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REALIZATION OF MAXIMAL SUBGROUPS OF RANK 8
OF THE SIMPLY CONNECTED COMPACT SIMPLE
LIE GROUP OF TYPE Eg

By

Satoshi GoMyo

Introduction

Borel and de Siebenthal ([1]) classified the maximal subgroups of maximal
rank of a simply connected compact simple Lie group G and showed that anyone
of these subgroups could be realized as the fixed subgroup

G° = {a € G|o(a) = a}

of a certain automorphism ¢ of order p (p =2,3,5). The problem of realizing
explicitly these automorphisms o and subgroups G? is important. In case G is of
classical type, this problem is very easy. In [10], and [12], Yokota and some
members of his school realized all ¢ and G° explicitly in cases G were of type G,
F,, Es and E;. In case G is of type Eg, this problem has not been solved
completely. In this case, it is known ([1]) that the type of these subgroups G’ and
the order of ¢ are as follows:

type of G° : Ay xE; Dg Ag A4 x Ay Ay x Eg
order of ¢ : 2 2 3 3 5

The subgroups of type A; x E; and Dg have already been realized explicitly in
[3), [9] and [10]. One the other hand, Wolf and Gray ([8]) classified the auto-
morphisms of order 3 of the simply connected compact simple Lie group of type
Eg and showed that the subgroups of type As and A, x E¢ were isomorphic to
SU(9)/Z3 and (SU(3) x Es)/Z>, respectively. But the isomorphisms were not
completely obtained. In this paper, we shall explicitly give two automorphisms
of order 3 such that their fixed subgroups are isomorphic to SU(9)/Z3 and
(SU(3) x E¢)/Z5 respectively, and an automorphism of order 5 whose fixed
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subgroup is of type A4 x A4. The last fixed subgroup is realized as
(SU(S5) x SU(5))/Zs.

Finally we remark that three new realizations of the complex simple Lie
algebra of type Eg are obtained in this paper.

The author wishes to express his sincere thanks to Professor Ichiro Yokota,
who motivated the author to study on this subject and to Professor Hiroshi
Asano for his valuable suggestions and constant encouragement.

§1. Preliminaries

1.1 Let ej,...,e, be the canonical basis of C" and (x,y) the symmetric
bilinear inner product in C" defined by (e;, ¢;) = J;;, where J; means Kronecker’s
delta. Let us define a bilinear symmetric inner product in the k-th exterior
power \(C") (0 <k <n) by

(01 A A X A A p) = det(5,0)), k21,
(a,b) = ab, a,be N(C" = C.

Then e, A --- A e, (i <--- <) forms an orthonormal basis of /\k(C"). For
any ue€ /\k (C"), there exists the unique element *(u) € /\' _k(C”) such that

(1.1) (x(u),v) = (W Av,e; A --- A e,) forve N F(CY).
Then the linear transformation
< N(€) — NHen
is bijective and it satisfies the following identity:
L) = ()" By we N(C).

Let p and dp be the representations of the complex special linear group SL(n, C)
and its Lie algebra sl(n,C) on /\k(C") (k > 1) defined by

plA)(x1 A - AXxk)=Ax) A - A Axg,

-

dp(X)(x1 A -+ A Xp) = Xt Ao AXX A A X,

Jj=1
respectively. In particular, define the representations p of SL(n,C) and dp of
sl(n,C) on N\'(C") = C by
p(A)1 =1, dp(X)1=0.
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Hereafter we shall omit the notations p and dp. We can easily obtain the
following:

Lemma 1.1. For A e SL(n,C), X esl(n,C) and u,ve N(C"), we have

(1) (Au,'47'v) = (u,v),

(2) (Xu,v) + (u,—'Xv) =0,

3) *(du) = 47"+ (u),
(4) *(Xu) = —'X * (u).

For any u,ve /\k (C" (1 <k <n), let us define a linear transformation
uxvon C" by

n—k

uxv:xe—x®A *@Ax))+(=1)"F (u,0)x (xeC").

Since tr(u x v) = 0, u X v can be considered as an element of sl(n, C) with respect
to the canonical basis of C”. Let ~— denote the complex conjugation of /\k(C")
with respect to the real form /\k (R") except in the §3. Furthermore we can easily
obtain the following:

LEMMA 1.2. For Ae SL(n,C), X €sl(n,C) and u,ve /\k(C”), we have

(1) A(u x v)A7! = (Au) x (‘47 '),

(2) [X,uxv] = (Xu) x v+ u x (—'Xv),
(3) ‘(u x v) = v x u,

(4) UXVv=uXD,

(5) tr{X (u x v)} = (-1)"*(Xu,v).

