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INDUCED MAPPINGS ON HYPERSPACES II

By

Hiroshi HOSOKAWA

Abstract. A mapping $f:X\rightarrow Y$ between continua induces a
mapping $C(f):C(X)\rightarrow C(Y)$ between hyperspaces. In section 2, we
shall give a condition under which $C(f)$ becomes confluent whenever
$f$ is confluent. In section 3, we consider the image and the inverse
image of an order arc under the mapping $C(f)$ and character-
izations of a confluent mapping and a hereditarily confluent
mapping. In the last section, we treat about particular subcontinua
(which are like fat Whitney levels) and inverse image of them under
$C(f)$ .

1. Introduction

In this paper, continua are compact connected metric spaces and mappings
are continuous functions. The letters $X$ and $Y$ will always denote nondegenerate
continua. The hyperspaces of $X$ are the metric spaces $2^{X}=\{K\subset X:K$ is
nonempty and compact} and $C(X)=$ {$K\in 2^{X}$ : $K$ is connected} with the
Hausdorff metric $H_{d}$ (see [10] for the definition of the Hausdorff metric and
basic properties of hyperspaces). A mapping $f:X\rightarrow Y$ induces a mapping
$C(f):C(X)\rightarrow C(Y)$ , where $C(f)(K)=f(K)$ for each $K\in C(K)$ . Clearly,
$C(g\circ f)=C(g)\circ C(f)$ . In [4], we have proved that if $Y$ is locally connected
and $f$ is confluent, then $C(f)$ is confluent. In section 2, we show that the
condition of locally connectedness can be weakened (Theorem 2.7).

An order arc in $C(X)$ is an arc $\alpha\subset C(X)$ such that for $K,$ $L\in\alpha,$ $K\subset L$ or
$L\subset K$ . An order arc with the end points $X$ and $\{x\}$ for some $x\in X$ is called
a large order arc. Let $\Gamma(X)=$ { $\alpha:\alpha$ is an order arc in $C(X)$ } $\cup F_{1}(X)$ , where
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$F_{1}(X)=\{\{K\}:K\in C(X)\}$ and $L\Gamma(X)=$ { $\alpha:\alpha$ is a large order arc in $C(X)$ }. If $K$

is a subcontinuum of $X$ , then we regard $\Gamma(K)$ as a subspace of $\Gamma(X)$ . We show
that if $f$ is confluent, then $C(f)(\Gamma(X))=\Gamma(Y)$ and $C(f)(L\Gamma(X))=L\Gamma(Y)$ . If $f$

is hereditary confluent, then $\cup$ { $\alpha:\alpha\in\Gamma(X)$ and $ C(f)(\alpha)=\beta$} $=[C(f)]^{-1}(\beta)$ for
each $\beta\in\Gamma(Y)$ . This is true for large order arcs. Modifying these facts, we
obtain characterizations of confluent mappings and hereditarily confluent
mappings (Theorems 3.3 and 3.5).

Some results between Whitney levels and order arc spaces are given in [9].

In the last section, we consider for subcontinua which intersect each large order
arc. Each neighborhood of such continuum contains a Whitney level. Moreover
under some additional condition, such a subcontinuum contains a Whitney level.
These continua are preserved by the inverse image of $C(f)$ .

2. The mapping induced from a confluent mapping

A mapping $f:X\rightarrow Y$ is said to be confluent if for each subcontinuum $L$ of
$Y$ , each component of $f^{-1}(L)$ is mapped by $f$ onto $L$ . If there is a component
of $f^{-1}(L)$ which is mapped onto $L$ by $f$, then $f$ is said to be weakly confluent.
For properties of these mappings, see [10].

We have proved in [4] the following three lemmas.

LEMMA 2.1. If $f:X\rightarrow Y$ is a confluent mapping and $\mathscr{L}$ is an arc in $C(Y)$ ,
then each component of $[C(f)]^{-1}(\mathscr{L})$ is mapped by $C(f)$ onto $\mathscr{L}$

LEMMA 2.2. If $f:X\rightarrow Y$ is a confluent mapping and $\mathscr{L}$ is an arcwise
connected subcontinuum of $C(Y)$ , then each component of $[C(f)]^{-1}(\mathscr{L})$ is mapped
by $C(f)$ onto $\mathscr{L}$

In other words, iff : $X\rightarrow Y$ is confluent and $\mathscr{L}$ is a subcontinuum of $C(Y)$ ,
then each component of $[C(f)]^{-}1(\mathscr{L})$ is mapped by $C(f)$ onto the union of some
arc components of $\mathscr{L}$

LEMMA 2.3. If $f:X\rightarrow Y$ is a confluent mapping and $Y$ is locally connected,
then $C(f):C(X)\rightarrow C(Y)$ is confluent.

