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REACHABLE SETS IN LIE GROUPS

By

Younki CHAE and Keunbae CHOI

Abstract. In this paper, we deal with the right invariant control
system on Lie group using norm cost, which is an altemative notion
of the controllability described in [2], and local reachable sets in Lie
groups of this conception was studied in [4].

1. Introduction

Let $G$ denote a Lie group with its Lie algebra $L(G)$ . We identify $L(G)$ with
the set of right invariant vector fields on $G$ . We note that $L(G)$ is linearly
isomorphic to the tangent space $T_{e}G$ . Since $T_{e}G$ can be given the structure of a
Banach space, $L(G)$ may be given the structure of a Banach space. Let $\Omega$ be a
subset of $L(G)$ . We consider the right invariant control system on $G$ given by

$(*)$ $\dot{x}(t)=U(t)(x(t))$ , $x(O)=g$ ,

where $U$ belongs to the class $\mathscr{U}(\Omega)$ of measurable functions from $ R^{+}=[0, \infty$ )
into $\Omega$ which are locally bounded, and we denote the solution $x(\cdot)$ of $(*)$ by
$\pi(g, \cdot, U)$ , i.e., $\pi(g, 0, U)=g$ and $\pi(g, t, U)=x(t)$ for all $t\geq 0.1f$ there exists
$U\in \mathscr{U}(\Omega)$ such that $h=\pi(g, t, U)$ , then we say that $h$ is attainable from $g$ at time
$t$ for the system $\Omega$ . The set of such elements attainable from $g$ at time $t$ is denoted
by $A(g, t, \Omega)$ . We also employ the notation

A $(g, T, \Omega)=\bigcup_{0\leq t\leq T}A(g, t, \Omega)$

$A(g, \Omega)=\bigcup_{0\leq t\leq\infty}A(g, t, \Omega)$
.

The set $A(g, \Omega)$ is called the attainability set from $g$ .
Let $L$ be a Dynkin algebra and let $B$ be an open neighborhood of $0$ which

is symmetric and star-shaped in $L$ such that for all $x,y\in B$ the Campbell-
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Hausdorff series

$ x*y=x+y+\frac{1}{2}[x,y]+\cdots$

converges absolutely. For $y\in L$ , define a left invariant vector field $X_{y}$ on $B$ by

$X_{y}(x)=g(adx)(y)$

where

$g(T)=1+\frac{T}{2}+\sum_{n=1}^{\infty}(b_{2n}/(2n)!)T^{2_{ll}}$

with the Bemoulli numbers $b_{2n}$ . Then $y\mapsto X_{y}$ is a Lie algebra isomorphism from
$L$ to the left invariant vector fields on $B$ . Let $\Omega\subseteq L$ , let $ u:[0, T]\rightarrow\Omega$ be a
control function, and let $U_{t}=X_{u(\iota)}$ for $0\leq t\leq T$ . Then the left invariant control
system on $B$ given by

$x^{\prime}(t)=U_{t}(x(t)),$ $x(O)=0$ .

A point $x\in B$ is reachable at norm cost $\delta$ by means of the control function $U$ if
$ U:[0, T]\rightarrow\Omega$ is regulated, and admits a principal solution $X_{U}(t)$ with $X_{U}(T)=x$,
and $\delta=c(U)=\int_{0^{T}}\Vert U(\iota)\Vert dt$ . For detail discussion of local reachable sets in
(local) Lie groups, we refer to $[3, 4]$ .

In this article, we define an altemative notion of controllability in the right
invariant control system on the Lie group $G$ given by $(*)$ using norm cost as
follows: A point $h\in G$ is reachable from $g$ at norm cost $\delta$ for the system $\Omega$ if
there exists $U\in \mathscr{U}(\Omega)$ such that $h=\pi(g, t, U)$ and that

$\delta=\int_{0^{t}}\Vert U(s)\Vert ds$ .

