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ON A LOCAL ENERGY DECAY OF SOLUTIONS FOR THE
EQUATIONS OF MOTION OF COMPRESSIBLE VISCOUS
AND HEAT-CONDUCTIVE GASES IN AN
EXTERIOR DOMAIN IN R3

By

Takayuki KOBAYASHI

Abstract. We consider the equations of motion of compressible
viscous and heat-conductive gases in an exterior domain in R3. We
prove the local energy decay of solutions to the linearized evolution
problem in L, framework.

§0. Introduction

Let Q be an exterior domain in R? with compact smooth boundary Q. The
motion of a compressible viscous and heat-conductive fluid is described by the
following system

p+(-V)p+p-divi=0 in [0, 0) x Q,
/
v,+(v-V)v=§-Av+”+"-V(divv)—ﬂ)%”—g) in [0, 00) x Q,
. b 4 .
(0.1) 0,+(v-V)0+0 al9P-divv=—k—A0+——— in [0, 00) X Q,
. p.c p.c
(p’ V,G)(O,X) = (pOaVO,HO)(x) in Q)

where p is the density, v = (v;,vy,v3) the velocity, 8 the absolute temperature,
P = P(p,0) the pressure, u and 4 the viscosity coefficients, k the coefficient of the
heat conduction, ¢ the heat capacity at constant volume and ¥ is the dissipation

MOS Subject Classification: 35Q30, 76N10

Keywords: compressible viscous and heat conductive fluid, analytic semigroup, the local energy
decay.

Received November 12, 1995.

Revised September 13, 1996.



630 Takayuki KOBAYASHI

function:
Y= g(akv,- + 8me)? + 4 (907)%.

The existence theorems of unique solution local in time for the system (0.1)
were obtained by Nash [15], Itaya [7,8] for the initial value problem, and by
Tani [22] for the initial boundary value problem. On the other hand the
existence theorem of global solution in time for the system (0.1) were obtained
by Matsumura and Nishida [12,13], Ponce for the initial value problem,
and by Matsumura and Nishida for the initial boundary value problem in
L,-framework for sufficiently small initial data. Also Stréhmer proved the
global in time existence theorem for small initial data in a bounded domain in
L ;-framework. In particular, Matsumura and Nishida showed that this
solution approaches the stationary state as ¢t — oo, and also Deckelnick [3,4]
gave some estimates for the dacay rate in an exterior domain. But this decay
rate is weaker than that of Matsumura and Nishida and Ponce [I7] in

Cauchy problem.
In this paper, we shall give the local energy decay of solutions for the

linearlized equations of nonlinear problem (0.1). Although this system has a
hyperbolic part that is the density p, these solutions have the same decay rate as
well-known results of the local energy decay of some parabolic equations, for
example Stokes operator and Oseen operator. (cf. Iwashita [9], Kobayashi and
Shibata [11], Iwashita and Shibata and Shibata [18].) In particular, this
decay rate corresponds to that of Matsumura and Nishida and Ponce [17].
Now, we introduce the linearized equations for the system (0.1) below.

p,+ydivy = £ in [0, 0) X Q,

v, — aAv — BV(divv) + yVp + wVO = £, in [0, 0) x Q,

(0.2) 0, — kA + wdivy = f3 in [0, 0) x Q,
Vjia =V =0, 30 =60, =0 on [0, o) x 0Q,
(£, v,0)(0,x) = (po; vo, 6o) (x) in Q,

where «,%,x,w are positive numbers and f is a nonnegative number.

System (0.2) was given by Matsumura and Nishida and Ponce [17].
They seek solutions for the system (0.1) in a neighborhood of a constant state
(p,v,0) = (Py,0,00) where p,,0 are positive constants under the following
assumptions:
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(1) u,i are constants u > 0 and %,u—l—,u’ > 0.

(2) ¢,k are positive constants.

(3) P is a known function of p,f, smooth in a neighborhood of (p,,6)
o b,

op’ 96 )

Note that the assumption (1) is stronger than ours because they also study
the Neumann boundary condition.

In equations (0.1), put a = (u/p,), B = (u+ ') /Bo, ¥ = {(8P/3p)(Py, 00)}"",
x = (k/cp,) and put o= (1/p,)-(0P/36)(Py,00){B0/c}"/>. Then using the
notation (p, v, ) for the vector (1/p0){(ap/ap)(p0,50)}1/2,;, v, {c/60}"/?6), we can
obtain the equations (0.2). '

Concerning the linearized equations (0.2), Matsumura and Nishida gave
the spectral analysis and energy estimates of solutions in L,-sense and Ponce
the L, — L, estimates for solutions in R3, respectively. Strohmer [20]
showed that the operator —A4 generates an analytic semigroup in a bounded
domain. But the results for the case of an exterior domin were not known.
Therefore we shall start with a result for the case of an exterior domain.

Our main results are the following. Let 1 < g < oo, m be an integer and set

where

x7(Q) = {Twsue WI(Q) x Q) x WIQ)}, X,(Q) = X2Q),

where Tu means the transposed u. Define the 5 x 5 matrix operator 4 by the
relation:

0 y div 0
(0.3) A=19yV —aA—-pVdiv wV |,

0 wdiv —KkA

with the domain:
2(4) = {Tw;u = {p,v,0} € W)}(Q) x W2(Q) x W}(Q),

Let P be projection from Z(A4) into {7{v,0};{v,6} € W;(Q) X Wq2(§2),v|aQ =0,
0|, =0 0on 0Q} and p(—A) be the resolvent set of the operator —A4. Then

THEOREM A. Let 1 < g < 0. Then —A is a closed linear operator in X,(Q)
and

(0.4) p(—4) > Z = {ieC;CRe A + (Im 1)? > 0},
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where C is a constant depending only on o, B,y,x and w. Moreover, the following
properties are valid: There exist positive constants Ay and 8 < (n/2) such that

A+ A7 S llx,@ + PG+ 4) " Sllaga < C30,6,m)||fllx, @
Jor any A— X e > s={AeC;larg A| < m—3J} and any f e X, (Q).

Theorem A means that —A4 generates an analytic semigroup e~ on X, (Q).
Then let By, = {x € R; |x| < b}, Qp = QN B, and setting

(0.5)
Y, 5(Q) = {u =T{p,v,0} € X,(Q); u(x)=0forxe R3\Bb,J p(x)dx = 0},
Q,
we have

THEOREM B (local energy decay). Let 1 < g < oo and let by be a fixed
number such that By, > R3\Q. Suppose that b > bo,u = T{p,v,0} € Y, ,(Q). Then
the following estimates are valid: for M > 0 integer, ue Y,,(Q) and t >0

(0.6) ||afle—m"||x,,(gb) + ||5fwe_m"”2,q,n,, < C(q,b, M)t_3/2‘M”"”Xq(Q)'

REMARK. In dealing with the system (0.2), it is natural to introduce
the bace space X,(Q) without the condition [, p(x)dx =0 because the Stokes
formula does not hold in an exterior domain. Hence we shall treat the case
Jo p(x)dx # 0 also. In this case, roughly speaking, since 4 =0 seems to be a
pole in the sence of §1 [1.22), it is difficult to expect the same results in
Theorem B. Therefore, we decompose the semigroup e 4 as the following and
by using Theorem B we have

COROLLARY C. Let
(0.7) X,5(Q) = {ue X, (Q); u(x) =0 for x e R*\By}.

Taking ¢ € C(Qs) so that [o o(x)dx =1, for u="{p,v,0} € X,;5(Q), we have
the following representation

(0.8) e u=T\(b,p,0)u+ T2(b,0,)u
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where e; (j =1,2,...,5) are unit row vectors in R°, Npu = Jp p(x)dx and

Ti(b, ¢, tyu = e*{u — (No,u) - pe1},
0

t
TZ(b,¢1 t)ll = (NQbu) p-e — J e_SA V¢ ds
0
0

Moreover, the following estimates are valid: for M > 0 integer, u e X,;,(Q) and
t>0

(0.9) 16 T1(b, @, D)ullx, ) + 110 PT1(b, 0, )l 4,
< C(g,b,0, M)t > Mlu x. ),

(0.10) 18+ T2(b, 0, Dull x, () + 107+ PT2(b, 0, Dl 4,
< C(g,b,0, M)t > Mlu . -

The most important part of the proof of our main results is the cutoff
technique in Shibata [18]. In §1, the same resolvent estimates of the operator
—A4 in a bounded domain as in Stréhmer are proved. The difference
between ours and Strohmer are the following:

(i) We shall show that the resolvent set of the operator —A contains a
parabolic region,

(ii) We do not assume that [, p(x)dx =0. (see Remark.)

The regularity of resolvent (1 + A)~' in R? near A = 0 is investigated in § 2, which
is the essential point of our proof of Theorem B. The proof of Theorem A in §3
and a costruction of a parametrix of the exterior stationary problem in §4 are
done by the method of cutoff technique. And then, with the help of a theorem
concerning the relationship between the regularity of functions and the decay rate
of their Fourier image, which was given by Shibata [18], we prove Theorem B in
§ 5. Since the resolvent set contains a parabolic region, we can not take the same
path of integration for the Laplace tranceform between the resolvent and semi-
group as in Iwashita [9] etc. Hence we shall use the same way as in Kobayashi
and Shibata [11].

