generated if and only if $Soc_{2}(X)/$

$Soc(X)$ and $Soc_{2}(Y)/Soc(Y)$ are finitely generated.
(2) If $X\leq Y$, then $Soc_{k}(X)=Soc_{k}(Y)\cap X$ for each positive integer $k$.

$PR\infty F$ . (1) This is clear from the fact that

$Soc_{2}(X\oplus Y)/Soc(X\oplus Y)\cong Soc_{2}(X)/Soc(X)\oplus Soc_{2}(Y)/Soc(Y)$ .

(2) This is a special case of [9, Proposition 3.1]. $\square $
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We recall that a right R-module $X$ is said to be finitely cogenerated in case
for every set $\mathscr{A}$ of submodules of $X,$ $\cap \mathscr{A}=0$ implies $\cap \mathscr{F}=0$ for some finite
$\mathscr{F}\subseteq \mathscr{A}$ . For finitely cogenerated right R-modules, we note the following.

LEMMA 2 (cf. [1, Proposition 10.7]). A right R-module $X$ is finitely cogener-
ated $lf$ and only $lfSoc(X)$ is finitely generated and is essential in $X$.

In order to prove our main result, we need the following two lemmas.

LEMMA 3. Suppose that $E(T)/T$ is finitely cogenerated for every simple right
R-module T. If $X_{R}$ is finitely cogenerated, then $X/Soc_{k}(X)$ is finitely cogenerated
for each nonnegative integer $k$. In this case, each $Soc_{k}(X)$ is offinite length.

PROOF. By assumption and Lemmas 1 and 2, for every finitely cogenerated
injective module $E_{R},$ $E/Soc(E)$ is finitely cogenerated. Let $X_{R}$ be finitely co-
generated. We prove that $X/Soc_{k}(X)$ is finitely cogenerated by induction on $k$ . If
$k=0$ , the statement is trivial. Assume that $X/Soc_{k}(X)$ is finitely cogenerated for
$k\geq 0$ . Let $\overline{X}=X/Soc_{k}(X)$ . Then $E(\overline{X})$ is finitely cogenerated injective, Soc(X) $=$

$Soc(E(\overline{X}))$ and $\overline{X}/Soc(\overline{X})\leq E(\overline{X})/Soc(E(\overline{X}))$ . As we mentioned above, $E(\overline{X})/$

$Soc(E(\overline{X}))$ is finitely cogenerated, so $\overline{X}/Soc(\overline{X})$ is also. Thus $ X/Soc_{k+1}(X)\cong$

$\overline{X}/Soc(\overline{X})$ is finitely cogenerated. Therefore, by induction, every $X/Soc_{k}(X)$ is
finitely cogenerated. The last statement of this lemma follows from the fact that
Soc(X), $Soc_{2}(X)/Soc(X),$

$\ldots,$
$Soc_{k}(X)/Soc_{k-1}(X)$ are all finitely generated. $\square $

LEMMA 4. Suppose that $E(T)/T$ is finitely cogenerated for every simple right
R-module T. If $X_{R}$ is finitely cogenerated and $Y_{R}\leq X_{R}$ such that $Y_{R}$ is offinite
length, then $X/Y$ is finitely cogenerated.

PROOF. Since $Y$ is of finite length, by Lemma 1 there exists $k\geq 0$ such that
$Y\leq Soc_{k}(X)$ . Now we have an exact sequence

$0\rightarrow Soc_{k}(X)/Y\rightarrow X/Y\rightarrow X/Soc_{k}(X)\rightarrow 0$ .

By Lemma 3, $Soc_{k}(X)$ is of finite length; so $Soc_{k}(X)/Y$ is finitely cogenerated.
On the other hand, $X/Soc_{k}(X)$ is finitely cogenerated by Lemma 3 again.
Therefore $X/Y$ is finitely cogenerated by [11, 21.4(2)]. $\square $

Recall that a module $X$ is semiartinian if and only if every proper factor
module of $X$ has a simple submodule (see [10, p. 182]). Dualizing this, we say
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that a module is seminoetherian in case every nonzero submodule has a maximal
submodule (see [4]).