We denote the set of all elements reachable from $g$ at norm cost $\delta$ for the system
$\Omega$ by $R(g,\delta, \Omega)$ . For convenience, we also use the following notation

$R(g,\delta, \Omega)=\bigcup_{0\leq s\leq\delta}R(g,s, \Omega)$

$R(g, \Omega)=\bigcup_{0\leq\delta\leq\infty}R(g,\delta, \Omega)$
.

We say that the set $R(g, \Omega)$ is the reachability set from $g$ . For the case that only
piecewise constant controls into $\Omega$ , we use the subcript “pc”. For instance, the set
of all elements reachable from $g$ at norm cost $\delta$ using only piecewise constant
controls into $\Omega$ is denoted by $R_{pc}(g,\delta, \Omega)$ .
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We may easily show that $R(g,\delta, \Omega)=R(e,\delta, \Omega)g,$ $R(g,\delta, \Omega)=R(e,\delta, \Omega)g$

and $R(g, \Omega)=R(e, \Omega)g$ from the right invariance of the control system.
The exponential map from $L(G)$ to $G$ is denoted by $exp$ . For $X\in L(G)$ , the

integral curve $x(\cdot)$ for the constant function $X$ with initial value $x(t_{0})=e\in G$

is given by $x(t)=\exp((t-t_{0})X)$ for all $t\in R$ . By right invariance of $X$, the
solution with initial value $x(t_{0})=g$ is given by $x(t)=\exp((t-t_{0})X)g$ .

2. Reachable sets in Lie groups

We begin with the following proposition which is a variant of Proposition
1.3 of [2].

PROPOSITION 1. Let $\Omega\subseteq L(G)$ . Then the set $R_{pc}(e,\delta, \Omega)$ consists of all $g\in G$

of the form
$g=\exp(\tau_{1}X_{1})\exp(\tau_{2}X_{2})\cdots\exp(\tau_{n}X_{n})$ ,

where

$\sum_{i=1}^{n}\tau_{i}\Vert X_{i}\Vert=\delta$ and $X_{1},$
$\ldots,$

$ X_{n}\in\Omega$ .

The set $R_{pc}(e, \Omega)$ is equal to the semigroup generated by the set $\exp(R^{+}\Omega)$ .

PROOF. Let $h$ be reachable at norm cost $\delta$ for the system $\Omega$ . Then there
exists $U\in \mathscr{U}_{pc}(\Omega)$ such that $h=\pi(e, T, U)$ and that $\delta=\int_{0^{T}}$ I $U(t)\Vert dt$ for some
$T>0$ . Since $h=\pi(e, T, U)$ , there exists $s_{1},$

$\ldots,$
$s_{n}\in R^{+}$ and $Y_{1},$

$\ldots,$
$ Y_{n}\in\Omega$ such

that
$h=\exp(s_{1}Y_{1})\exp(s_{2}Y_{2})\cdots\exp(s_{n}Y_{n})$ ,

where $T=\sum_{i=1}^{n}s_{i}$ . Let $t_{i}=\sum_{k=1}^{i}s_{k}$ , $\tau_{i}=s_{n+1-i}$ and let $X_{i}=Y_{n+1-i}$ for
$i=1,2,$ $\ldots,n$ . Then $0=t_{0}<t_{1}<\cdots<t_{n}=T$ and

$\delta=\int_{0^{T}}\Vert U(t)\Vert dt=\sum_{i=1}^{n}(t_{i}-t_{i-1})\Vert Y_{i}\Vert=\sum_{i=1}^{n}\tau_{i}\Vert X_{i}\Vert$ .

Moreover, $h=\exp(\tau_{1}X_{1})\exp(\tau_{2}X_{2})\cdots\exp(\tau_{n}X_{n})$ . By the proceeding calculation,
$R_{pc}(e, \Omega)$ is a subset of the semigroup $A_{pc}(e, \Omega)$ which is the semigroup generated
by the set $\exp(R^{+}\Omega)$ . Conversely, if $g\in A_{pc}(e, \Omega)$ , then $g$ is of the form

$\exp(s_{1}X_{1})\exp(s_{2}X_{2})\cdots\exp(s_{n}X_{n}),$ $X_{1},$ $X_{2},$ $\ldots X_{n}\in\Omega$ .