There is a confluent mapping $f:X\rightarrow Y$ such that $C(f)$ is not weakly
confluent (see [4]). The condition of locally connectedness in lemma 2.3 can be
weakened. We use the following lemmas which were proved in corollary 7 and
corollary 13 of [1] respectively.
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LEMMA 2.4. Let $X=\lim_{\leftarrow}\{X_{n}, \varphi_{n}\}_{n=1}^{\infty}$ where $\{X_{n}, \varphi_{n}\}_{n=1}^{\infty}$ is an inverse
sequence with all bonding mappings $\varphi_{n}$ : $X_{n+1}\rightarrow X_{n}$ are confluent. Then all
projections $p_{n}$ : $X\rightarrow X_{n}$ are confluent.

LEMMA 2.5. Let $\{X_{n}, \varphi_{n}\}_{n=1}^{\infty}$ and $\{Y_{n}, \psi_{n}\}_{n=1}^{\infty}$ be inverse sequences and let
$\{\sigma, h_{n}\}_{n=1}^{\infty}$ be a mapping between the inverse sequences. If $h_{n}$ : $X_{\sigma(n)}\rightarrow Y_{n}$ is

confluent for each $n$ , then the limit mapping $h_{\infty}$ : $X\rightarrow Y$ is confluent.

Further we use the following lemma proved by J. Segal in [13] (see also
Theorem (1.169) in [12]).

LEMMA 2.6. Let $Y=\lim_{\leftarrow}\{Y_{n}, \psi_{n}\}_{n=1}^{\infty}$ , where each of the spaces $Y_{n}$ is a
continuum. Then the mapping $h:C_{\infty}(Y)=\lim_{\leftarrow}\{C(Y_{n}), C(\psi_{n})\}_{n=1}^{\infty}\rightarrow C(Y)$ defined
by $h(B_{1}, B_{2}, \ldots, B_{n}, \ldots)=\lim_{\leftarrow}\{B_{n}, \psi_{n}|B_{n+1}\}_{n=1}^{\infty}$ is a homeomorphism.

We are now ready to prove the following Theorem.

THEOREM 2.7. Let $Y$ be the inverse limit of an inverse sequence $\{Y_{n}, \psi_{n}\}_{n=1}^{\infty}$

such that each of the spaces $Y_{n}$ is a locally connected continuum and each of the
bonding mappings $\psi_{n}$ : $Y_{n+1}\rightarrow Y_{n}$ is confluent. If $f:X\rightarrow Y$ is confluent, then
$C(f)$ is also confluent.

PROOF. Let $h:C_{\infty}(Y)\rightarrow C(Y)$ be the homeomorphism defined in lemma
2.6 and for each $n,$ $p_{n}$ : $Y\rightarrow Y_{n}$ be the projection. Since the composition of two
confluent mappings is confluent (cf. [10]) and $p_{n}$ is confluent by lemma 2.4,
$p_{n}\circ f:X\rightarrow Y_{n}$ is confluent. Since $Y_{n}$ is locally connected, we can apply lemma
2.3 and obtain that the mappings $C(\psi_{n})$ and $C$ ( $p_{n}$ of) are confluent for
each $n=1,2,$ $\ldots$ . On the otherhand, since $C(\psi_{n})\circ C(p_{n}\circ f)=C(\psi_{n}\circ p_{n}\circ f)=$

$C(p_{n-1}\circ f)$ , the sequence of the mappings $\{C(p_{n}\circ f)\}_{n=1}^{\infty}$ induces a mapping
$g:C(x)\rightarrow C_{\infty}(Y)$ (i.e., $g(A)=\{p_{n}\circ f(A)\}_{n=1}^{\infty}\in C_{\infty}(Y)$ for each $A\in C(X)$ ).

Then by lemma 2.5, $g$ is confluent. It is easy to see from the definition of $g$ , that
$h\circ g=C(f)$ . Therefore the induced mapping $C(f):C(X)\rightarrow C(Y)$ is confluent.

COROLLARY 2.8. If $Y$ is a solenoid or the buckethandle continuum and
$f:X\rightarrow Y$ is confluent, then $C(f):C(X)\rightarrow C(Y)$ is also confluent.

PROOF. This follows from Theorem 2.7 since $Y$ is an inverse limit of circles
or arcs with confluent bonding mappings.
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3. Order arcs

Recall that an arc $\alpha$ in $C(X)$ is an order arc if $K,$ $ L\in\alpha$ , then $K\subset L$ or
$L\subset K$ . Conversely it is known that if $K,$ $L\in C(X)$ and $K\subset L$ , then there exists
an order arc in $C(X)$ which contains $K$ and $L$ (see [6] or [12]). If $\alpha$ is an order
arc, then there is a homeomorphism $\varphi_{\alpha}$ : $[0,1]\rightarrow\alpha$ such that $\varphi_{\alpha}(0)=\cap\alpha$,
$\varphi_{\alpha}(1)=\cup\alpha$ . For convenient, we shall write $\psi_{\alpha}(t)=\alpha(t)$ for some fixed
homeomorphism $\psi_{\alpha}$ : $[0,1]\rightarrow\alpha$ for each order arc $\alpha$ . We say that $\{\alpha(t)\}_{t\in[0,1]}$ is a
parameterization of $\alpha$ . Note that $\Gamma(X)=$ { $\alpha:\alpha$ is an order arc in $C(X)$ } $\cup F_{1}(X)$

is compact as the subspace topology of the continuum $C(C(X))$ (see [11]),
connected (see [3]), and hence it is a continuum. D. Curtis and M. Lynch
determined continua whose order arc space is homeomorphic to the Hilbert
cube ([2], Theorem 1.2). Clearly $L\Gamma(X)$ is closed in $\Gamma(X)$ .