THEOREM 5. Suppose that $E(T)/T$ is finitely cogenerated for every simple
right R-module T. Then every finitely cogenerated seminoetherian right R-module is

offinite length.

PROOF. Let $X_{R}$ be a finitely cogenerated seminoetherian module. First we
define a descending chain $(X_{\alpha})$ of submodules of $X$ by transfinite induction, where
$\alpha$ are ordinals. When $\alpha=1$ , we define $X_{\alpha}$ as a maximal submodule of $X$. Assume
that we have defined submodules $X_{\beta}$ for all $\beta<\alpha$ . When $\alpha$ is a limit ordinal, we
define $X_{\alpha}=\bigcap_{\beta<\alpha}X_{\beta}$ . When $\alpha$ is not a limit ordinal with $\alpha=\beta+1$ and $X_{\beta}\neq 0$ ,
we define $X_{\alpha}$ as a maximal submodule of $X_{\beta}$ . By transfinite induction, $(X_{\alpha})$ is
well-defined.

Since $X$ is a set, there exists a minimal ordinal $\beta$ such that $X_{\beta}=X_{\gamma}$ for all
$\gamma\geq\beta$ . By the definition of $(X_{\alpha}),$ $X_{\beta}=0$ . Then, since $X$ is finitely cogenerated, $\beta$ is
not a limit ordinal.

To see that $\beta$ is finite, we assume that $\beta$ is infinite. Then, since $\beta$ is not a limit
ordinal and is infinite, it follows that $\beta$ can be written as $\gamma+n$ , where $\gamma$ is a limit
ordinal and $n$ is a positive integer. Now for the descending chain

$X_{\gamma}>X_{\gamma+1}>\cdots>X_{\gamma+n}=X_{\beta}=0$ ,

each composition factor $X_{\gamma+i}/X_{\gamma+i+1}$ is simple by the definition, and so $X_{\gamma}$ is of
finite length. Thus, by Lemma 4, $X/X_{\gamma}$ is finitely cogenerated. On the other hand,
since $\gamma$ is a limit ordinal, $X_{\gamma}=\bigcap_{\delta<\gamma}X_{\delta}$ . Hence there exists an ordinal $\delta<\gamma$ such
that $X_{\delta}=X_{\gamma}$ . However, this is a contradiction. Therefore $\beta$ is finite and $X$ is of
finite length.

REMARK 6. (1) In [4, Theorem 5] Clark and Smith proved that if
$(*)Soc_{2}(E(T))$ is finitely generated for every simple right R-module $T$,

then every semiartinian and seminoetherian right R-module with finitely generated
socle is of finite length. The assumption $(*)$ of this result is weaker than that of
Theorem 5. However, in Theorem 5 we do not assume that the module is
semiartinian (see Lemma 2).

(2) lf $R$ is right perfect, Rad(X) $=XJ$ and Rad(X) is small in $X$ for each
$X_{R}$ . Thus, every nonzero right R-module has a maximal submodule and is
seminoetherian.
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(3) If $R$ is left perfect, Soc(X) $=l_{X}(J)$ and Soc(X) is essential in $X$ for each $X_{R}$ .
Thus, every nonzero right R-module has a simple submodule and is semiartinian.

(4) If $R$ has only finite many isomorphism classes of simple right R-modules,
then $E(T)/T$ is finitely cogenerated for every simple right R-module if and only if
$U/Soc(U)$ is finitely cogenerated for every finitely cogenerated injective cogen-
erator $U_{R}$ if and only if $U/Soc(U)$ is finitely cogenerated for some finitely
cogenerated injective cogenerator $U_{R}$ .

We recall that a ring $R$ is right $PF$ if $R_{R}$ is an injective cogenerator (see [5,

p. 213]). As is well-known (e.g., see [2, Proposition 2.1 and Lemma 2.4]), if $R$ is
right $PF$, then $Soc_{k}(R_{R})=Soc_{k}(RR)$ for each positive integer $k$. In this case, we
simply write $Soc_{k}(R)$ for $Soc_{k}(RR)$ .

The following corollary is a generalization of [3, Theorem], since every left
perfect right self-injective ring is right $PF$ ([5, Definition and Proposition 24.32]).