Thus $g\in R_{pc}(e,\delta, \Omega)\subseteq R_{pc}(e, \Omega)$ , where $\delta=\sum_{i=1}^{n}s_{i}\Vert X_{i}\Vert$ . $\square $
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EXAMPLE. Let $G=Aff(R)$ and let its Lie algebra $L(G)=aff(R)$ . Then we
may identify $G$ and $L(G)$ with the sets

$\{\left(\begin{array}{ll}a & b\\0 & 1\end{array}\right)$ : $a,b\in R,$ $a>0\}$ , $\left(\begin{array}{ll}c & d\\0 & 0\end{array}\right)$ : $c,$ $d\in R\}$

respectively. For $\Omega=\{X, Y\}$ , where

$X=\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right)$ , $Y=\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right)$ ,

we have that the set of all elements reachable from $e$ at norm cost $\delta$ using only
piecewise constant controls into $\Omega$

$R_{pc}(e,\delta, \Omega)=\{(e_{0^{\alpha}}$

$()\alpha,\beta\geq 0,\alpha+\sqrt{2}\beta=\delta\}\beta_{1_{e_{0}^{\alpha_{\alpha+\beta}}d^{\alpha}-1}}e(e_{0_{1}}\beta_{1})\cdot...\alpha,\beta\geq 0,\alpha+\beta=\delta\}$

.

$=A_{pc}(e, T, \Omega)$

where $ T=\delta$ . For $\Omega=\{X, Y\}$ , where

$X=\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right)$ , $Y=\left(\begin{array}{ll}1 & 1\\0 & 0\end{array}\right)$ ,

we also have that the set $R_{pc}(e,\delta, \Omega)$ of all elements reachable from $e$ at norm
cost $\delta$ using only piecewise constant controls into $\Omega$ is the set

$\{\left(\begin{array}{lll}e^{\alpha+\beta} & e^{\alpha}(e^{\beta} & -1)\\0 & 1 & \end{array}\right)$ ,

The following proposition is the relationship between attainable sets and
reachable sets.

PROPOSITION 2. Let $G$ be a Lie group with its Lie algebra $L(G)$ and let
$\Omega\subseteq L(G)$ .

(1) $A(e, T, \Omega)\subseteq R(e, NT, \Omega)lf\Vert X\Vert\leq N$ for all $ X\in\Omega$ . In particular, if $\Omega$ is
a compact subset of $L(G)$ , then $A(e, T, \Omega)\subseteq R(e,\delta, \Omega)$ for some $\delta\geq 0$ .

(2) $A(e, T, \Omega)=R(e, T, \Omega)lf\Omega=\{X\in L(G):\Vert X\Vert=1\}$ .
(3) If there exists $\epsilon>0$ such that $ X\in\Omega$ implies $X=rY$ for some $r>0$ and

some $ Y\in\Omega$ with $\epsilon\geq\Vert Y\Vert$ , then $R_{pc}(e,\delta, \Omega)\subseteq A_{pc}(e, \epsilon^{-1}\delta, \Omega)$ .
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PROOF. The proof of (1) and (2) is immediate from the definition.

(3) This is straightforward.
(4) See the proof of Proposition 1 in order to prove this statement. $\square $

REMARK. Let $G$ be a matrix Lie group with matrix Lie algebra $L(G)$ and
exponential mapping the usual matrix exponential. If $\Omega$ is a subset of $L(G)$

consisting of matrices which all have the same non-zero trace $b$ and all have the
same norm $N$, then an reachable matrix $M$ is reachable only at the norm cost
(l/b)log(det(M))N. For detail, see also Corollary 2.12 in [2].

The class of regulated functions which may be characterized either as being
uniform limits of step functions if their domain of definition is compact interval
or else as having limits from the right and left in all points of their domain of
definition (whenever such limits make sense). This class includes the piecewise
continuous functions. A regulated function exhibits many properties akin to
continuity; for instance, it is bounded and is, in fact, continuous on the
complement of a countable subset of its domain.