1.2 Let g be a complex simple Lie algebra of type Eg. Since g is simple,
the Lie algebra Der(g) of all derivations of g consists of ad(R) (R e g) and it
is isomorphic to the Lie algebra g. Let Aut(g) be an automorphism group of
g and Innaut(g) an inner automorphism group generated by {exp(ad R)|R € g}.
Since g is of type Eg, the group Aut(g) coincide the group Innaut(g). Hence
Aut(g) is connected. Let ¢’ be a compact real form of g and y a conjugation of
g with respect to g’. Define an inner product on g by

(R1, R2) = —Bg(Ry, yR2).
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Then it is positive definite Hermitian inner product. Let us define a group Eg as
follows:

Eg = {o € Aut(g)|(aRy,aR,) = (Ry, Ry) }.
Since this group is a closed subgroup of the unitary group
U(g) = {« € Iso(g)|(xR1, aR2) = (Ry, R2)},

the group Eg is compact. It is clear that the Lie algebra of this group is iso-
morphic to g’. Hence the group Ejg is of type Eg. In order to prove that the group
Eg is connected, we use the following:

LemMma 1.3. ([2] p. 450). Let G be an algebraic subgroup of the general
linear group GL(n,C) such that the condition A € G implies A* € G. Then G is
homeomorphic to the topological product of GN U(n) and a Euclidean space R*:

G~ (GNU(n)) x R?
where U(n) is the unitary subgroup of GL(n,C).
It is clear that the group Aut(g) is the algebraic subgroup of GL(248,C) =
Iso(g). Since Aut(g) is generated by {exp(ad R)|R € g} and
(exp(ad R)R|, R;) = —Bg(exp(ad R)Ry, yR3)
= B4(R1,exp(ad R)yR,)
= —By(Ry, yexp(ad(—yR))R2)
= (Ry, exp(ad(—yR))R2),

o € Aut(g) implies a* € Aut(g), where o* is the transpose of a with respect
to (Ry,Ry): (aRy,Ry) = (Ry,a*R,). It is clear that Aut(g)NU(g) = Es and
dimg ES — dimg E3 = 248. Hence we have

Aut(g) ~ Eg x R*8.

Since Aut(g) is connected, the group Eg is also connected. From the general
theory of Lie groups ([7]), the connected compact simple Lie group of type Ejg is
simply connected. Hence we have

PROPOSITION 1.4. Let g be a complex simple Lie algebra of type Eg and y
a conjugation of g with respect to a compact real form of g. Then the group
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Eg = {o € Aut(g)|(aRy,aR,) = (R, R2)} is simply connected compact Lie group
of type Eg.
§2. The subgroup of type Ag

In this section, let us consider a complex vector space direct sum

g =519, C) @ N(C*) & X(C”).
We define an anti-symmetric bilinear product on g by
(X,u,v) = [(X1,u1,v1), (X2, u2,03)]
where
X =[X1,X3] +ug x v, —up X vy,
u = Xiu — Xom + *(v1 A v2),
v=—"X10 + ' Xov; — *(u; A u).

In order to prove the Jacobi identity, we show the following:

LEMMA 2.1. For u, v,we/\3(C9), we have

(1) uxx(vAw)+oxx(wAu+wxx*x(uav)=0,

(2) (ux w)v— (v x whu+ x(x(u A v) A w) =0.

PROOF. Put u=wu; Aup Aus, v=u4 A us A ug and w=wuj; A ug A ug. For
x,ye C’, we see
(e xv)x,p) = (x(v A x (8 A x)),y) +2/3(u,v)(x,y)
=—(x Auy Av)+2/3(u,v)(x,y)
= (x Auy Auz,v)(uy,y) — (x Aup A us,v)(uz,y)
+(x A uyp A u,v)(us,y) — 1/3(n,v)(x,p).

Hence we have

(3) (wxv)x=(x Auy Aus,v)us + (1 A X A u3,v)u,

+ (w1 A uy A x,0)u3 — 1/3(u,v)x.
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Using this identity, we have

{ux*x(Aw)+ox*x(wAaAu)+wxx(unv)lx

9
=Z(u1 Ao AU_L ANXAULLA o Alg, el A - A €9)Uj
j=1
— (w1 A --- Aug,er A --- A e9)x = (i).

Let us put x = >0, xiei, w; = 3 5, uxer and U = (up) € M(9, C). Hence we see

9
(M A - AU AXAULI A - AlUg €] A - A €)= E Ujkxk,
k=1

(g A -+ Aug,ey A -+ Aeg)=detU,
where Uy is the factor of uy of the matrix U. Therefore we have
(i) = Z x, Ujuj — (det U)x = Z xi Uujie; — (det U)x
Jk ijk

=Y xi(det U)dye; — (det U)x = 0.
ik

Then (1) has been proved. Now let us put u =u; A u; A u3 and v =v; A v2 A 3.
Using (3), for any ae/\3(C9) we have
((w x w)v — (v X w)u, a)
= (((u x w)v1) A 3 A v3,a) — (((8 X W)D2) A V) A D3,aQ)
+ (((u x w)v3) A v; A v2,a— (((v X War) A ux A w3, a)

+ (v x wwp) A uyp A uz,a) — (((vX wus) A up A uy,a)

3 3

= — (u,w)(v,a) + Z Z(u,— A U1 AV, W) (Hig2 A Dip] A Vjy2,Q)
i=1 j=1

3 3
+ (o, w)(@,@) = D D (i A v A 1, W) (it A Big2 A 0j42,4)
i=1 j=1

=—mwAv,wAa)=—(x(x(uAv)AW)a).