LEMMA 3.1. The space $L\Gamma(X)$ is connected. Hence it is a continuum.

PROOF. We first show that the set $L\Gamma_{x}(X)=\{\alpha\in L\Gamma(X):\alpha(0)=\{x\}\}$ is
arcwise connected for each $x\in X$ . Let $\alpha,\beta\in L\Gamma_{X}(X)$ . Define $\gamma_{t}\in L\Gamma_{x}(X)$ for
each $t\in[0,1]$ by

$\gamma_{t}=\{\beta(s) : 0\leq s\leq t\}\cup\{\beta(t)\cup\alpha(s) : 0\leq s\leq 1\}$ .

Note that $\gamma_{0}=\alpha$ and $\gamma_{1}=\beta$ because $\{\beta(1)\cup\alpha(s):0\leq s\leq 1\}=\{\beta(1)\}$ . It is easy
to see that $\{\gamma_{t}\}_{t\in[0,1]}$ is an arc from $\alpha$ to $\beta$ in $L\Gamma_{x}(X)$ .

Now suppose $L\Gamma(X)=\mathscr{A}_{1}\cup \mathscr{A}_{2}$ , where $\mathscr{A}_{1},$ $\mathscr{A}_{2}$ are closed and disjoint. Let
$X_{i}=\{x\in X:L\Gamma_{X}(X)\cap \mathscr{A}_{i}\neq\phi\}$ for $i=1,2$ . Since $L\Gamma_{X}(X)$ is connected, $X_{1},$ $X_{2}$

are disjoint. The mapping $h:L\Gamma(X)\rightarrow X$ defined by $h(\alpha)=x$ if $\alpha\in L\Gamma_{X}(X)$ is
continuous (cf. Theorem 2.2 in [3]) and $h(\mathscr{A}_{l})=X_{i}$ for $i=1,2$ . Therefore $X_{1},$ $X_{2}$

are closed. Clearly $X=X_{1}\cup X_{2}$ and hence $ X_{1}=\phi$ or $ X_{2}=\phi$ . This implies that
$\mathscr{A}_{1}=\phi$ or $\mathscr{A}_{2}=\phi$ . Hence $L\Gamma(X)$ is connected.

We now retum to the induced mapping. The following proposition is easy
to prove.

PROPOSITION 3.2. Let $f:X\rightarrow Y$ be a mapping and $\alpha\in\Gamma(X)$ . Then $C(f)$

is monotone on $\alpha$ and $C(f)(\alpha)\in\Gamma(Y)$ . If $f$ is onto and $\alpha\in L\Gamma(X)$ , then
$C(f)(\alpha)\in L\Gamma(Y)$ .

The following Theorem is a characterization of confluent mappings.

THEOREM 3.3. Let $f:X\rightarrow Y$ be an onto mapping. Then the following
assertions are equivalent:
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(a) $f$ is confluent.
(b) For each $\beta\in\Gamma(Y)$ , each $ L\in\beta$ and each component $K$ of $f^{-1}(L)$ , there

exists $\alpha\in\Gamma(X)$ such that $ K\in\alpha$ and $ C(f)(\alpha)=\beta$ .
(c) For each $\beta\in L\Gamma(Y)$ , each $ L\in\beta$ and each component $K$ of $f^{-1}(L)$ , there

exists $\alpha\in L\Gamma(X)$ such that $ K\in\alpha$ and $ C(f)(\alpha)=\beta$ .

PROOF. (a) implies (b). Suppose $f$ is confluent, $L\in\beta\in\Gamma(Y)$ and $K$ is a
component of $f^{-1}(L)$ . Note that $\beta(0)\subset L=f(K)$ . Choose a component $K_{0}$ of
$f^{-1}(\beta(0))$ contained in $K$ . For each $t\in[0,1]$ , let $K_{l}$ be the component of
$f^{-1}(\beta(t))$ such that $K_{0}\subset K_{l}$ and let $\mathscr{F}$ be the closure of the set $\{K_{t} : t\in[0,1]\}$ in
$C(X)$ . Then $\mathscr{F}$ is a linearly ordered set by inclusion and $K\in \mathscr{F}$ By the
Maximal Principle, there is a maximal linearly orderd set $\alpha\subset C(X)$ such that
$\mathscr{K}\subset\alpha$ and $K_{0}\subset A\subset K_{1}$ for each $ A\in\alpha$ . Then as in the proof of Theorem 1.8 of
[12], $\alpha$ is an order arc. It is easy to see that $\alpha$ satisfies the required conditions.