Notations. Three dimensional row vector valued functions are denoted with
bold-face letter, for example u = (u;,u,u3). As usual, we put

8, =0/0t; 0, =0/0; A=2adt+ a3+ 03

oL o o; o .
&= e, a=(m,m,0), ol = o+ 0+ o;
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=m
0¢p = (0xp;lal =m);  O,p = (0,p;|a| < m);
divu = 01u; + Orusr + 03us;

Sobolev spaces of vector valued functions are used, as well as of scalar valued
functions. Thus, if D is any domain in R, we put

1/q 3 Ve
lull, p = (jD |u(x)|qu) . lall, p = (Z nu,-nz,p> ;
=1

—-m —-m _—
“u”m,q,D = ”ax u”q,D; ”unm,q,D = ”ax u”q,D; (ll, V) = .rD u(x) : V(X) dx.

L4(D) denotes the usual L, space on D, W7'(D) = {u € Ly(D); ||ull,p g p < ©}, &
the set of all tempered distributions on R® and C{ (D) the set of all functions
of C*(R?®) whose support is contained in D. For function spaces of three
dimensional vector valued functions, we use the bold letters, that is for example,
L,D) = {L,,(D)}3 likewise for W7(D). To denote various constants, we use the
same letter C and C(4, B,...) means that the constant depends on the qualities
A,B,.... For two Banach spaces X and Y, #(X,Y) denotes the set of all
bounded linear operators from X into Y and | - || gx, y) means its operator norm.

§1. Stationary problem in a bounded domain

In this section we consider the stationary problem in a bounded domain D
in R® with smooth boundary éD;

(1.1a) Ap+y-divy = f in D,
(1.1b) Av—oaAv — BV(divv)+y-Vp+w-VO=f, in D,
(1.1¢c) A0 — kA0 + - -divy =f3 in D,
(1.1d) Vlgp =0 on 0D,
(1.1e) Bl,p =0 on dD.

here 1 is a complex parameter.

We shall prepare some results to show a unique existence of solutions to
(1.1). The following proposition is concerned the existence theorem of solutions
to the Stokes equations.

ProposITION 1.1 ([2]). Let 1 < g < oo, m be an integer >0 and let D — R?
be a bounded domain with smooth boundary 0D. Then for every f € W;”(D) and
every g € W;"“(D) with [, g(x)dx = 0 there exists a unique u € W;”“(D) which
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together with some p € W;"“(D) satisfies
—Au+Vp =f,divu=gin D,
u=0ondD.

Here p is unique up to an additive constant. Furthermore, the following estimate is
valid:

| #llmi2,6,0 + IVPllmgp < CUIS llmgp + 19llmi1,4,0}
where C = C(D, q,¢) is a constant.

The following proposition is well-known as a general Poincaré’s inequality.

ProOPOSITION 1.2 (cf., eg. [5]). Let 1 < q < oo. There exists a constant C > 0
such that the inequality

holds for any u e qu (D). Furthermore, if q # 1, D is bounded and if u e qu (D)
with u =0 on 0D, then we have

lull, p < c{nwnq,D + [ [ utoax

”u”q,D < C”Vu”q,D‘

The next result is well-known as the system of Laplacian with Dirichlet
boundary conditions.

PROPOSITION 1.3. Let 1 < g < oo and let D = R® be a bounded domain (or
exterior domain) with smooth boundary dD. Let 0 <6 < (n/2) and k > 0. Then
Jfor every A€ ) s, every f € Ly(D) there exists a unique solution u € W:(D) such
that

Au—xAu=finD, u=0ondD.
Furthermore, the following estimate is valid:
[l llully,p + l#ll20p < ClLfllgps  Nullz g0 < CONHIISfll1gp+ lullypn}s

where C = C(D, q,0) is a constant.

The following proposition is concerned the existence theorem of solutions to
the elastic equations.
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PROPOSITION 1.4. Let 1 < g < oo and let D = R? be a bounded domain (on
exterior domain) with smooth boundary 0D. Let a be a positive number, n be a
complex number such that Re{a+n} > 0. Then there exist positive numbers Ay
and 6 < (n/2) satisfying the following conditions: For every A — A9 € ) 5, every
S € Ly(D) there exists a unique u € qu(D) such that

(1.2) Au— oAu — nVdivu = fin D, u|;, =0 on dD.
Furthermore the following estimates is valid:

(1.3) [ [|ully,p + ll#llqp < Cllfllgp,  Nullsgp < CA{NIfll1g0+ llullyn}

where C = C(D, q,d,2,a,n) is a constant.

Proor. Since

—ale —nE  —néi&, —né &
(1.4)  det| —p&g, —aeP—nEd —n&E | = —(a+m)eE
—né &3 —n&y¢s —a|é| — &2

is the elliptic when Re(a + #) > 0, which means that a priori estimate:

A el p + Nletllog 0 < CLUIS g0 + 1@llg 0} lllls g p < CA{II SNl g0+ llullyp}

is valid for 4 — g€ ) ;. Taking sufficiently large number Ap, we have (1.3).
Define the operator 7'(4;7) by the relation:

(1.5) T(A;n)u = Au — aAu — nVdiva,

with the domain: 2(T(4;n)) ={ue W;(D);u|aD = 0}. Then, by (1.3) T(4;7) is
densely defined closed operator in L,(D) and the range of T'(4;7) is closed in
L,(D). Since the dual operator of T(4;n) in Ly(D) is T(4;%) in L,(D) where
(1/p) + (1/q) =1, the closed range theorem means that a unique solution for
exists in L,(D). Combining this with a priori estimate (1.3), the proof is
completed.

Now we will lead to the main theorem in this section. Let 1 < g < co,m be

an integer and let

1o 10 ={Tthss e Xp0) [ fimar=ob, ¥,0) = ¥D)
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Define the 5 x 5 matrix operator Ap by the relation:

0 ydiv 0
Ap=| yV —aA—-pVdiv wV |,
0 wdiv —kA

with the domain: 9(A4p) = Y,(D)N2(A) i.e, Ap is the maximal restriction to
closed subspace Y,(D). Applying this notation to (1.1), we have

(A+Aplu=f
where u =T{p,v,0} and f =T{f1,/2,/3}. Then
THEOREM 1.5. Let 1 < g < oo and let D = R® be a bounded domain with
smooth boundary dD. Then, Ap is a closed linear operator in Y,(D) and
p(—Ap) o {0}UT

where X' = {ie C;6(y* + w*)ReA+ a(ImA)® > 0}. Moreover, the following
properties are valid: There exists a number 0 <6 < (m/2) such that

(1.7) AL 1I(A+ Ap) " flly, by + IP(A+ Ap) " fllzgp < C(4:6, D) f v, ()

for any AeZs5U{0} and any f € Y,(Q).

Proor. We shall prepare the following three lemmas to prove this
theorem.

LEMMA 1.6. Let 1 <g< oo, and D < R® be a bounded domain or an
exterior domain with smooth boundary 0D. Let A be the operators defined in (0.3)
with Q = D. Then there exist positive numbers Ay and 0 < 6 < (n/2) such that if
ue 9(A) satisfies (A+ A)u =f with f € X,(D), then the following estimate is
valid.

|41 llullx,py + |1Pull2 4 p < C(4; 40,9, D) fllx,p)
for A — Ay € Zs.
PROOF OF LEMMA 1.6. Let u=T{p,v,6} and let f =T{fi,f2,/3}. Recall

that the equation (1 + 4)u = f means that the equations (1.1) hold. Applying
Propositions [.3 and 0.4 to the system A — kA and 4 — aA — gV div in (1.1), we
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see that there exist positive number A4; and 0 < Jd; < (n/2) such that

(1.8a) A6, + 1421100y 4o + 1611205
< {5 — wdiv|l, , + |16l o},
and
(1.8b) A IVl + A1Vl g + (V]2 b
< C{llfa = VP — VO, p + IV, p}s

hold for A — 4; € £5, with C depending only on ¢,4; and ;. Furthermore it
follows from the equations (1.1a) that

(1.9) 1Al lpllg, 0 < 7Vl g0 + Al s
and
(1.10) |ALIVellg 0 < ?IVll2g,p + Il fill1 4,0

Combining (1.8a), (1.8b), and [1.10), and taking sufficiently large number Ao,
we have lemma 1.6.