Then (2) has been proved. O

From Lemmas [.1, 1.2 and 2.1, we can prove that g becomes a Lie algebra.
Furthermore we have the following:

THEOREM 2.2. The Lie algebra g is a complex simple Lie algebra of type Es.
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Proor. For a subset I = {i,j, k} (i <j<k) of {1,2,...,9}, we put
er=¢e Ne Aeke/\3(C9).

Let a be a non-zero ideal of g and let us put

a=N(C) @ N(C).
There are three cases to be considered: (a) sl(9,C)Na = {0} and gqNa = {0}, (b)
sl(9,C)Na # {0}, (c) gNa # {0}.

Case (a): Let p: g — sl(9,C) denote the projection. If p(a) =0, then a is
contained in q, which contradicts to gNa = {0}. For this reason p(a) is a non-
zero ideal of sl(9,C), hence we have p(a) =sl(9,C). For an element X =
Ele E;; — 8Egy €51(9, C), there exists an element (u,v) = (3_; urer,)_; vses) € q

such that (X, u,v) € a. Since [(X,0,0), (X, u,v)] = (0, Xu, —'Xv) e qNa = {0}, we
have

0=Xu=ZuIX81=3ZUI81—6ZLI1€1,
I

149 139

0=—-"Xv=-3 Z vye; + 6 Z vsey,
T#9 739

i.e., uy =0 and v; = 0. Then 0 # (X,u,v) = (X,0,0) € sl(9,C)Na = {0}. This is
a contradiction.

Case (b): Since sl(9,C)Na is a non-zero ideal of sl(9,C), we have
sl(9,C) = a. For any e; A ¢j A e € /\3(C9), put

1
X=3 (Eii + Ejj + Exx) — Ey.

Since (X,0,0) €sl(9,C) = a, we see that

(0,e; A € A e,0) =[(X,0,0),(0,e; A & A e,0)] €a,
(0,0,e; A e A &) =[(X,0,0),(0,0,—e; A ej A e)] €a.
It follows that q = a. Hence we have a = g.

Case (c): Let R = (0,u,v) be a non-zero element of gqMNa. In case u # 0, we
put u =), ure;. Without loss of generality, we may assume u(j3; = 1. Putting
Sy = (Ei — Ej;,0,0) e g and T = (0,0,e; A e; A e3) €g, we have

0 # ad(T)ad(S37)ad(S27)ad(S17)ad(S36)ad(S25)ad(S14)R
= (—E34,0,0) € sl(9,C) Na.
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Then we can reduce this case to case (b). In case v # 0, we can similarly reduce
to case (b).

Thus the simplicity of g has been proved. On the other hand, since the
dimension of g is clearly 248, we see that g is a Lie algebra of type Eg. [

Let us define a conjugate linear transformation y and an inner product
(R1,Ry) on g as follows:

(X, u,v) = (-'X, -0, —0),
<R1)R2> = —Bg(Rl,VRz)’

where B, is the Killing form of g. We shall show that this inner product is
positive definite Hermitian. Now, let us consider another symmetric bilinear form
defined by

By ((X1,u1,v1), (X2, u2,02)) = trX1 Xz + (w1, 02) + (42, 01).

Using [1.1), Lemmas [.1 and .2, we see that B, is g-invariant. Since g is simple,
there exists some a € C such that By = aB; ([5]). For R = (E;; — E»,0,0) € g, we
have Bi(R,R) =2. On the other hand, we have By(R,R) =120 by straight-
forward calculation. It follows that By = 60B;. Hence we have

(Ry, Ry) = 60tert1\_’2 + 60(u;, @) + 60(v1,72),

for R; = (X;,u;,v;) € g. It follows that (R;,R;) is a positive definite Hermitian
inner product on g. Using (3) and (4), we see that y holds the Lie
bracket. Then it is clear that

g’ = {Reg|y(R) = R}

= {(X,u,—7) e g|X e su(9),uec N(C*)}

is the compact real form of g. Furthermore, from [Proposition 1.4, we see that the
group

Eg = {O( € Aut(g)l(och,aRz) = (R],Rz)}

is a simply connected compact simple Lie group of type Ejg.
Put w = exp(27i/3) € C and define a transformation w: g — g as follows:

w(X,u,v) = (X, ou,w*v).

It is clear that we Eg and w? = 1.
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Let o denote the inner automorphism of group G induced by se€ G, i.e.,
o(x) = sxs~'. We put G instead of G°.

THEOREM 2.3. The subgroup (Eg)" of Eg is isomorphic to the group
SU9)/Z5.