(b) implies (c). Let $L\in\beta\in L\Gamma(Y)$ and let $K$ be a component of $f^{-1}(L)$ .
There is $\gamma\in\Gamma(X)$ such that $ K\in\gamma$ and $ C(f)(\gamma)=\beta$ . Choose $\gamma_{1},$

$\gamma_{2}\in\Gamma(X)$ as
follows. If $\gamma(1)=X$ , then $\gamma_{1}=\{X\}$ . If $\gamma(1)\neq X$ , then let $\gamma_{1}$ be any order arc
from $\gamma(1)$ to $X$ . Similarly choose $\gamma_{2}\in\Gamma(X)$ so that $\gamma_{2}(0)\in F_{1}(X)$ and $\gamma_{2}(1)=$

$\gamma(0)$ . Then $\alpha=\gamma_{2}\cup\gamma\cup\gamma_{1}$ is a required large order arc.
(c) implies (a). Let $L$ be a subcontinuum of $Y$ and let $K$ be a component

of $f^{-1}(L)$ . There is $\beta\in L\Gamma(Y)$ such that $ L\in\beta$ . By the assumption, there is
$\alpha\in L\Gamma(X)$ such that $ K\in\alpha$ and $ C(f)(\alpha)=\beta$ . Let $ M\in\alpha$ be such that $C(f)(M)=$
$L$ . Then $ M\cap K\neq\phi$ and hence $M\subset K$ . Thus $L=C(f)(M)=f(M)\subset f(K)\subset L$ .
This implies that $f$ is confluent.

One can easily fined a confluent mapping $f:X\rightarrow Y$ and some $\beta\in\Gamma(Y)$

such that for some $K\in[C(f)]^{-1}(\beta)$ , there is no order arc $\alpha$ which contains $K$

and mapped onto $\beta$ by $C(f)$ .
An onto mapping $f:X\rightarrow Y$ is said to be hereditarily confluent if for each

$K\in C(X)$ , the restriction $f|K:K\rightarrow f(K)$ is confluent.

PROPOSITION 3.4. If $f:X\rightarrow Y$ is hereditarily confluent, then for each
$\beta\in\Gamma(Y)$ ,

$\cup$ { $\alpha:\alpha\in\Gamma(X)$ and $ C(f)(\alpha)=\beta$} $=[C(f)]^{-1}(\beta)$ .

If $\beta\in L\Gamma(Y)$ , then

$\cup$ { $\alpha$ : $\alpha\in L\Gamma(X)$ and $ C(f)(\alpha)=\beta$} $=[C(f)]^{-1}(\beta)$ .
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PROOF. We only prove that if $\beta\in\Gamma(Y)$ and $K\in[C(f)]^{-1}(\beta)$ , then there is
$\alpha\in\Gamma(X)$ such that $ K\in\alpha$ and $ C(f)(\alpha)=\beta$ . Since $f|K:K\rightarrow f(K)$ is confluent
and $\beta(0)\subset f(K)\in\beta$ , we can apply Theorem 3.3 for a subarc of $\beta$ . Thus there is
$\gamma_{1}\in\Gamma(K)$ such that $K\in\gamma_{1}$ and $C(f|K)(\gamma_{1})=$ { $ L:L\in\beta$ and $L\subset f(K)$ }. Let $M$

be the component of $f^{-1}(f(K))$ containing $K$ . Again applying Theorem 3.3,
there is an order arc $\gamma_{2}$ such that $M\in\gamma_{2}$ and $ C(f)(\gamma_{2})=\{L:L\in\beta$ and
$f(M)\subset L\}$ . We may assume that $M=\gamma_{2}(0)$ . If $K=M$, then we put $\alpha=\gamma_{1}\cup\gamma_{2}$ .
If $K\neq M$ , then choose an order arc $\gamma_{0}$ from $K$ to $M$ and we put ct $=\gamma_{1}\cup\gamma_{0}\cup\gamma_{2}$ .
Then either case, we have $K\in\alpha\in\Gamma(X)$ and $ C(f)(\alpha)=\gamma$ .

The following Theorem is a characterization of hereditarily confluent
mappings.

THEOREM 3.5. Let $f:X\rightarrow Y$ be an onto mapping. Then the following
assertions are equivalent:

(a) $f$ is hereditarily confluent.
(b) For each $\beta\in\Gamma(Y)$ , each pair $L_{1},$ $ L_{2}\in\beta$ such that $L_{1}\subset L_{2}$ and each

$K_{i}\in[C(f)]^{-1}(L_{i})$ for $i=1,2$ , such that $K_{1}\subset K_{2}$ , there exists $\alpha\in\Gamma(X)$ such that
$K_{1},$ $ K_{2}\in\alpha$ and $ C(f)(\alpha)=\beta$ .