LeMMA 1.7. Let 1 <g< oo, m be an integer >0 and D be a bounded
domain in R® with smooth boundary 0D. Then, (—Ap)~" exists. Furthermore, the
following estimate is valid:

II(-AD)_lfIIY;(D) + |P(—=A4D) " fllms24,0 < Clg,m, D) Al vy
Jor f e Y(D).
PrROOF OF LEMMA 1.7. Putting u=T{p,v,0} and f =T{fi,f2,2}, we
consider the system (1.1) with A = 0 in stead of the equation Apu = f in
1.7. Since it follows from (1.1a), (1.1c) and (1.le) that

(1.11) —xAH:ﬁ—%fl inD, 6|,,=0o0naD,

and since D is a bounded domain, there exists a unique solution 6 € W;"”(D) to

such that

(112) ”0”m+2,q,D < C

ﬁ—%ﬁ

m,q,D
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We have by (1.1a), (1.1b) and by (1.1d)
1 :
(1.13) — aAv + V(yp) :fz-i-;ﬂVfl——a)-VHmD,

h

divv = n inD, v|;p=0o0ndD.

Applying [Proposition 1.1 to the system (1.13), there exists a unique pair
(v,p) € Wit3(D) x Wrti(D) with [, p(x)dx = 0 satisfying (1.13) such that
(1.14) IVllms2,4,0 + 1Plmi1q0

<C .
m,q,D

Combining ((1.12) with implies that this lemma holds.

1
fz+;ﬂVf1—a)-V0

+ “vﬁ
D 14

mq,

LemMa 1.8. Let 1 <g< o0, AeXU{0} and D = R® be a bounded domain
with smooth boundary 0D. Let A be the operators defined in (0.3) with Q = D.
Then

Ker(4 + A) = {0},

where Ker T is the kernel of the operator T.

ProOF OF LEMMA 1.8. Let (A+A)u=0, u=T{p,v,0} € 2(4). Then we
have

(1.15a) Ap+y-divv=20 in D,
(1.15b) Av— oAy — BV(divv) +y-Vp+w-V8=0 inD,
(1.15c) A —kAO+ w-divv=10 in D,
(1.15d) V|op =0 on 0D,
(1.15d) 0l,p =0 on 0D.

We can assume that A # 0 by Lemma 1.7. Noting that Re{a + 8 + (?/4)} > 0
when o >0, § >0 and A €Y, in view of (1.4), since the systems —xA and —aA —
(B + (y*/A))Vdiv with Dirichlet boundary conditions are elliptic, by boot-strap
argument, we see that {p,v,0} € Wi+ (D) x W4**(D) x W/**(D) for all integers
£ >0. When 2 < g < oo, since D is a bounded domain, we see that {p,v,0} €
W3(D) x W3(D) x W2(D). When 1 < g <2, by Sobolev’s imbedding theorem,
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{p,v,0} e W}(D) x W5(D) x W}(D). Thus, multiplying (1.15b) by 7, integrating
the resulting relation over D and using integration by parts, we have by
2

(L16) Al o+ el o+ (847 ) vl o + a(0,0) =0

Similarly, multiplying by 6, we have

(1.17) 2615 p + x|IVOI3 p + w(divy,8) = 0.

Since Re{w(divv,0)} = —Re{w(VH,v)} and since Im{w(divv,0)} = Im{w(VEH,v)},
it follows from (1.16), and Schwartz’s inequality that

(1.18) Red- (V5 5 + 1615, p) + «llVVII3 p + 16113 »
Rei-y*\, ..
+ (,B+ |f1|2 )“le v||§,D =0,
2 72 2 2
(1.19) V150 = 2 14iv ¥ + 1015 p if Tm 2 # 0,
and
(1.20) Im 4| [|6]|, p < o|divV|, p-

When Reld >0, by (1.18) and (1.19) we have § =0, v=0 in D because 6 = 0,
v =0 on dD, which implies p = 0 in D by [(1.15a). When Re A < 0, since Im 4 # 0,
it follows from (1.18), (1.19) and (1.20) that

2 2

a|| V|2 p + x| VOII2 p + Blldivv]a p < — 2Re1{—y—

(02 .
|/1|2 + m} ”le v”%,D'

Noting that ||div vllg,D < 3||Vv||§’D and 6(y* + w?)Re A + a(Im A)> > 0 when 1 e ¥
we have Vv =0 in D. Combining this with (1.19) and implies that 8 =0,
v=0in D and that p =0 in D by [1.15a). This completes the proof of [Lemmal
1.8.

WE ARE NOW IN THE POSITION TO PROVE THEOREM 1.5. Note that
allows us to show the case 4 # 0. Putting u = 7{p,v,0} and f = T{i,/2,/3}, we
consider the system (1.1) in stead of the equation (A+ Ap)u=f. In view of
[Proposition 1.3 and 1.4, fixing a complex number 4; € Y _;+4o, it follows from
(1.1) that for Ae¥

}’2

(I+PA)v= T(ll;ﬂ+7)_l [—% Vi +1 —coV(/l—;cA)—lﬁ],
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where I is the identity operator,

P(A) = . s B 2 -1 q:
(l)—T(/ll,ﬂ—i—l—) [(A — A1) — 0°V(A — kA)™ div],

2
T (/ll;ﬂ + %) = the operator defined in (1.5),

and

(A— ;cA)_1 = the resolvent for the system in [Proposition 1.3

By [Proposition 1.3 and 1.4 P(J) is a bounded linear operator from
{ue Wﬁ(D);u|aD = 0} into WZ(D) N{ue W;(D);u|0D = 0} which is compactly
imbedded into {ue WfI(D);u| op =0} as follows from Rellich’s compactness
theorem, and hence P(1) is a compact operator from {ue WfI(D);u|aD = 0}
into itself. Noting that by we know that I + P(4) is injective, by
Fredholm’s alternative theorem we see that I 4+ P(41) has the bounded inverse.
Hence, setting

2

-1
y= (1+P(A))—1T(Al;/3+%> [—% Vi +f5 — 0V(4 —KA)_1f3],
0= (h— kA [fs — wdivi], p =%[f1 _ ydivi,

implies that
Furthermore, since the resolvent (i + A4p)~"' is analytic in A e p(—Ap),

1.6 and mean that the estimates (1.7) is valid, which reach the desired
conclusion.

REMARK 1.9. In we assume that [, fi dx =0, which means
that [, pdx =0 by the equation (1.1a), (1.1d) and by Stokes formula. When
Jp fidx # 0, taking ¢ € C§°(D) such that [, ¢(x)dx =1 and define the operators
Nj = Nj(p,D) (j =1,2,3) from X,(D) into itself by the notations:

Nif=f—(Npf) - ger
0

(1.21) Nof = —(Npf)| vg |forf =T{fi,fr.f3} € X4(D),
0
N3f =(Npfg- e
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where e; and Npf are the same symbols as in [Corollary C. Then we can write
(A+A)7! as follows:

_ _ _ 1
(1.22) (h+A)7" = A+ Ap) ' N1+ 2+ 4p) ' N2+ N,
Combining this and Theorem 1.5, we see that —4 is a closed linear operator in

X,(D), p(—A) o ¥ and the following properties are valid:

A2+ 4)" S llxy ) + 1P+ A) Sl

1
< €60, D){ If o + 1l
for any AeX; and any f € X, (D).

§2. On the stationary problem in R®

In this section, we shall show the basic estimations of solutions to the
following stationary linearized equations in R® with a complex parameter A:

Ap+y-divy=fi,
(2.1) Av—aAv — BV(divv) +y-Vp+w-VO =f, in R?,
A0 — kA + w-divy = f3.

By taking Fourier transform on (2.1} we obtain

where I is the identity, #(f) =/ stands for the Fourier transforms of f
u=T(p,v,0), f=T(fi,fo./3). Here A(&) is 5x 5 symmetric matrix as follows:

0 éyéx 0
A@) = | & onalel +BEE it
0 caly K&

where ¢ = v —1 and d3 =0 when k #j and =1 when k =j. Then we have

(2.2a) [A-T+AE)" = {det[A- T+ A©)]} " - 4(4;¢),
(2.2b) det[Z -1+ A(&)] = (A+ al€])2F(4;]¢)),
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where

(2.2¢) F(A1E]) = 2 + (a+ B+ 0|2 + [(a+ BKlE] + 77 + 1|EPA + vxlEl,

and A(A; &) = (@;(4;&)) is the 5 x 5 matrix and the components are

an = (A+ aé) {2 + (a+ B+ K)|EPA+ [0 + (a+ BxIEP] - 1€},
a5 = as; = —yo(4+ a&*)?|EP,
22d) @y =1 =—agA+ae’A+xlEPEa (F=2,3,4),

ds ;= s = —iwA(A+ a|lP)’E (j=2,3,4),
dss = (A+ &) {2 + (a+ B)IEPA+ ¥*1€1%Y,

dy = (A + o2& {AA + o) (4 + x|E[*)dy

+ 05lEP — &im1&m1) (BA2 + [Brele + & + P)A+ Y xlé]),
(i,j =2,3,4).

From the spectral analysis of 4(£) given by Matsumura and Nishida (cf.
Ponce [17]) we have

LEmMMA 2.1. Let {).j(é)};=1 be the roots of det[A-I+ A(&)] =0, where
Aa(&) = As(&) = —a|é|*. Then it follows that:

(i) Aj(&) depends on |&| only, 4;(0) =0 and Rek;(&) <0 for any || >0,
j=1,...,5.