ProoF. We define a map ¢: SU(9) — (Eg)” by
9(A)(X,u,v) = (Ad(A)X, Au,’ A7 'v).
For Y € su(9), we have
exp(ad(Y,0,0))(X,u,v) = (exp(ad(Y))X, (exp Y)u, (exp(—'Y))v)
= (Ad(exp Y)X, (exp Y)u,'(exp Y) ')
= g(exp Y)(X,u,v).
Hence ¢(A4) is an automorphism of g. Furthermore, using Lemma 1.1, we have
(¢(4)R1, p(A)R2) = (R, R2).

Hence we see ¢(A) € Eg. It is clear that wp(A) = ¢(A)w. Thus the map ¢ is well-
defined. Obviously ¢ is a homomorphism. We shall show that ¢ is surjective. The
Lie algebra of (Eg)" is isomorphic to

{R e glyR = R,wR = R} = {(X,0,0) € g|X € su(9)} =~ su(9).

Thus the differential of ¢ is surjective. Since (Es)" is connected ([6]), ¢ is
surjective.

At last, we shall show that Kerg = {I,wl,w?I}. Let A be an element of
Ker¢. Since Ad(4)X = X, we have 4 = ("I where m € Z and { = exp(2ni/9) €
C(¢® = w). Since

(X, u,0) = o({"I)(X,u,0) = (X,™u, (%) = (X, 0™u, 0*v),
we have m =0 mod 3. Then we see that Kerg = {I,wl,w?l} = Z;.
Therefore SU(9)/Z3 =~ (Eg)” has been proved. O

This theorem means that (Eg)"” is a subgroup of type As.

§3. The subgroup of type A, x Eg

In this section, we denote the complexification of any real vector space S by
S€. And the complex conjugation of S¢ with respect to the real form S is
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denoted by 7 instead of ~ in §1, §2 and §4, because we have to distinguish it
from the following canonical involution of Cayley algebra. The complex
conjugation in C = RC is also denoted by 7.

Let € be the division Cayley algebra over R. We denote the canonical
involution of € by X (xe€ C). Let

I={UeM3,0)|U="U}

ay X3 X
a; R
= X3 a x1 | e M(3,€)
X; € ¢
X X1 a3

be the Jordan algebra over R with respect to the Jordan multiplication
Uo V=%(UV+ vU).

In 3¢, a symmetric inner product (U, V), a positive definite Hermitian inner
product (U, V), a cross product U x ¥V, a cubic form (U,V,W) and the
determinant det U are defined respectively by

(U V)=t(Uo V), (U,V)=/(cU,V),
UxV=Uo V——%(tr(U)V+tr(V)U) +%{tr(U)tr(V) _ (U, V)M,
(U, V,W)=(U,VxW)=(UxV,W), detU=(U,U,U),

where I means the 3 x 3 unit matrix.
In [10], Yokota realized a complex simple Lie algebra eS of type Eg as

¢§ = {¢ e Hom¢ (3%, 3°)|(¢U, U, U) = 0}

and he showed that the group

det aU = det U
E6 — {a € ISOC(SC) <:;JaaV> :er V) }

is a simply connected compact simple Lie group of type Eg, whose Lie algebra is

es = {pees | {(gU, V) + (U, ¢V) =0}
= {¢ e | —T'¢t = ¢},

where ‘¢ means the transpose of ¢ with respect to (U, V). For U,V € €, define
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Uv Veef by
1 1
UV X =5V, X)U+(U, V)X -2V x(UxX), (Xe 39).

Now, we consider a complex 81-dimensional vector space c? ®3C. We
denote each element of C* ® 3¢ in matrix form as

U,
U=U)=|U| (Uces°.
Us

For ¢ € Hom(SC,Sc), X=(x)eM(3,C)and U= (Uje C? ® 3¢, define
oU, XUeC*® € as follows:

oUy x11 Ui + x12Uz + x13Us
U = | pUs |, XU = | x01U1 + x20Us + x23U3
PpUs x31U1 + x32Us + x33U3

For U = (U;), V = (V;) e C3 ® 3¢, let us define a symmetric inner product
(U,V), a positive definite Hermitian inner product (U, V), a cross product
U x V, an element Uo ¥ of sl(3,C) and an element U v V of ef by

(U, V) = (Ul, Vl) + (Uz, Vz) + (U3, V3),
(U, V) = (U1, V1) + (Ua, V2) + (U3, V3),

Uy x V3 — Va3 x Us
UxV= U3XV1—V3><U1 5
| Ui x V2 — V1 x Us

(U, 1) (U, Va) (U, Va)
UoV=|(UyV) (U V) (U, V3) _E(U,V)I’
| (Us, V1) (Us, V2) (Us, V3)

UvVy=U v Vi+Uv Vy+U; v Vs,

respectively.
Next, let us consider a complex vector space direct sum

m=sl3,C)®eDC*RI°D®C*®3°.
Furthermore, let us define an anti-symmetric bilinear product on m as follows:

(X’ ¢: U7 V) = [(X17¢1’ U17 Vl)’ (X2’¢2’ U27 VZ)]
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where

1 1
er [X],X2]+ZU10 Vz-—ZUzo Vi,

1 1
{ ¢ = [¢1,¢2]+§U1 Vv V2—§U2 v Vi,

U=¢1U2—-¢2U1 + XU; — XoU — V) x Vs,
L V=—t¢1V2+t¢2V1 — tX1V2+tX2V1 + U; x U,.