(c) For each $\beta\in L\Gamma(Y)$ , each pair $L_{1},$ $ L_{2}\in\beta$ such that $L_{1}\subset L_{2}$ and each
$K_{i}\in[C(f)]^{-1}(L_{i})$ for $i=1,2$ , such that $K_{1}\subset K_{2}$ , there exists $\alpha\in L\Gamma(X)$ such that
$K_{1},$ $ K_{2}\in\alpha$ and $ C(f)(\alpha)=\beta$ .

PROOF. (a) implies (b). Let $f$ be hereditarily confluent, $\beta\in\Gamma(Y),$ $L_{1}$ ,
$ L_{2}\in\beta$ and let $K_{1}\in[C(f)]^{-1}(L_{1}),$ $K_{2}\in[C(f)]^{-1}(L_{2})$ be such that $K_{1}\subset K_{2}$ .
Since $f|K_{2}$ is hereditarily confluent and $\beta_{1}=\{B\in\beta:B\subset L_{2}\}\in\Gamma(L_{2})\subset\Gamma(Y)$ ,
$\beta_{2}=\{B\in\beta:L_{2}\subset B\}\in\Gamma(Y)$ , we can apply proposition 3.4 so that there
are $\alpha_{1}\in\Gamma(K_{2})\subset\Gamma(X)$ , $\alpha_{2}\in\Gamma(X)$ such that $K_{i}\in\alpha_{i}$ for each $i=1,2$ and
$C(f|K_{2})(\alpha_{1})=\beta_{1},$ $C(f)(\alpha_{2})=\beta_{2}$ . We may assume that $\alpha_{2}(0)=K_{2}$ . If $\alpha_{1}(1)=$

$\alpha_{2}(0)$ , then define $\alpha=\alpha_{1}\cup\alpha_{2}$ . If $\alpha_{1}(1)\neq\alpha_{2}(0)$ , then $\alpha_{1}(1)\subset K_{2}=\alpha_{2}(0)$ . Hence
we can choose an order arc $\alpha_{0}$ from $\alpha_{1}(1)$ to $\alpha_{2}(0)$ and define $\alpha=\alpha_{1}\cup\alpha_{0}\cup\alpha_{2}$ .
It is easy to see that $K_{1},$ $K_{2}\in\alpha\in\Gamma(X)$ and $ C(f)(\alpha)=\beta$ .

The proof of (b) implies (c) is same as that of (b) implies (c) in Theorem
3.3.

(c) implies (a). Let $K$ be a subcontinuum of $X,$ $L$ a subcontinuum of $f(K)$

and $C$ a component of $(f|K)^{-1}(L)$ . We must show that $f(C)=L$ . Let $\beta$ be a
large order arc in $C(Y)$ such that $\{f(C), L, f(K)\}\subset\beta$ (note that such a $\beta$ exists
since $f(C)\subset L\subset f(K))$ . It follows from the hypothesis and $C,$ $K\in[C(f)]^{-1}(\beta)$ ,
$C\subset K$ , there exists $\alpha\in L\Gamma(X)$ such that $C,$ $ K\in\alpha$ and $ C(f)(\alpha)=\beta$ . Let $ M\in\alpha$



Induced mappings on hyperspaces II 779

be the maximum element in $\alpha\cap[C(f)]^{-1}(L)$ . Then $f(C)\subset L\subset f(K)$ and
$C,$ $ M,K\in\alpha$ implies $C\subset M\subset K$ . But since $C$ is a component of $f^{-1}(L)\cap K$ , we
have $C=M$ . Therefore $f(C)=L$ .

For an onto mapping $f:X\rightarrow Y$ , we can regard $C(f)$ as a mapping from
$L\Gamma(X)$ to $L\Gamma(Y)$ . It is interest to know a condition when $ C(f):L\Gamma(X)\rightarrow$

$L\Gamma(Y)$ is an open mapping (cf. [4], Theorem 4.3).

4. Whitney levels

A Whitney map for $C(X)$ is a mapping $\omega:C(x)\rightarrow[0,1]$ such that $\omega(\{x\})=0$

for each $x\in X,$ $\omega(X)=1$ and if $K,$ $L\in C(X)$ and $K\subset L\neq K$, then $\omega(K)<$

$\omega(L)$ . Such a mapping always exists (see [15], [16] or [12]). A Whitney level is a
set of the form $\omega^{-1}(t),$ $t\in[0,1$ ), for any Whitney map $\omega$ . It is known that every
Whitney level is a subcontinuum of $C(X)$ .

A subset $\mathscr{A}\subset C(X)$ is said to be an anti-chain if $A,$ $B\in \mathscr{A}$ and $A\subset B$, then
$A=B$ . A. Illanes has given a characterization of Whitney levels as follows (see

[5], Theorem 1.2).