(i) 4(&) # (&), j #k and j,k=1,2,3,4 for all |{| except at most four
points of |&] > 0.

(iii) There exist positive constants ry such that A;(£) has a Taylor series

expansion for || < ry as follows: A1(&) = 12(&) is a complex number, A3(&) is a
real number and

2 2 2
(&) = (P + ) P(ele]) + (y +‘;()y§°‘++£))+°" KGN + -
_ Ve PO+ @) (e +B) — K} e
4(8) =z e+ 0+ o) (N + -

Similarly, there exist positive constants r, > ry such that A;(£) has a Laurent series
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expansion for || > ry as follows: If o+ f # k, then A;(¢) are real numbers and

y’x — (7 + @®)(a+ B)

M(E) = (a+ B)(<[&])? - Ty s I ,
602
A (&) = k(¢|¢))? Ay B ,
},2
)»3({) = _o(—{-ﬂ_'_ ......... .

If a+ B =k, then A(&) = A2(&) is a complex number, A3(&) is a real number and

M (&) = x(¢|E])? + Vo (ilE]) + - ,

2
A3(&) :_y;+ ......... '

(iv) rank[A(&) -1+ A(&)] =3 for all |&| >0 except at most one point of
<] > 0.

(v) The matrix exponential has the spectral resolution

R 5
O =3 SH(EPYQ)
j=1

J

Sfor all |&| except at most four points of |&| > 0.
(vi) There exists a positive constants By, f,,B, and r, such that —B,|&[> <
Re4;(&) < — By|&f for |&] < ri and Re (&) < —B, for |E] >rp, j=1,2,...,5.
V) 1P|l < C for [&] <n1.
(vii) |le= 4| < C(1 + 1) for || > r1 and a positive constant B.
Now we set for f e X, (R?), f= T{ﬁ};l

(2.3) Ry(Af (x) = FH[A- T+ A F(©)}(x)

5

5
= T{gl R,-,-u)ﬁ(x)} ,

Jj=1

where Rj(A) = F{det[A- + A(&)] 'a;(4¢)F}. When f=T{f;,f,,fs} where
f2 = (f2,/5,/a) we shall use the representation as follows:

(24) Ro(A)f (x) = {Rop(A)f (%), Rop(A)f (x), Rop(A)f (x)}-

Then we shall have the following estimates of Ry(A)f which is the core of our
argument.
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THEOREM 2.2. Let 1 < g < oo, b be a positive number and X,;,(R?) be the
same symbol as in (0.7). Then for any fqu,b(R3) any Ae {Ae C;Rel >0,
0<|Al <1}
IRo(A)f |l x,(,) + IPRo(A)f 12,8, < CIIfllx, (%)

k k
1(55) R lxgam + 1(37) PROGIS g

< CIAY7| £l x, o)

where k are integers >1 and C = C(q,b,k) is a constant.

Proor. First we note that since it follows from [2.2b), (2.2c) and
2.1 that F(% |€]) = (A — 41 (E)(A — 22(E))(A — 23(€)), we have

en—-l 1 . 1 . 1
FERD ™ =10~ 50 10 -50 =4
1 1 1
GG GE TG EE)
1 1 1

+ . . .
A3(8) — A1(&) 43(&) — A2(8) 4 —43(d)
Combining this equation and (iii) means that
(2.5) |F(A;1E]) 7Y < ColAI™%)E™* for Rei>0,6eRPand0<e<,

and which implies that

(2.6) det[A + A(O)]| ! < Cl¢|™® forRei>0and &e R,

since |4 + a|&]?| > alé|* for ReA >0 and & e R3.
Now let f = T{fj};=1. Choosing x(r) € C{°(R) so that x(r) =1 if |[rj <1 and
=0 if |r| > 2, put
(27)  Ry(A)fj(x) = F7 {x(€)detd - T + A(&)] " ay(4; ) ()} (x)
+ FH(1 = x()det(a - T+ A(&)] ™ ay(% O () Hx)
= T1,5(Afi(x) + T2,5(A)fj(x)-

Using Theorem 7.9.5 of [6] concerning the L, -estimate of the Fourier multiplier,
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it follows from [2.2a), (2.2d), and (2.7) that

Sl [EAEEY IS { (2) mautns

2.8
(2:8) Z Lg,R® =1 | 2,q,R3}
< C{lfillygre + 1 oollgre + 1 3llgp0 3

j=1
where k are integers >0 and C is a constant independent of |i| < 1. Using a
polar coordinate system, we can write as follows: for multi-index o; (i = 1,...,5):
la| < 1| <2 (i=2,...,5)

k
29 (4) @ Tiaeo)
k
= —(27:1)3/2 LJ (£&)%e* < x(|&) (%) {(det[A- I + A&)]) ay(4; €)1f(&)de
2 k A
= o |, (3) e tea- 14 A )

. J' » (iw)“”e"("'“’)'x(r)ﬁ(rcu) drdsS,,
wl|=

where dS, denote the surface element on the unit surface. By Taylor series
expansion, we have

m—1 1
(2.10) e‘.(""")’x(r)j;(rw) =f(0) + Z ge(x, 0)r’ + j H,,(x,w,s,r)dsr"
¢=1 0
where
— 1 /0 d <(x-w)r ; > 1
ge(x, ) = 7il\3) @ x(r)f;(rw) IR
_ (1 — S)m_l _6_ “ J(x-w)o £
Hm(x7wasar) - (m__ 1)' aa_ € X(a)f](aa)) st
Note that since f; € L,,(R?), we have
150)] < CO)| fillp05
(2.11) l9¢(x, )| < C(b,2)(1 + X))’ 1| fll g 5>

1
L \Hy (%, ,5,7)| ds < C(b, k) (1 + X [l xo-
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In view of (2.2d), putting

ajj(A;rw) = Z agij(4; r)bg,;;(w),

it follows from (2.9), and (2.11) that

k
(2.12) |(d%) (02) T4 (M) (x)
<c+ |x|>"'nf;-nq,Rs-

T Z J dr}.

In order to show that the rest of assertions in holds, we need the
following lemma.

k
( >{(det[/1 I+A(r)]) aﬁy( )}r|°‘x|+2+m

LeMMA 2.3. Let m>0, M > 1 be integers. Put

1
rm

dr, DLmm(d) = d

r Tams(2) Jo A+ ar)MF(a; )™ ’

1
rm
limael) = | FOin™

for Rel >0, |A| < 1. Then the following facts hold.

1) |hmpmA)| < Cm,M)if m>4M, |Lau(A)| < Cm,M)if m=>6M.
(i) If 0 <m < 4M, then

[T1mm(A)| < C(m, M)max{|/1|m/2_2M+1/2, |A" MY when m is even,

< C(m, M)max{|A|™/>"MF1/2 | 3|m3MH1Y | Log | when m is odd.
11 w?
If0<m<6M and if — # —| 1+, then
R y

| ar(A)| < C(m, Mymax{|A|™*3M¥12 13~ MH1Y ywhen m is even,
< C(m, M)max{|A[™/>73MF1/2 | \m=*M+1V | Log A| when m is odd.

(ili) Let M >m and £ > 1 an integer. Then ReA >0, |A| <1

1 2M—2m
r —-M—{—m —M—¢£—2m+1
dr| < c(m,?, M)max{|4 , |4 .
Jo (A + ar?)’ F(A;n)™ ( ymaxi |4 A )
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ProoF OF LemMma 2.3. (i) It follows from (2.5) and the inequality

|4+ ar?| > ar? when Re > 0 that (i) holds.
(i) We shall show (ii) by using decomposition into partial fractions. We can

write F(A;r) as follows:

F(4r) = k(7* + (2 + DA — a,(A) (P — a_(4))

w? + KA o +xd drch v
aﬂi)rzz{”mmi[(‘Uu(aw)z)‘y2+<a+ﬂ>iJ |

Then we have the following estimates

(2.13a)  (a.() —a_(d)), ai(A)=0(1) and a_(A) =0(4?) asi—0,

A | 1 w?
(2.13b) (a+(l)+&) =0(1) asi—0 if " # ’—C(l +y—2>,

which implies that

x" - i{A(A)(x —a(3)”
(2.14a) (x_a+(1))M(x~a_(i))M - j=1 ’ :

+ B;(4)(x —a(4))7}
(2.14b) 14;(2)| < CIA™2MH, |By(A)] < CIAP™ MY for |4] < 1.