Let ¢S be a complex simple Lie algebra of type Ez which was realized in [4];

s =cSOP AP DCHCODC.

Define a map p:e§ — m as follows:

ﬂ(®(¢, S’ T’ v)) (U, V’ é’ ’7)1 (W? Y’ C’ w),r7 S? t)

v -3¢ 3¢ 287 [-2T
= %a) —%V—r t ,¢, W B V
s ber ] Lol

We can prove that u is isomorphism by straightforward calculation. Thus we

have

THEOREM 3.1. The Lie algebra m is a complex simple Lie algebra of type

Eg.
Using the Killing form of ef which was obtained in [4], we see that the
Killing form B,, is
5
Bm(Rl7R2) = 6Otr(X1X2) +§Beg(¢l’¢2) + 15(U1a VZ) + 15(U27 Vl)s

for R; = (X, ¢;, U;, Vi) e m. We define a conjugate linear transformation y and an
inner product (R;,R;) on m as follows:
y(X’ ¢7 Ua V) = (_TIX’ —Tt¢ra —TV7 —TU)
(R1, Ry) = —Bm(Ry,yR2).

Then we have
5
(Ry, Ry) = 60tr X;(7'X>) +§Beg(¢1,7t¢2f) + 15(Uy, Uz) + 15(V1, V).
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This implies that (R;, R;) is a positive definite Hermitian inner product on m.
Using the following equations:

(Uo V)= (t¥V)o (zU) and (U v V)= (V) v (zU),

we see that y holds the Lie bracket. Then it is clear that m” = {R € m|y(R) = R}
is the compact real form of m. Furthermore, from [Proposition 1.4, we see that
the group

Eg = {o € Aut(m)|{xRy, aR2) = (R1, R3)}

is a simply connected compact simple Lie group of type Ej.
Let us define a transformation ¢ : m — m as follows:

X, U, V)= (X,d,0U,0?V).

It is clear that d € Eg and & = 1.

THEOREM 3.2. The subgroup (Eg)a is isomorphic to the group
(SU(3) x Eg)/Z5.

Proor. For any 4 € SU(3), we define a linear transformation y/(4) on m
by
Y(A)(X,9,U, V) = (Ad(4)X,$, AU, 'A7'V).
Obviously the map ¢ : SU(3) — GL(m) is a homomorphism. Furthermore, since

exp(ad(Y,0,0,0)) =y(exp Y), (Y esu(3)),

we see that y(4) is an automorphism of m. For any U,¥ € C* ® 3¢, we have

(AU, AV) = (U, V).

It follows that
(Y(A)R1,¥(A)R,) = (Ry, Ry).

Hence y(A) € Eg. Similarly, for any o € Eg, we define a linear transformation
u(e) on m by

u(0)(X,4,U, V) = (X,Ad(a)¢,aU, ‘a”' V),

where ‘a means the transpose of a with respect to (U, V). It is clear that the map
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u: E¢ — GL(m) is homomorphism. Since
alUy x aly ="'a"Y(Uy x Uy), (aUy, '« 'uy) = (U, Up), (Uie3°),
u() is an automorphism of m. Since
B,c(Ad(a)¢,, v'(Ad(«)4y)7) = Bc(¢1, 'dy1),
we have
(u(2)Ry, () R2) = (Ry, Ry).

Hence u(a) € Eg. It is clear that y(A)u(a) = u(a)y(A).
Furthermore we define a map ¢ : SU(3) x E¢ — (Eg)‘s by

9(4,0) = Y(A)pu(x).

Since d = y(wl), we have d¢p(A4,a) = ¢(4,a)d. Thus the map ¢ is well-defined.
Obviously ¢ is a homomorphism. Also we can prove that ¢ is surjective as in

proof of Theorem 2.3.
Next, we shall show that Kergp = {(1,1),wl,w?1), (w?*I,w1)}. For (4,a) €
Ker¢p, we have 4 = v™I and a = "1 where n,me Z. Since

(Xa ¢, U, V) = ¢(a)ml,a)n1)(X, ¢, U, V) = (X, ¢, COm+nU, w2(m+n) V),
we have that m 4+ n =0 mod 3. Thus we have
Kerp = {(1,1), (wl,0’1), (&’I,wl)} = Z;.

Therefore (SU(3) x Eg)/Z3 =~ (Eg)° has been proved. O
This theorem means that (Eg)a is a subgroup of type A, x E.