PROPOSITION 4.1. Let $\mathscr{A}\subset C(X)-(\{X\}\cup F_{1}(X))$ . Then the $fo$ llowing
assertions are equivalent:

(a) $\mathscr{A}$ is a Whitney level.
(b) $\mathscr{A}$ is a compact anti-chain which intersects every large order arc in $C(X)$ .
(c) $\mathscr{A}$ is an anti-chain and separates $C(X)$ .

For any continuum $X$ , consider the following conditions for a closed subset
$ff\subset C(X)$ .

$(*)\mathscr{K}\cap(\{X\}\cup F_{1}(X))=\phi$ .
$(**)\alpha\cap ff$ is nonempty and connected for every $\alpha\in L\Gamma(X)$ .
$(***)\alpha\cap\ovalbox{\tt\small REJECT}^{r}$ is nonempty for every $\alpha\in L\Gamma(X)$ and the mapping $\Phi ff$ :

$L\Gamma(X)\rightarrow 2^{C(X)}$ difined by $\Phi_{X^{\prime}}(\alpha)=\alpha\cap ff$ is continuous.

THEOREM 4.2. Let ff be a closed subset of $C(X)$ . If $\mathscr{M}^{\prime}$ satisfies $(**)$ , then
ff is connected and each neighborhood of $\mathscr{K}$ contains a Whitney level. If in
addition, $\mathscr{K}$ satisfies $(*)$ , then $C(X)-ff$ has just two components.

PROOF. Suppose $\mathscr{K}$ satisfies $(**)$ . If $X\in ff$ then for each $K\in \mathscr{K}-\{X\}$ ,
there exists a large order arc $\alpha\in L\Gamma(X)$ such that $ K\in\alpha$ . By the assumption,
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$\alpha\cap ff$ is connected and containes $K,$ $X$ . Thus $K$ is in the same component of $X$

in $\mathscr{K}$ . Therefore X is connected. If $X\not\in \mathscr{K}$, then define two subsets $\mathscr{A}_{1},$ $\mathscr{A}_{2}$ of
$C(X)-ff$ by

$\mathscr{A}_{1}=$ { $A\in C(X)-\mathscr{K}$ : there exists $K\in \mathscr{K}$ such that $A\subset K$}
and

$\mathscr{A}_{2}=$ { $A\in C(X)-\mathscr{K}$ : there exists $K\in \mathscr{K}$ such that $K\subset A$ }.

One can easily verify that $F_{1}(X)-\mathscr{M}^{r}\subset \mathscr{A}_{1},$ $X\in \mathscr{A}_{2}$ . Let $B\in \mathscr{A}_{1}\cap \mathscr{A}_{2}$ . Then there
are $K_{1},$ $K_{2}\in \mathscr{K}$ such that $K_{1}\subset B\subset K_{2}$ . Let $\alpha\in L\Gamma(X)$ be such that $\{K_{1}, B, K_{2}\}\subset\alpha$ .
Since $B\not\in ff\mathscr{K}\cap\alpha=$ { $ K:K\in \mathscr{M}^{\prime}\cap\alpha$ and $K\subset B$} $\cup$ { $ K:K\in\ovalbox{\tt\small REJECT}^{\prime}\cap\alpha$ and $B\subset K$}
is a separation of $\mathscr{K}\cap\alpha$ . This contradicts to $(**)$ and hence $\mathscr{A}_{1}\cap \mathscr{A}_{2}=\phi$ .
Simillary we can show that each component of $\mathscr{A}_{1}$ intersects $F_{1}(X),$ $\mathscr{A}_{2}$ is
connected and $\mathscr{A}_{1}\cup \mathscr{A}_{2}=C(X)-\mathscr{K}$ .

In order to prove that $\overline{\mathscr{A}_{1}}\cap \mathscr{A}_{2}=\phi=\mathscr{A}_{1}\cap\overline{\mathscr{A}}_{2}$ , let $\{A_{n}\}_{n=1}^{\infty}$ be a sequence in
$\mathscr{A}_{1}$ and $A=\lim_{n\rightarrow\infty}A_{n}$ . Choose $K_{n}\in \mathscr{K}$ such that $A_{n}\subset K_{n}$ for $n=1,2,$ $\ldots$ .
Since ff is compact, we may assume that $\lim_{n\rightarrow\infty}K_{n}=K\in ff$. Clearly $A\subset K$

and hence $A\in \mathscr{A}_{1}$ or $A\in \mathscr{K}$ Thus we have that $\overline{\mathscr{A}_{1}}\cap \mathscr{A}_{2}=\phi$ . Similarly we can
show that $\mathscr{A}_{1}\cap\overline{\mathscr{A}}_{2}=\phi$ .