Also we have by (2.13)
xm
(x+H)™(x - ap ()M (x — a- ()™

M 2 -J . .
_ Z{cja) (++2) " +D0)x - ()7 + B2 - a_u))“f},

J=1

(2.14c)

. 1 1 2
(2.14d) |G|, |DjA)| < CIA™MY for 4] < 1 1f&¢;(1+c;)—2),

. l 1 2
IE;(A)| < CIAP™*M*Y for |A| <1 if = # — (1 +w_2),
[0 4 K y
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Moreover, putting a(A) = —g, a4 (1), we have by elementary calculus,
(2.15a) Jl ad___ C logla(A)| + C
' os—a(d) ! & 2
! ds
2.15b J————- Cia(A)* + Cy,
(2130) o Goay - o

! dr 12—k
(2.15¢) J A _ G,
0 (r2 —a(4))
where k are positive integers, C; (j = 1,3,5) complex constants depending only
on k and C; (j=2,4)C*({Ae C;ReA >0 and |i| < 1})-functions depending
also essentially on k. Combining (2.13), (2.14) and (2.15) shall reach to the
statement.
(iii) Noting that
2M—2m

(A+ ar2) F(J;r)™

1 M+£+m M + Ve +m
= LM E+m k

_, rReMick)

M+¢4+m—k
) (—o) (A + ar?)* ———F(A, )

k=0

it follows from (ii) that

1 M+t+m [ Af +Z+m r2(2M+l—k)
.[ Miz+m ( )(_a)MHWmek(l-i-“’z ) ———dr
04 —¢ k F(4;r)
_ Mfm %(M"' /-l—m) (k - /> (_a)M+{+m—k+n
k=z n=0 k n
. J~M—2—m+k-n Jl pP2M+e—ketn) ’
o F(unM
< C(m, ¢, M)max{|4|'/>-M=47m, |y~ M-0-2mtly
and it follows from (2.5) that
S M+t+m M+t+m—k keg PPEMFR)
L 3 e (e
£— M+ {+m 1 ¢—2k 4M
' TMiiim Z (—a)Mrorm J s 7=k s 7 9 ‘
A 0 (A+ ar?) F(4;r)

< C(m, ¢, M)|A|™ M-,

This completes the proof of Lemma 2.3.
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NOwW WE RETURN TO THE PROOF OF THEOREM 2.2. By direct calculation we
have

(2.16)  F(4;r)* —ZZ( )( {>{(oc+ﬂ+x)/1+(y2+w2)}’

=0 n=0

. {(a +ﬁ)l€/l+ yZK}nA3k—2/—3nr2l+4n,

k k k—¢
(2.17) {%F(i;r)} :ZZ( )( /){2(a+ﬂ+x)/1+y2+w2}’

3k {— n(a+ﬂ)nKn12k —2n— 2{’,2(+4n

d\’ Ak
2.18 F(A — 2k3k—{ +B8+ (/lk_{I'ZI,
(2.18) {(dl) (r)} > (7 )2 pen
(2.18b) (A + a?)F Ek:( )a”zk-frzf.
=0

First when i # % (1 + C;)—zz) , setting
Ji(A4;r) = 4 AP, Aror P,
Jo(A;r) = 222, 2t ar? or 4,
G(A;r) = (A+ar’)F(4;r),
it follows from (2.16), (2.17), (2.18), Appendix 1 and that

(2.19) “l(d)n{F(z )V (s ) 32 dr

J;{;(Z) (%)n—kF(A;r)_ (;;) J1(4; r)}r|a|+zdr

< Cmax{1,]4"/* ™"},

and

(2.20) Jl(d)n{c;(a 1)~ (A ) 3412 gy

E(E) G o (@fcofos

< Cmax{l1, |4|'/*™}.
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1 1 2
Also when il (1 +E;—2—>, noting that by (2.2d) we have

B2+ [Brele + @* + 7214 + yPr|E = BA(A + K|E]) + (0® + YD) (A + o)),

in view of (2.19), our task is to show that

1 n
(2.21) L (jd;) {G(A; 1) J3(4; )2 dr| < Cmax{1,[4]"7"}
where J3(A;r) = 222 or . It follows from (iii), (2.17), and

Appendix 1 that holds. Hence it follows from (2.2), (2.13), (2.19), (2.20)

and that

5 d \* 5 5 d \*

> 1) Tuu(Af + 77 Tu(A)f

J=1 lg.By  j=1 i=2 2,9,Bp

< Cmax{L, |47} {Ifill g + 1 £2llge + 1l g 00

where k are integers >0 and C is a constant independent of || <1 and Red >0,
and combining this with (2.8) implies that the statement of this theorem holds.

Finally in this section, we shall investigate the continuity as A — 0 for the
operator Ry(A) and the properties for Ry(0).

LEMMA 2.4. Let 1 <q< oo, b be a positive number and let f € X,5(R®).

Then TRO(O)f € qu,loc(R3) X W;,loc(R:;) X qu,loc(R3) and
(2.22) lim R~3 J |Ry(0)f(x)|?dx = 0.
R—oo R<|x|<2R

Moreover, for any a >0 and 0 < e < 1/2 the following estimates are valid:

(2.23) I"Ro(A)f — "Ro(0)f [ w1 (Bayx W2 (B < W2(B2)

< C(g,a,b, )| AI°l| fll x,(r2)
for ReA >0, |A| <1 and f € X;(R®), where C(q,a,b,¢) is a constant independent
of ReA >0, |A| <1 and f e X,5(R?).

Proor. Noting that when 4 =10
L [P+ e+ Bl —éylE S —yolg|”

el — iyle’g {orlel® = &by 0 ),
y*x|g| — ya)]flz 0 Vzlélz

Ae) =
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since the kernels of Fourier integral operators in R((0) are the same as those of
the Stokes system and the system A, we have by Lemma 2.2 and 2.3 in
Iwashita [9]. Hence our task is to show [2.23). Choosing x(r) € CP(R) so that
x(r)=1if|r| <1 and = 0 if |r| > 2, using the notations defined in [2.3) and [2.4),
we have

(2.24)  Ry(A)fi(x) — R;(0)fi(x)

_ g1 a;j(4; &) _ 3509 | » .
- F {x(lél){det[lf1+j(é)] d;t,i(f)}f’(é)}( )

S a;(h8) @09 |, x
- {(1 x(lél)){det[l,H,;(g)] det/f(f)}fj(f)}()

= {T14(4) — T15(0)}fi(x) + {T25(4) — To5(0)}Si(x).
Since it follows from [2.2a), (2.5) and that

an(4;¢) an(0;¢)
&l [{1 _X(Iél)}{det[i-l+,i(é)]—detA‘(g)}H < Cl4|,

- ay(k8)  _ ay(0;<) B
éﬂag[{l X(Iél)}{det[,l.]1+j(é)] detA“(é)}chlfl G=2...,5),

and

[ a8 ay(0:8) W
é”f%[{l X('f')}{deqa.u Y] dem‘(c)}”“w (i#1,j#1),

for [yl <2, ReA>0, |A| <1 and ¢ e R3, by using Theorem 7.9.5 of [6] con-
cerning the L,-estimate of Fourier multiplier we obtain that

5 5 5
(225) 3 IHTau) - T O Ml waen + Do S IH{T24(2) = Tos O} fllwageo
j=1 j=1 i=2

1 &
<CIA I fllx,rs)-

Also since it follows from [2.2a), (2.5) and that

a;j(4¢)  a;(0;%) £ £|~2-2¢
X(|é|){det[,1-1+/i(f)] detAA(f)}| < ClA[°|¢]

for 0<e<i Redi=>0, |/ <1 and £eR? we obtain that for |oy| <1,
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lou| <2 (i # 1)
(2.26) |05 {T,5(4) — T1,5(0)}f;(x)]

i(4; i(0;
: ay(4:8)  _ ay(0:9) }nLl(Rs)nfnLq(Rs)
etfi-1+A()] detA(?)

< C(g, D) AF|Iflx,rs) forf € Xgp(RP).

Thus it follows from (2.25), (2.26) and (2.24) that (2.23). This completes the
proof.

< C(q,b)llx(lél)(ié)“‘{

§3. The resolvent set of — A4

In this section, we shall prove Theorem A. To prove this theorem we need
the following lemma concerning the uniqueness, which is a key in our argument.
First note that by (iii)

det[A + A(&)] #0 for AeZ” = {AieC;C Rei+ (Im2)* > 0}

where C; is a constant depending only on «, §, 7, k, and w. In the view of this and
[Theorem 1.5, taking a constant C in the parabolic region

Y = {leC;CRe i+ (Im1)* > 0}

so that T < X' NX", we have

LemMMA 3.1. Let 1 <g< . If A€Z, then

Ker (A + 4) = {0}.

PrOOF. Let (A + A)u=0. In view of the proof of Lemma 1.8, by boot-
strap argument, we see that Tue W/t\(Q) x W/ (Q) x W/t*(Q) for any
integer £ > 1. We fix an integer ¢/ such that /=0 when 2<g¢g < o and
¢>3(1/g—1/2) when 1<g<2 Let Tve W/ (R®) x WiP2(R®) x WiH(R®)
be functions such that v = # in Q. Put f = (4 + A4)v, then since (A + A)u =0 in
Q, we see that suppf is compact, and moreover f € X*!(R?). Since supp f is
compact, f € X1(Q) when 2 < g < 0. When 1< ¢ <2, since £>3(1/g—1/2),
by Sobolev’s imbedding theorem we have f € X, (Q) too. Put w = Ry(4)f where
the symbols are the same as in [2.4). Since det[A + A(&)] # 0 for any ¢ € R® and
AeZ, by Parseval’s formula we know that Twe W1 (R®) x W3(R%) x W}(R3).
Since (A + A){v — Ro(1)f} =0 in R3, by Fourier transform we have {1+ 4(¢)}
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{v(&) — w(&)} =0, which implies that v=w in R® because det[i+ A(¢)] # 0.
Thus employing the same argument as in the proof of [Lemma 1.8, we have
u = 0. This completes the proof.