COROLLARY 7. Let $R$ be a right $PF$ ring such that $RR$ is semiartinian. Then
the following statements are equivalent:

(1) $R$ is $QF$.
(2) $R/Soc(R)$ is finitely cogenerated as a right R-module.
(3) $Soc_{2}(R)$ is finitely generated as a right R-module and $Soc_{2}(R)/Soc(R)$ is

an essential right R-submodule of $R/Soc(R)$ .
In particular, $lfR_{R}$ is also semiartinian, $R$ is $QF\iota f$ and only if $Soc_{2}(R)$ is

finitely generated as a right R-module.

PROOF. It is shown in [4, Proposition 2] that a one-sided self-injective ring is
right perfect if $RR$ is semiartinian. Thus this corollary follows from Remark 6,
Lemma 2 and the fact that Soc $(R)$ is finitely generated on both sides ([2, Lemma
2.4]). $\square $

REMARK 8. It is an open problem whether a one-sided perfect right self-
injective ring is $QF$. As we mentioned in the introduction, in [3, Theorem] Clark
and Huynh prove that a two-sided perfect right self-injective ring is $QF$ if $Soc_{2}(R)$

is finitely generated as a right R-module. Conceming this, several results are
shown recently. In [4, Corollary 4] the authors point out that the perfect
condition can be weakened to semiartinian. Other authors approach to the
problem above by investigating the condition that the lefi R-module $Soc_{2}(R)$

(or $J/J^{2}$ ) is finitely (countably) generated. These results can be found in [6], [7]

and [12].
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Applying Theorem 5 to right perfect rings, we have

COROLLARY 9. Let $R$ be a right perfect ring and let $U_{R}$ be a finitely
cogenerated injective cogenerator. Then the following statements are equivalent:

(1) $U/Soc(U)$ is finitely cogenerated.
(2) $U$ is offinite length.
(3) Every finitely cogenerated right R-module is offinite length.

In this case, $R$ is semiprimary.

PROOF. The equivalences of (1), (2) and (3) follow from Theorem 5 and
Remark 6. If these equivalent conditions hold, then $UJ^{n}=0$ for some positive
integer $n$ . Thus, since $U_{R}$ cogenerates $R_{R},$ $J^{n}=0$ and $R$ is semiprimary. $\square $

The following corollary gives a condition for certain right perfect rings to
have Morita duality.

COROLLARY 10. Let $R$ be a right perfect ring such that $R_{R}$ is finitely
cogenerated and let $U_{R}$ be a finitely cogenerated injective cogenerator. Then the
following statements are equivalent:

(1) $U/Soc(U)$ is finitely cogenerated.
(2) $U$ is finitely generated and $R$ is right artinian.
(3) $sU_{R}$ defines a Morita duality, where $S=End_{R}(U)$ .

PROOF. (1) $\Rightarrow(2)$ By Corollary 9, $U_{R}$ is of finite length and $R$ is right
artinian.

(2) $\Rightarrow(1)$ Trivial.
(2) $\Leftrightarrow(3)$ This follows from [1, Theorem 30.4, Corollary 30.5 and Exercise

28.8]. $\square $

Finally we note dual results for preceding ones. Their proofs are almost dual
and will be omitted. In general, for a right R-module $X,$ $XJ\neq Rad(X)$ and
$X/XJ$ is not semisimple. So we need to suppose that $R$ is semilocal for the results
below.

LEMMA 11 (cf. Lemma 3). Suppose that $R$ is semilocal and $J_{R}$ is finitely
generated. If $X_{R}$ is finitely generated, then $XJ^{k}$ is finitely generated for each non-
negative integer $k$ . In this case, each $X/XJ^{k}$ is offinite length.
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LEMMA 12 (cf. Lemma 4). Suppose that $R$ is semilocal and $J_{R}$ is finitely
generated. If $X_{R}$ is finitely generated and $Y_{R}\leq X_{R}$ such that $X/Y$ is of finite
length, then $Y$ is finitely generated.

THEOREM 13 (cf. Theorem 5). Suppose that $R$ is semilocal and $J_{R}$ is finitely
generated. Then every finitely generated semiartinian right R-module is of finite
length.

As a dual of Corollary 9, we can obtain a result for left perfect rings.
However, this result is a part of [8, Lemma 11].
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