Suppose that the dimension of $L(G)$ is $n$ . We choose some basis $X_{1},$
$\ldots,$

$X_{n}$

of $L(G)$ . Each $ U:[0, T]\rightarrow\Omega$ has a unique representation in the form
$U=(u_{1}, \ldots, u_{n})$ , where $ U(t)=\sum_{i=1}^{n}u_{j}(t)X_{i}\in\Omega$ for each $\iota\in[0, T]$ . Note in this
case that $U$ is regulated if and only if each of its coordinate functions $u_{i}(\cdot)$ with
respect to $X_{t}$ is regulated. We consider the Hilbert space of regulated functions
from $[0, T]$ into $L(G)$ . Then

$\int_{0^{T}}\Vert U(t)\Vert dt=\int_{0^{T}}\sqrt{u_{1}(t)^{2}++u_{n}(t)^{2}}dt$ .

Let $\mathscr{U}_{r}(\Omega)$ denote the set of all regulated functions from $R^{+}$ into $\Omega$ and let
$\mathscr{U}_{r}(T)$ denote the class of regulated functions from $[0, T]$ to $\Omega$ . For convenience,
we use the following notations; for given $\delta>0$ ,

$\mathscr{U}_{r}(\delta)=$ { $ U\in \mathscr{U}_{r}(\Omega):\int_{0^{u}}^{t}\Vert U(w)\Vert dw=\delta$ for some $t_{u}>0$ }

$T_{\delta}^{u}=\inf\{t_{u} : \int_{0^{u}}^{f}\Vert U(w)\Vert dw=\delta\}$

$T_{\delta}=\sup\{T_{\delta}^{u} : U\in \mathscr{U}_{r}(\delta)\}$
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Now, for given $(U, s)\in \mathscr{U}_{r}(\delta)\times[0,\delta]$ , we define a mapping $F:[0, T_{\delta^{u}}]\rightarrow R$ by

$F(t)=\int_{0}^{t}\Vert U(w)\Vert dw$ .

Then $F$ is continuous, $F(O)=0$ and $ F(T_{\delta^{u}})=\delta$ . Thus for given $s(0<s<\delta)$ , by
Intermediate Value Theorem, there exists $T_{s^{u}}(0<T_{s}^{u}<T_{\delta^{u}})$ such that

$F(T_{s}^{u})=\int_{0^{T_{s}^{u}}}\Vert U(w)\Vert dw=s$ .

Throughout, we denote the set of all elements reachable from $g$ at norm
cost $\delta$ for the system $\Omega$ by means of regulated functions by $R_{r}(g,\delta, \Omega)$ .

LEMMA 3. Let $\Omega$ be a subset of $L(G)$ such that for all $X\in\Omega,$ $\Vert X\Vert\geq M$

for some $M>0$ . The mapping $\Phi:\mathscr{U}_{r}(\delta)\times[0,\delta]\rightarrow G$ defined by $\Phi((U, s))=$

$\pi(g, T_{s^{u}}, U)$ is continuous for each $g\in G$ and each $\delta>0$ , where $\mathscr{U}_{r}(\delta)$ is given the
norm topology.

PROOF. First, we note that for given $ 0<\delta<\infty$ and $U\in \mathscr{U}_{r}(\delta)$ ,

$ T_{\delta}M\leq\int_{0^{T_{\delta}}}\Vert U(w)\Vert dw=\delta<\infty$ .

It follows that $ T_{\delta}<\infty$ . Now we define a mapping

$(**)$ $\Psi:\mathscr{U}_{r}(\delta)\times[0,\delta]\rightarrow \mathscr{U}_{r}(T_{\delta})\times[0, T_{\delta}]$

by $\Psi((U, s))=(V, T_{s^{u}})$ , where $V$ is the restriction map of $U$ on $[0, T_{\delta}]$ and $\mathscr{U}_{r}(T_{\delta})$

is given the topology of weak convergence. Then the map $\Psi$ is well-defined by the
proceeding arguments and definitions. In order to prove that $\Psi$ is continuous, let
$\{(U_{n}, s_{n})\}_{n=1}^{\infty}$ be any sequence in $\mathscr{U}_{r}(\delta)\times[0,\delta]$ which converges to $(U, s)$ . Then $U_{n}$