A PROOF OF THEOREM A. In view of we only show [0.4). Now
we shall construct parametrix to (1.1) in Q. Let 0Q < Bg,, b be a fixed constant
b> Ry+3 and let Q, = QN By. Given A€ Z and g € X,(Q), let we W) () x
W2(Q) x W2(Qp) be solutions to the problem:

(A+AA)w =gin Qy,
Pw = 0 on 0€2.

The existence of such w is guaranteed by Remark 1.9. In terms of w, let us define
the operator L(A) by relations:

(3.1) w=L(1)g

= {L,(4)g,Lv(A)g, Lo(A)g}.

Here and hereafter, for f e X,(Q), we put fy(x) =f(x) for xe Q and=0 for
x € R*\Q, T, f stands for the restriction of f to Q,. By Remark 1.9 and we
have

(3.2) ILA)sf | x,0,) + IPLNTs £l 4.0,

< C(g:5, )| fllx, @ foranyf e X,(Q).

Let Ro(A), Ro,(4), Roy(A) and Ryg(1) be the same symbol as in and [2.4).
Since det[4 + 4(¢)] # 0 whenever & € R and 4 € X, by Theorem 7.9.5 of [6] we
see that

(3.3) I1Ro(A)f ollx,(rsy + IPRo(A) S oll 24,5
<C(@D)Sfllx,@ forany f e X, (Q).

Let p € C*(R3) such that ¢(x) =0 for |x| <b—2 and =1 for |x| >b— 1. We
introduce the operator Q;(4) by the relations:

(3.4) 0,4 f = T{Ql,p(i)f, O1v(A)f, (A f}

: = oRo(A)(fo) + (1 - L()TLsf  for any f € X,(Q),
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Then by [3.2) and [3.3) we have

(3.5) T0,(A)f e W} (Q) x WEQ) x W2(Q) for any f € X, (),

(3.6) 1@1(A)fllx, ) + IP1(A)f ll240
<C(4,4D)|lfllx, for any f € X, (Q),

and

(3.7a) A+A)0Mf = f+V(A)finQ,

(3.7b) PQ,(A)f =0 on 0Q,

where V(A)f ={V,(A)f, V\(A)f, Vo(4)f} and

(3.8a) Vo(A)f = yVo[Roy(A)(fo) — Ly(ATIsf],

(3.8b) Vi(A)f = —a[Ap + 2(6j9)0)][Roy(4)(fo) — Ly(A)s f]
— BV{0;9[Ro (1) (fo) — Ly(A)Tsf];}
— BVo{div[Ro,(2)(fo) — Ly(A)T5f 1}
+yVo[Ro, (1) (fo) — Lp(A)TLs f]
+ @0;p[Ro,0(4)(fo) — Lo(A)Ls f];,

(3.8¢) Vo(A)f = —K[Ap + 20;00;][Ro,s()(fo) — Lo(A)Ts f]

+ @9;p[Ro,(4)(fo) — Lv(D)Ip f ;.

Our task is to prove that 7 + V(1) has the bounded inverse from X,(2) onto
itself. It follows from [3.2), and (3.8) that TV(1) e B(X,(Q), WZ(Q) x
W,(Q) x Wl(Q)) for each AeZ. Since supp V(4)f = Dp1 ={xeR%b-2<
|x| < b — 1}, by Rellich’s compactness theorem V(1) is a compact operator from
X,(Q) onto itself. Thus by Fredholm’s alternative theorem, it suffices to show
that I + V(A) is injective in X,(Q) in order to prove that 7+ V(i) has the
bounded inverse. Let (I + V(4))f =0 in Q, f € X,(Q). Then it follows from
(3.5), (3.7) and [Lemma 3.1 that

0,(A)f =0inQ,
PQO,(A)f =0o0n éQ,
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which together with (3.4) implies that
(3.9a) Ro(A)(fo) =0 for|x|=b-1,
(3.9b) LA, f =0 for|x|<b-2.

Put z = I1,Ry(4)(fo) — w where w = L(A)I1,f in Q, and = 0 in R3\Q. By
we know that Twe W}(By) x W2(Bs) x W2(B3) and

(A4 A)w =TI) f, in By, Pw = 0 on |x| = b,
where II) f, stands for the restriction of f, to By, and hence we see that
(A+A)z=0in By, Pz =0 on |x| = b,
which with the help of means that z =0 in B,. As a result, we have
(3.10) Ro(2)(fo) = LA f  in Q.
Combining (3.4) and [3.10), we see that
(3.11) Ro(A)(fo) = p{Ro(A)(fo) — LA, f} + Ro(A)(fo)
= Q;(A)f =0in Q.

It follows from (3.9) and that Ro(4)(fy) =0 in Q, which together with
(2.1) implies that f, = f = 0 in Q. Therefore, we have proved that (I + V(1)) has
the bounded inverse (I + V(4))™' from X,(Q) onto itself. Given f € X,(Q), if we
put u = Q,(A)(I + V(A))™", by (3.7) and (3.6) we see that (1 + A)u=f in X,(Q)
and u € 9(A), which means that the inverse (A + A)™' of (1 + A4) exists, and it is
bounded, that is by (3.6)

(4 + A)'lfllx,,(g) + 1P+ A) flagn
< C(g,b, M)||(I + V(i))_lHg(x,,(g))||f||x,,(n)

for any f € X,(Q), which completes the proof.

§4. Behaviour of (A1 + 4)~! near =10

In this section we shall discuss behaviour of (A + 4)~' near A = 0. Our goal
of this section is to prove the following theorem.

Let Y,(Q) and Y,;(Q2) be the same symbols as in (1.6) and (0.5),
respectively.
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THEOREM 4.1. Let 1< q < oo, by a number such that By, > R*\Q and
let b>by. Put D;,={AeC; ReA=0, 0< || <&}, ¥ =B(Y;5(Q); 2(4)) and
A (Dg; %) is the set of all %-valued holomorphic functions in D,.. Then, there
exists a positive number ¢ and R()) € o4 (Dy;¥) such that

(4.1) RO = (G+A4)f,

(4.22) IR S I, + IPR(A)S g0, < C(g,b,)[1 0
d\- d\ .

(4.20) @) 7|+ | (@) PR ngen

<C(q,b,k,8)|A"2 7 fllx ),

Jor any Ae D, fe€ Y,,(Q) and k > 1 integers.

In [Theorem 4.1, in view of proof of Remark 1,9, taking ¥ € C(€) such
that fﬂb ¥(x)dx =1, we have the following corollary:

COROLLARY 4.2. Let 1 < q < oo, by be a number such that By, > R*\Q and
let b > by. Put & = B(Xy5(Q); D(A)). Then, there exists a positive number ¢ and
R() € A (Dy; &) such that RQA)f = (A+ A)°'f,

IR(D)S Nl x,0,) + IPRA)S |l 40, < C(a, 5, ) {1 fll @ + 147 I Aillg0},

|G =, [ G) s

< C(g,5,k, )| A7) fll @ + A Al 0}

for any Ae D, f=T{fi,f2,/3} € Xyp(Q) and k > 1 integers. Moreover,

) _ 1
R() = R(A)N; +% RO)N2 +5 N

where N; = N;(y,Qp) (j=1,2,3), are the same symbols as in [1.21}.

and

zvqynb

To prove [Theorem 4.1, in the same way to the proof of Theorem A we shall
construct a parametrix near 4 = 0. The following proposition concerning the
uniqueness is a key in our argument, which was proved by Iwashita [9].
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For an integer m > 0 and real numbers 7,q with 1 < g < o0, we set
2\1/2
Wyt (Q) = {u; (1 + |x) "o € Ly(Q), || < m},

W(Q) = the completion of Cy°(£) by Z 10% - ll,0-

Ja|=m

PrOPOSITION 4.3. Let 1 < g < o0. Suppose that ue Wf(Q) N W‘II”(Q) and
pE qu (Q) ﬂLfI' (Q) with some t, v € R satisfy

—Au+Vp=0, diveu=0inQ,

u|,q = 0 on 0Q,
and
lim——-J uqux=1im—J x)|?dx = 0.
R—o R3 R<|x|<2RI <l R—o R3 )pcix<2r p()

Then, u=0 and p=0 in Q.

REMARK 4.4. In view of proof of Proposition 4.3, we can replace
W2(Q)N W, (Q) by W L(Q), W (Q)NLL(Q) by W](Q), where

W7 E(Q) = {u;there exists a U € W;'floc(R3) such that u = U in Q}.

Moreover, we can show the same uniqueness theorem for the system

—Au = 01in Q, |, = 0 on 0Q,

as [Proposition 4.3.
Now we shall show the following results on uniqueness for (1.1).