§4. The subgroup of type A4 x A4

In this section, let us consider a complex vector space direct sum

=LA LAL
where
Ip = sl(5,C) @ sl(5, C),
=N (C)®N(C), L=N(C)N(C),
L=N(C)®N(C), li=N(C)e N(CP).
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We define an anti-symmetric bilinear product on [ as follows:

(o, To] = T,
(lo,i] = 11,
[lo, 2] = Ly,
[lo, 3] = 1,
[lo, 4] = Lg,
(11, La] = To,
[I2,15] = o,
I,h] <k

[127 12] < I4

I, cls

L,la =

and

and

and

and

(X1, Y1), (X2, Y2)] = ([X1, X2], [Y1, Y2)),
[(X,Y),*x®a]l = (Xx)®a+x® (Ya),

(X, Y),b®@y] = (Xb) @y + b (—'Yy),
(X,Y),e®z] = (—'Xc)®z+¢c® (Yz),

(X, Y),w®d]=(—"Xw)®@d+w® (-'Yd),
*x®a,w®d = (—(a,d)x xw,(x,w)a xd),
bRy, c®z] =((y,2)bxc,(bc)zxy),

[l4,1a] = 1,

[*1 ®ar,x; ®ax] = (x1 A x2) @ * (a1 A az),

3, 13] = 14,

b1 ® y1, b2 @ y,] = *(b1 A b2) @ (¥1 A »2),
[I47[3] < [21

[x®a,b®y| =*(b A x)® *(x(a) Ay),
[13711] < [45

BRy,wd =x*(x(b) Aw)®@ *(d A y).

In order to prove the Jacobi identity, we show the following:

(1)
()
(3)
(4)
(5)

(6).

(7)
(8)
©)

LEmMMA 4.1. For x,y,ze/\l(CS)(z C®) and a,b,ce/\z(CS), we have

x(a) Ax (b A )+ x(B) Ax(c A a)+*(c) Ax(anb)=0,

*(a Ax (%(B) A x)) + *(b Ax (x(a) A X)) +x Ax(a A b)=0,

*(x(x A p) A 2) = (x2)y — 0, 2)x,
x Ak (x(@) Ay)+*x(p Ax(a A x))—(x,y)a=0,
x(a Ax (b A x)) — x(x(B) Ax (x(a) A x)) — (a,b)x =0,

axx(bAx)+bxx(anx)—xxx*(@anb)=0,

x(x(@) A x) Xy —x(x(a) Ay) xx+ax(xany)=0,
(ax b)c = +(x(a A ¢) A b)—1/5(a,b)c — (b, c)a,

(xxy)Ja=—*p Ax(x A a)) +3/5(x,p)a.
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PrOOF. (1): Let us put a=a; Aa;, b=a3 A a4, c=as A ag and a; =
Ele age;. Since
(x(x(a) Ax (b A ¢)),x) = (a,*(b A c) A x)

= (a1, *(b A ¢))(az,x) — (a2, x(b A c))(ay,x)
=(ag AbAc,ep A--- A es)ay,x)
— (@ AbAce A--- A es)a,x),

we have

*(x(a@) Ax (b A )+ x(b) Ax(c A a)+x(c) Ax(a A b))

5 6
———Z Z(—l)'(al Ao A@ZL A@igl A A @G, €1 Ao A €5)ajie;

aj 4aix - a1
5 ayy a;y -+ axs
Jj=1
| A6 de1 - Q465 |

(2): Using (1), we have
(x(a Ax (x(B) A x)) + x(b Ax (x(a) A x)) +x Ax(a A b),c)
= (*x(b) A x,c A a) + (x(a) A x,b A €) + (x(c) A x,a A D)
= (%(x),*(8) Ax(c A @)+ x(a) Ax (b A c)+x(c) Ax(a A b)) =0.

(3): For any ve N (C°) = C°, we have

(x(x(x AY) AZ)0)=(x Ay, 2 AD) =(x,2)(p,v) — (¥,2)(x,0).
Then (3) has proved. (4) and (5): Let us put @ = a; A a,. Since
(x A a,y A b)=(x,y)(a,d) — (a1,y)(x A a2,b) + (a2,y)(x A a1,b),
(%(b) A x,x(a) A y) = (a,y Ax (x(b) A X))
= (a1,y)(x A a2,b) — (a2,y)(x A a1, D),
we have

(x A a,y A b)+ (+(B) A x,%(a) A y) = (x,y)(a,b).
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Using this identity, we have

(x Ax (x(a) A p) +*(y Ax(a A x)) — (x,y)a,b)
— (+(B) A %,%(a) A Y) + (x A @,y A B) — (x,5)(a,) =0
(x(a A% (b A X)) — *(x(B) Ax (x(a) A X)) — (a,b)x,y)

= (x A b,y A a) + (x(a) A x,%(B) A y)— (x,y)(a,b) = 0.

(6): Since
((x X y)z, v) = _(x ANLY A v) +4/5(x,y)(z, v)
= (y,z)(x, U) - I/S(xay)(z’ v)a
we have
(10) (xxp)z=,2)x—1/5(x,p)z.