converges to $U$ and also $s_{n}$ converges to $s$ . Since $U_{n}$ converges to $U$ in the norm
topology, $V_{n}$ also converges to $V$ in the norm topology and hence $V_{n}$ converges
to $V$ in the topology of weak convergence. To complete the proof of continuity of
the map $\Psi$ , it is sufficent to show $\{T_{s}^{u_{n^{\hslash}}}\}_{n=1}^{\infty}$ converges to $T_{s^{u}}$ , where

$s_{n}=\int_{0^{T_{s_{\hslash}}^{u_{\hslash}}}}\Vert U_{n}(w)\Vert dw$

and

$s=\int_{0}^{T_{s^{u}}}\Vert U(w)\Vert dw$ .



Reachable sets in Lie groups 769

Now we note that

$|s_{n}-s|=|\int_{0^{T_{s_{n}}^{u_{n}}}}\Vert U_{n}(w)\Vert dw-\int_{0^{T_{s}^{u}}}\Vert U(w)\Vert dw|$

$=|\int_{0^{T_{s_{n}}^{u_{n}}}}$ I $U_{n}(w)\Vert dw-\int_{0^{T_{s^{u}}}}$ I $U_{n}(w)\Vert dw+\int_{0^{T_{s}^{u}}}$ I $U_{n}(w)\Vert dw-\int_{0^{T_{s^{u}}}}$ I $U(w)\Vert dw|$

$\geq|\int_{0^{T_{s_{n}}^{u_{\hslash}}}}\Vert U_{n}(w)\Vert dw-\int_{0^{T_{s}^{u}}}\Vert U_{n}(w)\Vert dw|-|\int_{0^{T_{s}^{u}}}\Vert U(w)\Vert dw-\int_{0^{T_{s}^{u}}}\Vert U_{n}(w)\Vert dw|$

$=|\int_{T_{s}^{u}}^{T_{s_{n}^{u_{n}}}}\Vert U_{n}(w)\Vert dw|-|\int_{0^{T_{s^{u}}}}(\Vert U(w)\Vert-\Vert U_{n}(w)\Vert)dw|$

$\geq M|T_{s}^{u}-T_{s_{n}}^{u_{n}}|-|\int_{0^{T_{s}^{u}}}(\Vert U(w)\Vert-\Vert U_{n}(w)\Vert)dw|$ .

Since $s_{n}$ converges to $s$ and since the second part of the right hand of the above
last equation equal $0$ as $n$ approaches infinity, $\{T_{s^{u_{n^{n}}}}\}_{n=1}^{\infty}$ converges to $T_{s^{u}}$ .

Finally, we note that the map $\Phi$ is the composition of $\Psi$ and $\Gamma$ , where the
map

$\Gamma:\mathscr{U}_{r}(T)\times[0, T]\rightarrow G$

is defined by $\Gamma((U, t))=\pi(g, t, U)$ . The continuity of $\Gamma$ is verified in $[2, 5]$ for the
case that the set of bounded measurable functions from $[0, T]$ to $L(G)$ with the
topology of weak convergence. But which is also satisfied in our case. This
completes the proof. $\square $

LEMMA 4. If $ T_{\delta}<\infty$ for given $\delta>0$ , then $R_{r}(e,\delta, \Omega)\subset A(e, T\delta, \Omega)$ .

PROOF. Since $T_{\delta}=\sup\{T_{\delta^{u}} : U\in \mathscr{U}_{r}(\delta)\}<\infty,$ $T_{\delta^{u}}\geq T_{\delta}$ for all $U\in \mathscr{U}_{r}(\delta)$ ,
and by $(^{**})$ , if $g\in R_{r}(e,\delta, \Omega)$ , then $g=\pi(e, T_{\delta^{u}}, U)$ for some $U$ . It follows that
$g\in A(e, T_{\delta}, \Omega)$ for all $g\in R_{r}(e,\delta, \Omega)$ . The proof is complete. $\square $

THEOREM 5. Let $\Omega$ be a non-empty subset of $L(G)$ . Then the reachability set
$R(g, \Omega)$ from $g$ is a semigroup. In particular, $R(e,\delta, \Omega)R(e, s, \Omega)=R(e,\delta+s, \Omega)$ .