LEMMA 4.5. Let 1 < g < co. Suppose that T{p,v,0} € W] (Q) x W2 ;(Q) x
W;’" £(Q) satisfies the homogeneous equation:
ydivy =0,
— oAy — fVdivv+ yVp+ wVO =01in Q,
— kAfB + wdivy =0,
V|sq = 0,0|;0 = 0 on 0,

(4.3)
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and satisfies

lim — p(x)|?dx =0,
R— R? JR<|x|<2R |

1 r
4.4 lim — v(x)|?dx =0,
*4) R—o R? Jrojx<2r P!

1 r
lim — 0(x)|?dx =0.
R—o R? Jroixi<ar 19|

Then p=0, v=0 and 0 =0 in Q.

Proor. By (4.3), we have
(4.5) —kAf8 = 0in Q, |, = 0 on 0L,
and
— aAv + yVp = vVl in Q,

(4.6)
divv =01in Q, v|; = 0 on 0Q.

In view of Remark 4.4, applying [Proposition 4.3 to the system (4.5) with [4.4), we
have 8 = 0 in Q, which implies p = 0 and v = 0 in Q by applying [Proposition 4.3
to the system (4.6) with [4.4). This completes the proof.

A PROOF OF THEOREM 4.1. To prove Theorem 4.1, we shall use the symbols
in the proof of Theorem A. For any g € Y,,(2), w = L(0)g satisfies the following
relations:

(4.7a) Aw = g in Qp, Pw = 0 on 0Qp.
(4.70) Il v, @) + 1PWll2 g0, < C(4,0)lI9llv,(,)-

Choosing ¢ in C®(R3) so that p(x) =1 for |x| >b—1and =0if [x| <b—2, we
define the operator R;(A) by the relations:

(4.8a) Ri(A)f = T{Ry ,(A)f, Riy(A)f, Rio(A) f}
= @Ro(A)(fo) + (1 —9)L(0)f,

for f € Y,,(Q) and A e D,U{0}. Here, note that T{p,v,0} = L(0)f satisfies the
equations and (1.13), and which implies that p = L,(0)f is unique up to an
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additive constant by [Proposition 1.1. Hence, L,(0) is chosen in such a way
that

(4.8b) jg (1 — p)L,(0)f dx = L Ro,(0)f o dx — jﬂ 9Ro,(0)fo dx.

Then by [4.7b), Theorem 2.2 and we have

(4.9a) Ri(A) e A (D.; %),

(4.9b) TR, (0) € 2( Yy 5(Q), qu,E(Q) X WZ,E(Q) X qu,E(Q))’
(4.9¢) A+ AAR(A)f =f+S1(A)f inQ, PR (A)f =0 on 0,
where

(4.10a) S1UAS =T{S1,,(A)f, S1,(A) S, S10(A)f},

and

(4.10b) S1p(Af = M1 = 9)Ly(0)f + ¥VelRop(A)(fo) — L,(0)f],
(4.10c) S1y(A)f =A(1 — )L, (0)f

— a[Ap + 2(9;9)9;][Ro,v(4) (fo) — Lv(0)f]
— BV{9;9[Ro,(4)(fo) — Lv(0)f];}
— BVp{div [Ro,(4)(fo) — Ly(0)f]}
+ YVo[Ro,(4)(fo) — L,(0)f]
+ w0;p[Ro,6(4)(fo) — Lo(0)f;,
(4.10d) S1e(A)f = A(1 — ) Lo(0)f
— k[Ag + 20;90;][Ro,6(4)(fo) — Le(0)f]

+ @0jp[Ro,v(4)(fo) — L, (0)f];.

It follows from (4.10), (4.9b), Theorem 2.2l and Lemma 2.4 that
(4.11a) TS1(2) € B(Y,5(Q), W} (Q) x W (Q) x W}(Q)) for any 4 € D,

(4.11b) 51(0) € B(Y,5(Q), X, (Q)).
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Noting that the Stokes formula implies that

(4.12) Lb S1,(A)f dx
— Jn,, (1 = @)L, (0)f dx + L,, ydiv Ro, (1) fo dx
- |, eraiviRo,fo — 1O dx
- A{Jﬂb (1= 9)L,(0)f dx — Lb Ro,p(2)fo dx + Lb oRo,(A)fs dx},

we have to modify S;(4) such that total integral over €, is zero because S1(4)f
does not belong to Y,;(Q2) when 4 # 0. To do this, choosing Y € C§°(£23) so that
Jo, ¥(x)dx =1 and set

(4.13a) R>(0) = Ry(0),
(4.13b) Ry(A)f = T{Ry, ,(A)f, Roy(A)f, Rap(A)f for i€ D,

where Ry ,(A) = R1,(4), R29(4) = Ri6(4) and

(4.13¢) Rop(Df = Ry =5 | Susf dxw.
Also, put

(4.14a) Sz(O) = S1 (0),

(4.14b) S2(A)f = T{S2,,(A) f, S20(A) f, S26(A) f} for Ae D,,

where S;9(A) = S 6(4),

(4.14c) So.p(Af = S1y(A)f — j S1,(Af dx,
and
(4.14d) S0 ()f = S1Wf =5 | S0 dxvy.

Then, it follows from (4.9), (4.10), (4.13) and (4.14) that
(4.15a) Ry(A) e A (D,;; %),
(4.15b) A+ AR(A)f =f + S2(4)f in Q, PR,(A)f = 0 on 0Q,
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and by (4.10), (4.11) and (4.14) we have
(4.16a) S2(2) € B(Y,5(Q), qu (Q) x W;(Q) X qu (Q)) for any A€ D,,

moreover, noting [4.8b) and (4.12), it follows from Lemma 2.4 that
(4.16b) J S (A fdx=0 forie D,U{0},
Q

(4.16¢) 152(2) ~ $2(0) (v, 0, vp0000) < C(@,5,8)|41

for ReA >0, |A| <1, where 0 <J < 1/2. Then, we shall show the following
Lemma.

LEMMA 4.6. Let 1 < q < co. Then, I + 8,(0) € #(Y,(2)) has the bounded
inverse (I + S2(0))7".

Proor. Since suppS»(0)f is contained in €, it follows from [4.11b),
(4.14a), [4.16b) and Rellich’s compactness theorem, S,(0) is a compact operator
from Y,,(Q) into itself. Thus, to prove this Lemma, by Fredholm’s alternative
theorem, it suffices to show that I + S,(0) is injective. Let (I + §2(0))f =0in Q,
f € Y 5(Q). Our task is to prove that f=0. It follows from [4.7b), [4.9b),
and (4.15b) that TR,(0)f € W) 1(Q) x W2 (Q) x W2 £(Q) and satisfies

(4.17) AR,(0)f = 0in Q, PRy(0)f = 0 on Q.

Since R,(0)f = Ro(0)(f,) for |x| = b —1 it follows from that
1
lim——J R>(0)f)(x)|%dx = 0.
B g [ (RO

Hence by and we have

(4.18) R:(0)f =0in Q,

and it follows from [4.8a), (4.13a) and that
(4.19a) Ry(0)(f,) =0 for |x] = b—1,
(4.19b) L(0)f =0 for x € Qy_3.

Let us define w by the relations: w(x) = L(0)f(x) for x€Q, and =0 for
x € R3\Qp, and then by (4.19) we see that z = n)Ro(0)(f,) —w possess the
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following properties: "z € W}(By) x W3(B) x W2(By) and
Az =01in By, Pz =0 on Sp,

where nlv is the restriction of v to Bp, and hence by we know that
z=0 in Q,, which means that

(4.20) Ro(0)(fo) = L(0)f in Q.

Therefore, employing the same argument as in the proof of Theorem 3.1, by
(4.19) and [4.20) we have f = 0, which completes the proof of this Lemma.

We return to the proof of [Theorem 4.1. In view of [Lemma 4.6,
(I + S,(0))7! € B(Y,5(Q2)), and then put

M = ||(I+52(0))7"),

where | -| stands for the operation norm. By and Neumann series
expansion, there exists an ¢ > 0 such that I + S>(4) also has the bounded inverse
(I + S2(4))™" from Y, »(Q) onto itself whenever A€ D,, and moreover

(4.21) (I + 82(A)7"| <2M for A€ D..
If we look at (4.13) with (4.8) and (4.10), by we have
(4.22a) |R2(A)f |l x, ) + IPR2(A)|I2,00, < C(& D) fllx, )
d\ d\
(4220) () ®or xan |G ],

<C@Eb) A" | fllg@y k=1,
for fe Y, ;(Q) and A€ D,. Put
R(2) = Ry(W)(I + S2(1)) ™,
and then by (4.15) we see that R(A)f € 2(4) and
(4.23) A+ ARA)f =finQ

for any A€ D, and f € Y,;(Q2). In particular, when f € Y,5(Q2), by [4.23) and
we have R(1)f = (A+ A4)"'f for Ae D, and f € Y,4(Q). Combining
(4.21), (4.22) we have and (4.2), which completes the proof of [Theorem 4.1.
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§5. Proofs of Theorem B and Corollary C

In this section, we shall prove Theorem B and Corollary. C. To do this we
prepare the following lemma, which was proved by Shibata. (see Theorem 3.2

and 3.7 of [18])

LemMmA 5.1. Let X be a Banach space with norm |-|y. Let f(1) be a
Sfunction of C®(R — {0}; X) such that f(t) =0, |t| > a with some a > 0. Assume
that there exists a constant C(f) depending on f such that for any 0 < |17| < a,

| (%)kf(r)

Put g(t) = J f(r)e " dt. Then

— Q0

< (N * k=0,1.
X

gy < C(1+1)72C(f).