For v,w € /\I(CS) = C% we have

((a x %(b A x))v,w)
= Aa,wnax(bAx))—3/5x(a A b),x)(v,w)
= (v,w)(a,*(b A x)) — (a1,w)(w A az,%(b A X))
+ (a2, w)(w A ay,x(b A x)) —3/5(x(a A b),x)(v,w)
=2/5(x(a A b),x)(v,w) — (a1,w)(B A X AWAaz,e A---Aes)
+ (a2, w)(BAXAWAa e A Aes)
((b x x(a A x))v,w)
= (x Aa,w Ax (b A V) —3/5(x(a A b),x)(v,w)
= (x,w)(x(a A b),v) + (a1,w)(b A X AWAaze A Aes)
— (a3, w)(BAXAWAa e A--- Aes)—3/5x(anb),x)(v,w).
Using [10), we have

(@x (b A x))v+ (b x *(a A x))v=(x,w) *x (a A b)—1/5(x(a A b), x)v

= (x x *(a A b))v.
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(7): We have
((@ax (xAp)o,w)=(x Ay AwvAa)—3/5ax A py)(v,w)
= (x,0)(y A w,a) — (y,0)(x A w,a) +2/5(a,x A y)(v,w)
= (x,0)(x(x(a) A y),w) — (y,0)(%(x(a) A x),w) +2/5(a,x A y)(v,w).
On the other hand, using [10), we have
(x(x(a) A x) x p)o = (p,0) * (x(a) A x) — 1/5(x(x(a) A x),v)y
= (y,v) * (x(a) A x) — 1/5(a,x A D)y,
—(*(x(a) A x) x p)v=—(x,v) * (x(a) A y) —1/5(a,x A v)y.
Hence (7) has been proved. (8): Let us put a=a; A a; and ¢ = ¢; A ¢;. Since
((a x b)v,w) = (a A v,b A w) —3/5(a,b)(v,w)
= —(a1,w)(x A a2,b) + (a2, w)(x A a1,b) + 2/5(a, b)(v,w),
we have
(axb)e=—(ay A c1,b)ay A 2+ (a1 A c2,B)ax A
+ (a3 A c1,b)a; A ¢y — (a2 A c2,b)ay A 1 +4/5(a,b)c.
On the other hand, for d € \}(C®), we have
(x(x(a A ¢) A b),d)
=(anc,bnd)

= (a,b)(c,d) — (a1 A c1,b)(az A c2,d) + (a1 A ¢2,b)(az A c1,d)
+ (a2 A ¢1,b)(a; A c3,d) — (az A c2,b)(a1 A ¢1,d) + (¢,b)(a,d).
Hence (8) has been proved. (9): Using [10), we have
(x xy)a= (y,a1)x A ay — (y,@2)x A a1 —2/5(x,p)a.
On the other hand, we have
(—*x(y Ax(x A a),b) =—(x Aa,y Ab)
=, @)(x A @,b) — (y,@2)(x A a1,b) — (x,y)(a, D)

Hence, (9) has proved. O
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From Lemmas [.1, and 4.1, we can prove that [ becomes a graded (i.e.,
[, i) =, where m =k + 1 mod 5) Lie algebra. Furthermore we have the
following:

THEOREM 4.2. The Lie algebra | is a complex simple Lie algebra of type Ej.

ProOOF. Let a be a non-zero ideal of [ and let us put
Iog = {(X, 0) € IolX € SI(S, C)} = 5[(5, C),
Ioo ={(0,Y) ely|Y €5sl(5,C)} =sl(5,C),
a=L1LOLOL® L.
There are three cases to be considered: (a) IpyNa= {0}, lppNa={0} and
gNa= {0}, (b) lpyNa##{0} or IpNa=# {0}, (c) qNa # {0}.

Case (a): Let p; : 1 — lp; (i =i,2) denote the projection. If pi(a) = {0} and
p2(a) = {0}, then a is contained in g, which contradicts to qNa = {0}. Hence,
without loss of generality, we many assume p;(a) = lp1, because Iy; is a simple
Lie algebra. For X = ELI E; — 4Ess € sl(5,C), there exists (Y,oq,0,03,04) €
loo ® q such that (X, Y,a;,02,23,04) € a. Since

[(X7 0)7 (X7 Y7 oy, 02,3, (X4)]
= (0, Oa [X7 al]y [X) aZ]) [X, 063], [Xa (X4]) €q Na= {0}7

we have [X,o;] =0 (i = 1,2, 3,4). Since any eigenvalue of ad X is not 0, we have
o; = 0. Then we have (X, Y) elpNa. Since

[(X, Y), (E45, 0)] = (5E45, 0) € 101 N Qa,

we have lp; Na # {0}. This is contradiction.
Case (b): We may assume lp; Na # {0}. Since ly; is simple, we have ly; < a.
Since [lp1,;] =1; (i > 1), we have q < a. Since

a> [11,14] ) [e1 ® (e1 Ae)e® (e1 A e3)]
= (0’ _‘E23),
we have lp; Na # {0}. It follows that lp, = a. Hence we have a=1.
Case (c): Let R = (oq,a,03,04) (2; €l;) be a non-zero element of qNa.

In case oy # 0, we put oy =, %ke; ® (& A ex). Without loss of generality,
we may assume o2 = 1. Putting Sy = (Ei — Ejj, Ege — Epely and T =
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e; ®e A e ely, we have
ad(T)ad(S,523)ad(S1415)ad(S1314)ad(S1213)R = (—El2, 0) € [01 Na.