PROOF. Since $R(g, \Omega)=R(e, \Omega)g$ , it is sufficent to show $R(e, \Omega)$ is a
smeigroup. Let $g_{1}=\pi(e, t_{1}, U_{1})$ with norm cost $\delta$ for $U_{1}\in \mathscr{U}(\Omega)$ and let
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$g2=\pi(e, t_{2}, U_{2})$ with norm cost $s$ for $U_{2}\in \mathscr{U}(\Omega)$ . We define $ V:R^{+}\rightarrow\Omega$ by

$V(\tau)=\left\{\begin{array}{l}U_{1}(\tau),\\U_{2}(\tau-t_{1}),\end{array}\right.$ $for\tau>tfor0\leq\tau_{1}\leq t_{1}$

Then $g2g1=\pi(e, t_{1}+\iota_{2}, V)$ and

$\int_{0^{1+l_{2}}}^{t}\Vert V(\tau)\Vert d\tau=\int_{0^{1}}^{t}\Vert U_{1}(\tau)\Vert d\tau+\int_{t_{1^{1}}}^{t+t_{2}}\Vert U_{2}(\tau-t_{1})\Vert d\tau=\delta+s$ .

Conversely, if $g\in R(e,\delta+s, \Omega)$ , then $g=\pi(e, t, V)$ with

$\int_{0}^{t}\Vert V(\tau)\Vert d\tau=\delta+s$

for some $U\in \mathscr{U}(\Omega)$ and some $t>0$ . By Intermediate Value Theorem, there exists
$t_{1}(0<t_{1}<\iota)$ such that

$\int_{0^{1}}^{t}\Vert V(\tau)\Vert d\tau=\delta$ .

Now we choose $U_{1}\in \mathscr{U}(\Omega)$ such that $U_{1}(\tau)=V(\tau)$ for $0<\tau<t_{1}$ and define $U_{2}$

by

$U_{2}(\tau)=\left\{\begin{array}{l}V(\tau+t_{l}),\\V(\tau),\end{array}\right.$ $for0\leq\tau\leq for\tau>t-t_{1}^{t.-t_{1}}$

Then

$\int_{0^{1}}^{t}\Vert U_{1}(\tau)\Vert d\tau=\delta$

and

$\int_{0}^{t-t_{1}}\Vert U_{2}(\tau)\Vert d\tau=\int_{0}^{t-t_{1}}\Vert V(\tau+t_{1})\Vert d\tau=\int_{t_{1}^{t}}\Vert V(\tau)\Vert d\tau=s$ .

And we note that

$V_{(}\tau)=\left\{\begin{array}{l}U_{l}(\tau),\\U_{2}(\tau-t_{1}),\end{array}\right.$ $for\tau>tfor0\leq\tau_{1}\leq t_{1}$

Let $g_{1}=\pi(e, t_{1}, U_{1})$ and let $g_{2}=\pi(e, t-t_{1}, U_{2})$ . Then $g_{1}\in R(e,\delta, \Omega)$ , $ g_{2}\in$

$R(e,s, \Omega)$ , and $g2g1=\pi(e, t-t_{1}, U_{2})g1=\pi(g1, t-t_{1}, U_{2})=\pi(e, t_{1}+(t-t_{1}),$ $V$) $=$

$\pi(e, t, V)=g$ . This completes the proof. $\square $
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THEOREM 6. Let $G$ be a Lie group with its Lie algebra $L(G)$ and let $\Omega$ be
a subset of $L(G)$ such that for all $X\in\Omega,$ $\Vert X\Vert\geq M$ for some $M>0$ . Then
$R_{pc}(e,\delta, \Omega)$ is dense in $R_{r}(e,\delta, \Omega)$ .