Now we shall prove Theorem Bl. In view of the facts that when 0 < ¢ < 1 by
Theorem A we have

llafue_m"”xq(n) + |P3 e ull 0
< CI(1+ )M Ne ul y, @) < Cr¥ M| ullx, g

for any u € X,(Q) and any integers N > 1, M > 0, we have only to show the case
t > 1. Note that by Corollary 7.5 of [16, Chapter 1] we can write

E+¢ 00
(5.1) e My = —1— I e*(A+ A) 'udi
E—¢ 00
1
2nct

rm L)+ ) uda
di

E—¢ 00

for all u € 2(A?), because

<) 3 ||”||Xq(g) for any ReA >¢> 0

d -1
(5.2) “——(,H-A) ¥ O
dA @ 1+14

by Theorem A. Since 2(4?) is dense in X,(Q), the equation holds in X, (Q).
Let ue Y, 5(Q),b > by and let ¥ € C°(R?) such that y(x) =1 for |x| <b
and = 0 for |x| > b+ 1. Since we can move the path in the following integral to
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the imaginary axis by [Theorem 4.1, [5.1) and (5.2), we have

pd lpe—tAu _ iDa {Js-h'oo et)‘l//—d‘—(A +A)_llldﬂ.}
X " 2mit X 7

2nct f—i 00
_ -1 o % Jts d . -1
Zt—;D {J_OO e l/lds(¢S+A) uds}

for any we Y,;(Q) and multi-index o; (i=1,2,3): |ar]| < 1,]o| <2 (i =2,3)
where D% = T{(dx)™, (0x)™, (dx)™}. Taking #(s) € C®(R) so that n(s) =1 for
|s| <1/4 and =0 for |s| = 1/2 we have

(5.3) Di%ye ™ u = Jo(u+ J o ()u
where
-1 ® -
To( = D5 | en(s) Z as + 4) wa),

Jo(fu= ——D“ *(y J et5(1 — n(s))%(ds +A) uds).

o]

By Theorem A we have

6 193 —n) () s+ )l
< (1= n(){(s+ )™ ully o) + I1PGs + ) ully 0}
< C(N)(1 + |S|)—N”"“Xq(n),

and hence by the relation (1/f) - (d/d1)e** = e**, we have

(5.5) 167 T oo (D)utl| 1o < C(N, M, 0)t™ |lu]l . (g

for any integers N > 2, M > 0. On the other hand, noting that

1M (M © d -~
M _ M-n ~1 na Zst /5)" — .
0 Jo(f = - go( . )6, t Dx{w J_w e*n(s)(¢s)" - R( s)fds}
M [¢'e}
= —r MDY " c(n)D“X{l// J ”’( ) {n(s)(¢s)" —R(¢s)f} ds}
n=0 —©
it follows from and that
(5.6) 182 To(Dull,0 < C(M,b,q)(1 + )™M+ |lu||y o
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for any u e Y,,(Q2), integer M > 0 and ¢ > 1. Combining (5.3}, [5.5) and [5.6)] we
have for any ue Y, ;(Q2), integer M >0 and 7> 1

_ _ —3/2—
(5.7) 16)e tA"||Y,,,,,(Q) + |16} Pe ’A"”z,q,n,, <c(1+n7 M“"”Yq‘,,(ﬂ)‘

This completes the proof of Theorem B.

Next we shall prove [Corollary C. Let u € X,;(Q). Taking ¢ € CP(Q;), such
that [, ¢(x)dx =1, in view of Remark 1.9, we have

(/1+A)“1u=(A+A)_1N1u+%(l+A)_1N2u+%N3u for u e X, ()
where N; = N;(¢,€) (j =1,2,3) be the same symbol as in [1.21). Combining
this and [5.1), we have

f+¢ 0
(5.8) e My = LJ e*(A+A)"'Nyuda
27[4 p—coo

dA

y [P . 1
i ANl
to Jﬁ_m e*(A+A4) Ny 7

f+¢ o0
+LJ le"{N3ud,l.
2me B—coo A

t
Putting T(b,¢,t)u=e"“Nu and Ty(b,¢,)u=7y J e *ANyuds + N3u, since
0

1 B—¢ o0 )
2—mJ i—e’ludl:u for any we X,;(Q2), and since by Theorem 7.4 of [16,
p—ioco

Chapter 1] we have

t 1 (Fteio , dA
J e““uds=—_J e*(A+A)'u=" forue P(4)andt>0,
0 2ne f—io j,

it follows from and that the relation holds. Moreover, nothing
that NVu, Nou e Y,;(Q), since by and we have

B+ 00
(59) 5,8_“14 = a;{LJV etl(z.—*‘A)_lNludl}

2ne p—ico

—y f+¢ 0 .
+——,J et(A+ A) " 'Nyuda,
27e B—co

it follows from [(5.7), and that the estimates [0.9) and [0.10) hold. This
completes the proof of Corollary C.
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APPENDIX 1. Let n be an integer >0 and let
F(;r) = 2 + (a+ f+ 1P 2 + {(a+ f)r’ + 9% + 0} A+ yrr.
Then

[(n—2)/2]-¢

(Appl) (%) nF(A; rt = Z Z C(k,¢,n){F(4; r)——n—1+2{+k

0<¢<|(n—¢)/2) k=0

o (e}

Moreover, set G(4;r) = (A + ar?)F(4;r), then

(App2) (%)nG(/l; r!

L [(m—¢)/21—¢
= Z Z Z C(m, k,¢,n) G(A;r) "~ F(4;r)" "2 +k
m=0 0<¢<(m=0)/2) k=0

« {3 Fln }Mmk{ (;}’;)ZFM; ” }k} (A + a?)™.

Proor. Since it directly follows from (Appl) and Leibniz rule that (App2)
holds, our task is to show (Appl). Now we shall show (Appl) by induction on
n. When n = 0, obviously (Appl) holds. Assume that » > 1 and that (Appl) and
that (Appl) is valid for smaller values of n. Noting that (d/dA)’F(4;r) = 6, we
have

(App3)
;‘% I (4;7)

4 (=02 rerreifd n-3¢=2k (; 1N2 k
= ﬂ{ ; C(k,¢,n)F(;r) {H F(2; r)} { (ﬂ) F(4; r)} }
S oy E s et S P }m_%%{ () Fin }k

pr Y ’ i~ "’ dA ’
[(n—=2)/2]—¢+1 ziren [ d mtl-3-2k (7 g\ 2 k
+ k; C(k,¢,n)F(4;7) {-‘;,1 F(,l;r)} {(2171) F(}.;r)}
N [(n—{%—l—l Cll .y i )2 { d Ui }n—2—3(—2k { ( d ) ZF(A. ) }k
pr Y ’ di= "’ da ’

= I (ﬂ.; r) + In,z(l; r) + In,3 (l; r).
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Since [(n—¢)/2]—¢=[(n+1—1¢)/2] — ¢ when both n and ¢ are even or odd,
and since [(n—¢)/2]| - ¢ =[(n+1—¢)/2] —¢ — 1 when n (resp. /) is even and ¢
(resp. n) is odd, we have

(App4) L (A1) = Lt (A57).

Also since n — 3¢ — 2([(n — ¢)/2] — ¢) = 0 when both n and ¢ are even or odd,
and since n — 3¢ — 2([(n — ¢)/2] — ¢) = 1 when n (resp. ¢) is even and / (resp. n)
is odd, we have

(App5) Lip(Asr) = Iy (4; 7).

Note that 0 </ <m if 0 </ <[(n—¢)/2] and n=3m+k (k=0,1,2). When
n=3m, 3m+1, since 0</<m if 0</<|[(n+1-¢)/2], it follows from
(App3), (App4), (AppS) and the induction assumption that

(‘%)nﬂ il Zdi L)

£=0
m—1
= Z (1) + ) La(4r)
=0 ¢=0
= Z In+1 (Aa r)
/=0

= Z Li1(4;7).
0<¢<[(n+1-¢)/2)
Similarly, when n=3m+2, since 0 </ <m+1if 0</<[n+1-7)/2], and
since [(n—12¢)/2]—-¢—1=0 if £ =m, it follows from (App3), (App4), (App3)
and the induction assumption that

(&) rusn =3 & nasn

/=0

= Z In_,_l(/l; r) + i In,3(/l r)

=0 =0
m+1

= Z In+](/1; r) + Z In+l(j';r)
/=1

/=0

= Z Iny1(4;7).
0 < <[(n+1-2¢)/2)

This completes the proof.
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