Then we can reduce this case to case (b). In case o; #0 (i = 2,3,4), we can
similarly reduce to case (b).

Thus the simplicity of | has been proved. On the other hand, since the
dimension of [ is clearly 248, we see that [ is a Lie algebra of type Es. [J

Let us define a conjugate linear transformation y and an inner product
(R1,R3) on I as follows:

Y X, Y, xRa,bRy,cQ@z,wRd)=(-'X,-'Y,w®d,cQ®7,bQy,XR®
(R1, R2) = —Bi(Ry,yR3).

As in §2, we obtain
Bi(R1, R;) =60tr X1X, + 60tr Y, Y, — 60(x, w>)(a1,d>)
— 60(x2, w1)(a2,d1) — 60(yy,22)(b1, c2) — 60(y,, 21) (b2, €1),
(Ry, Ry) = 60tr X! X, + 60tr Y! V5 + 60(x1,%,)(a1, @) + 60(y,,¥,)(b1,b2)
+ 60(z1,72)(€1,€2) + 60(wy, W,)(dy, d>).

Thus (R;, R;) is a positive definite Hermitian inner product on [. Using
1.2 (3) and (4), we see that y holds the Lie bracket. Then it is clear that I’ =
{R el|y(R) = R} is the compact real form of I. Furthermore, from
1.4, we see that the group

Eg = {oc € Aut(I)I((le, aR;3) = (Ry, Ry)}

is a simply connected compact simple Lie group of type Es.
Put # = exp(27i/5) € C and define a transformation ::1 — [ as follows:

l(X7 Y, oy, 00,03, (X4) = (Xa Y, ﬂal,”2a2,773a3) ’74“4)'

It is clear that 1€ Eg and ° = 1.

THEOREM 4.3. The subgroup (Eg)' of Eg is isomorphic to the group
(SU(5) x SU(5))/Zs.

Proor. For any 4 € SU(S), we define a linear transformation y;(4) of | by

l/’l(A)(Xa Y,x®a7b®y,C®z,W®d)
= (Ad(4)X, Y,(4x) ® a,(4b) ® y,(47'c) ® z,(47'w) ® d).
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Obviously the map Y, : SU(5) — GL(I) is a homomorphism. For any Z € su(5),
we have (Z,0) €y and

exp(ad(Z,0)(X, Y, x®a,hb®y,cQz,w®d)
= (exp(ad(Z))X, Y, ((exp Z)x) ® a,
((exp Z)b) ® y, ((exp(—'Z))c) ® z, ((exp(—'Z))w) @ d)
= (Ad(exp 2)X, Y, ((exp Z)x) ® a,
((exp 2)b) ® y, (‘(exp Z)"'¢) ® z, (‘(exp Z2) ' w) ® d)
=Y(exp Z2)(X, Y, xR a,bR@y,c®z,w @ d).
It follows that ¥,(A4) is an automorphism of I. Using [Lemma 1.1, we have
(W1 (4)R1, ¥ (4)R2) = (R, Ra).

Hence y,(A) € Es. Similarly for any B € SU(5), we define a linear transformation

Y,(B)(X, Y, x®a,b®@y,cRz,wd)
= (X,Ad(B)Y,x® (Ba),b® ('B™'y), ¢ ® (Bz),w ® (‘B"'d)).

It is clear that the map ¥, : SU(5) — GL(I) is a homomorphism, y,(B) € Es and
Y1 (A2 (B) = ¥2(B)Y,(4).
Furthermore we define a map ¢ : SU(5) x SU(5) — (Es)' by

¢(4, B) = Y1 (4)Y,(B).

Since 1 = y;(nl), we have 19(A4, B) = ¢(A, B)i. Thus the map ¢ is well-defined.
Obviously ¢ is a homomorphism. Also we can prove that ¢ is surjective as in
proof of Theorem 2.3.

At last, we shall show that Ker ¢ = {(#"I,#"I)|m + 2n = 0 mod 5}. For
(4,B) e Ker ¢, we have 4 =n"I and B=n"I (im,ne Z). Since

(X’ Y7 o, 02, A3, d4) = ¢(’7m17’7n1)(X1 Ya oy, &2, A3, a4)
— (X, Y, 77m+2n061 , ’72m~na2, ”—Zm—na3, ”—m—Zna4)

— (X, Y, 77m+2noc1 : ”2(m+2n) o, ?7_2('"+2”)OC3, ﬂ—(m+2n) 0(4),
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we have that m+2n =0 mod 5. Then we have

(1]

(2]
[3]

(4]
(5]
(6]
(71
(8]
[9]

(10]

(11]

(12]

Kerp = {(I,1), nI,n*I), (f*1,74*1), (P I,nI), (*1,7°1)} = Zs.

Therefore (SU(5) x SU(5))/Zs =~ (Es)' has been proved. O
This theorem means that (Eg)’ is a subgroup of type A4 x Aa.
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