PROOF. If $x\in R_{r}(e,\delta, \Omega)$ , then $x=\pi(e, T_{\delta^{u}}, U)$ such that $\int_{0}^{T_{\delta}^{u}}\Vert U(w)\Vert dw=\delta$ ,
where $ U:[0, T_{\delta^{u}}]\rightarrow\Omega$ is a regulated function. By IV. 5.10. Lemma in [3], $U$ is
the uniform limit of a sequence $U_{n}$ : $[0, T_{\delta^{u}}]\rightarrow\Omega$ of piecewise constant functions.
Furthermore, the function $U_{n}$ may be chosen so that

$\int_{0^{T_{\delta^{u}}}}\Vert U_{n}(w)\Vert dw=\delta$ , for each $n$ .

And by Lemma 3, $\pi(e, T_{\delta^{u}}, U_{n})$ converges to $\pi(e, T_{\delta^{u}}, U)$ and $\pi(e, T_{\delta}^{u}, U_{n})$ con-
tained in the set $R_{pc}(e,\delta, \Omega)$ . That completes the proof. $\square $

By Proposition 1 and Theorem 6, we have the following result.

THEOREM 7. Let $G$ be a Lie group with its Lie algebra $L(G)$ and let $\Omega$ be a
subset of $L(G)$ such that for all $X\in\Omega,$ $\Vert X\Vert\geq M$ for some $M>0$ . Then for
$\delta\geq 0$ , the following sets are all equal:

(1) The closure of the set $R_{\delta}$ , where

$ R_{\delta}=\{\exp(\tau_{1}X_{1})\cdots\exp(\tau_{n}X_{n}):\sum_{i=1}^{n}\tau_{i}\Vert X_{t}\Vert=\delta$ and $X_{1},$
$\ldots,$

$X_{n}\in\Omega\}$ .

(2) $\overline{R_{pc}(e,\delta,\Omega)}$, the closure of the reachable set from $e$ at norm cost $\delta$ for $\Omega$

with the piecewise constant control functions.
(3) $\overline{R_{r}(e,\delta,\Omega)}$, the closure of the reachable set from $e$ at norm cost $\delta$ for $\Omega$

with the regulated functions.

COROLLARY 8. Let $G$ be a Lie group with its Lie algebra $L(G)$ and let $\Omega$ be
a compact and convex subset of $L(G)$ such that for all $X\in\Omega,$ $\Vert X\Vert\geq M$ for some
$M>0$ . Then the map $\sigma:R^{+}\rightarrow K(G)$ defined by $\sigma(\delta)=\overline{R_{r}(e,\delta,\Omega)}$ is a homo-
morphism, where $K(G)$ is the topological semigroup of all non-empty compact
subsets of $G$ with Vietoris topology.

PROOF. Since $ T_{\delta}<\infty$ for each $\delta>0$ , and since $A(e, T_{\delta}, \Omega)$ is compact
(see Corollary 1.5 of [2]), by Lemma 4, $\overline{R_{r}(e,\delta,\Omega)}\subset\overline{A(e,T_{\delta},\Omega)}=A(e, T_{\delta}, \Omega)$ .
Thus $\overline{R_{pc}(e,\delta,\Omega)}=\overline{R_{r}(e,\delta,\Omega)}$ is compact. And we also note that
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$R_{pc}(e,\delta, \Omega)R_{pc}(e, s, \Omega)=R_{pc}(e,\delta+s, \Omega)$ (see the proof of Theorem 5).

$\sigma(\delta)\sigma(s)=\overline{R_{r}(e,\delta,\Omega)R_{r}(e,s,\Omega)}=\overline{R_{pc}(e,\delta,\Omega)}=\overline{R_{pc}(e,s,\Omega)}$

$=\overline{R_{pc}(e,\delta,\Omega)R_{pc}(e,s,\Omega)}=\overline{R_{pc}(e,\delta+s,\Omega)}$

$=\overline{R_{r}(e,\delta+s,\Omega)}=\sigma(\delta+s)$ .

This completes the proof. $\square $
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