To prove that $\mathscr{K}$ is connected, suppose $\mathscr{K}=\mathscr{K}_{1}\cup ff_{2}$ where $ff_{1}\mathscr{K}_{2}$ are
closed and disjoint. By $(**)$ , each $\alpha\in L\Gamma(X)$ must intersect only one of the sets
$ff_{1}ff_{2}$ . Let $L_{i}=\{\alpha\in L\Gamma(X):\alpha\cap \mathscr{K}_{j}\neq\phi\}$ for $i=1,2,$ $\ldots$ . Then $L_{1},$ $L_{2}$ are
closed disjoint and $L_{1}\cup L_{2}=L\Gamma(X)$ . Since $L\Gamma(X)$ is connected, $ L_{1}=\phi$ or
$ L_{2}=\phi$ . This implies that $ ff_{1}=\phi$ or $\mathscr{K}_{2}=\phi$ . Therefore $\mathscr{K}$ is connected.

Let $\mathscr{U}$ be any neighborhood of ff in $C(X)$ . If $X\in \mathscr{K}$ , then by the con-
tinuity of Whitney maps, $\mathscr{U}$ contains a Whitney level near $X$ . If $F_{1}(X)\subset ff$

then X itself contains a Whitney level. Therefore suppose $ F_{1}(X)-ff\neq\phi$ and
$X\not\in \mathscr{K}$ In this case, $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$ are nonempty. Let $\mu:C(X)\rightarrow[0,1]$ be a
Whitney map. There are $t_{1}>0$ and $t_{2}<1$ such that $\mu(\overline{\mathscr{A}_{1}})=[0, t_{1}]$ and
$\mu(\overline{\mathscr{A}}_{2})=[t_{2},1]$ . Let $\sigma_{1}$ : $[0, t_{1}]\rightarrow[0,1/3],$ $\sigma_{2}$ : $[t_{2},1]\rightarrow[2/3,1]$ be homeomorphisms
such that $\sigma_{1}(0)=0,$ $\sigma_{2}(1)=1$ . Note that for any pair $A_{1}\in \mathscr{A}_{1}$ and $A_{2}\in \mathscr{A}_{2}$ ,
$A_{2}\subset A_{1}$ does not hold. Define a mapping $\mu_{1}$ : $(\mathscr{A}_{1}\cup \mathscr{A}_{2})-\mathscr{U}\rightarrow[0,1]$ by

$\mu_{1}(A)=\left\{\begin{array}{l}\sigma_{l}\circ\mu(A)\\\sigma_{2}\circ\mu(A)\end{array}\right.$ $ifA\in \mathscr{A}_{2}^{1}-\mathscr{U}ifA\in \mathscr{A}-\mathscr{U}$

.

Then by Theorem 3.1 in [14], $\mu_{1}$ can be extended to a Whitney map
$\tilde{\mu}:C(X)\rightarrow[0,1]$ . The set $\tilde{\mu}^{-1}(1/2)$ is a Whitney level contained in $\mathscr{U}$ . Fur-
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thermore if $\mathscr{M}^{r}$ satisfies $(*)$ , then $F_{1}(X)\subset \mathscr{A}_{1}$ and each component of $\mathscr{A}_{1}$

intersects $F_{1}(X)$ . Therefore $\mathscr{A}_{1}$ is connected.

REMARK. If $\mathscr{K}\subset C(X)$ satisfies $(*),$ $(**)$ and $\alpha\cap\ovalbox{\tt\small REJECT}^{r}$ is degenerate for each
$\alpha\in L\Gamma(X)$ , then $\mathscr{K}$ is an anti-chain and separates $C(X)$ . Hence it is a Whitney
level.

THEOREM 4.3. Let $f:X\rightarrow Y$ be an onto mapping, $\mathscr{L}\subset C(Y)$ a closed
subset and $\mathscr{K}=[C(f)]^{-1}(\mathscr{L})$ .

(a) If $\mathscr{L}$ satisfies $(*)$ , then so does X
(b) If $\mathscr{L}$ satisfies $(**)$ , then so does $\mathscr{K}$

PROOF. It is clear that if $\mathscr{L}$ satisfies $(*)$ , then so does $\mathscr{K}$ Suppose $\mathscr{L}$

satisfies $(**)$ . Let $\alpha\in L\Gamma(X)$ and $\beta=C(f)(\alpha)$ . Then by proposition 3.2, $\beta\in$

$L\Gamma(Y)$ and hence $\beta\cap \mathscr{L}$ is nonempty and connected. Since $ C(f)|\alpha:\alpha\rightarrow\beta$

is monotone, $\alpha\cap ff=[C(f)|\alpha]^{-1}(\beta)\cap[C(f)]^{-1}(\mathscr{L})=[C(f)|\alpha]^{-1}(\beta\cap \mathscr{L})$ is non-
empty and connected.

For a closed subset ff of $C(X)$ , define $ff_{+}$ by

$\mathscr{M}^{\prime}+=$ { $K\in \mathscr{K}$ : if $K^{\prime}\in\ovalbox{\tt\small REJECT}^{r}$ and $K\subset K^{\prime}$ , then $K=K^{\prime}$ }.

LEMMA 4.4. If a closed subset $\mathscr{K}\subset C(X)$ satisfies $(*),$ $(**)$ and $(***)$ , then
$\mathscr{K}_{+}$ is a Whitney level.

PROOF. Obviously the set $\alpha\cap ff_{+}$ is degenerate for each large order arc $\alpha$ if
it is nonempty, it is sufficient to prove that $\ovalbox{\tt\small REJECT}_{+}^{\prime}$ is closed and intersects each
large order arc.

ASSERTION 1. If $\alpha\in L\Gamma(X)$ , then the maximum element of $\alpha\cap ff$ is an
element of $\ovalbox{\tt\small REJECT}_{+}^{\prime}$ .

Note that since ff is compact, $\alpha\cap ff$ is compact. Also ff satisfies $(**)$ ,
$\alpha\cap ff$ is an arc or a degenerate set. Therefore there exists the maximum element
in $\alpha\cap ff$ for each $\alpha\in L\Gamma(X)$ . Let $K$ be the maximum element of $\alpha\cap\ovalbox{\tt\small REJECT}^{r}$ , where
$\alpha\in L\Gamma(X)$ and suppose $K\subset K^{\prime}$ for some $K^{\prime}\in ff$ . We shall show that $K=K^{\prime}$ .
There is $\beta\in L\Gamma(X)$ such that $K,$ $ K^{\prime}\in\beta$ and $\{B\in\beta:B\subset K\}=\{B\in\alpha:B\subset K\}$ .
Let $\alpha=\{\alpha(s)\}_{s\in[0,1]},$ $\beta=\{\beta(s)\}_{s\in[0,1]}$ be parametrizations of $\alpha,\beta$ respectively such
that $\alpha(t_{0})=\beta(t_{0})=K$ . Since $K\neq X,$ $t_{0}<1$ . Choose a sequence $\{t_{n}\}_{n=1}^{\infty}$ of real
numbers such that $ 1>t_{1}>t_{2}\cdots$ and $\lim_{n\rightarrow\infty}t_{n}=t_{0}$ . For each $n=1,2,$ $\ldots$ ,
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define $\gamma_{n}\in L\Gamma(X)$ by

$\gamma_{n}=\{\alpha(s):0\leq s\leq t_{n}\}\cup\{\alpha(t_{n})\cup\beta(s):t_{0}\leq s\leq 1\}$ .

It is easy to see that $\lim_{n\rightarrow\infty}\gamma_{n}=\beta$ and hence by continuity of $\Phi_{l},$ $\lim_{n\rightarrow\infty}\gamma_{n}\cap$

$ff=\beta\cap \mathscr{K}$ . If $t_{0}<s<t_{n}$ , then since $\alpha(t_{0})$ is the maximum element of $\alpha\cap ff$ and
$\alpha(t_{0})\neq\alpha(s),$ $\alpha(s)\not\in \mathscr{K}$ . Hence by $(**),$ $K$ is the maximum element of $\gamma_{n}\cap ff$ for
each $n$ . Therefore $K$ is the maximum element of $\beta\cap \mathscr{K}$ This implies that $K^{\prime}=K$

and hence we have $K\in ff_{+}$ .

ASSERTION 2. $\ovalbox{\tt\small REJECT}_{+}^{\prime}$ is closed in $C(X)$ .
Let $\{K_{n}\}_{n=1}^{\infty}$ be a sequence in $\ovalbox{\tt\small REJECT}_{+}^{\prime}$ such that $\lim_{n\rightarrow\infty}K_{n}=K$ . Since $\mathscr{K}_{+}\subset ff$

and $\ovalbox{\tt\small REJECT}^{r}$ is closed, $K\in \mathscr{K}$ Let $\alpha_{n}$ be a large order arc such that $K_{n}\in\alpha_{n}$ for
$n=1,2,$ $\ldots$ . Since $L\Gamma(X)$ is compact, we can assume that $\lim_{n\rightarrow\infty}(\alpha_{n})=\alpha$ for
some $\alpha\in L\Gamma(X)$ . Since $\Phi ff$ is continuous and $K_{n}$ is the maximum element of
$\alpha_{n}\cap ffK$ is the maximum element of $\alpha\cap \mathscr{K}$ Therefore by assertion 1, $K\in \mathscr{K}_{+}$

so that $ff_{+}$ is closed.
For a closed set $\mathscr{K}\subset C(X)$ , define a set $S(\mathscr{K})$ by

$S(\mathscr{K})=$ {$A\in C(X)$ : there exists $K\in ff$ such that $A\subset K$}.

It is easy to see that $S(ff)$ is closed and $S(ff)_{+}=ff_{+}$ . Moreover if ff satisfies
$(***)$ , then $S(\mathscr{K})$ satisfies $(**)$ and $(***)$ . Therefore we have:

COROLLARY 4.5. If $\mathscr{K}$ satisfies $(*)$ and $(***)$ , then $\mathscr{K}_{+}$ is a Whitney level.
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