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Abstract. Given a triple covering $X$ of genus $g$ of a general (in the
sense of Brill-Noether) curve $C$ of genus $h$ , we show the existence of
base-point-free pencils of degree $d$ which are not composed with
the triple covering for any $d\geq g-[(3h+1)/2]-1$ by utilizing some
enumerative methods and computations. We also discuss about the
sharpness of our main result and the so-called Castelnuovo-Severi
bound by exhibiting some examples.

0. Introduction

In this paper, we investigate the problem of the existence of base-point-free
pencils of relatively low degree on a triple covering $X$ of genus $g$ of a general
curve $C$ of genus $h>0$ . Such a problem is classical and the picture is rather
well known for the degree range close to the genus $g$ . On the other hand, by a
simple application of the Castelnuovo-Severi inequality one can easily see that
there does not exist a base-point-free pencil of degree less than or equal to
$(g-3h)/2$ other than the pull-backs from the base curve $C$ ; while for the degree
beyond this range not many things have been known about the existence of such
a pencil which is not composed with the given triple covering. The main result
of this paper is the following.
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THEOREM A. Let $X$ be a smooth algebraic curve of genus $g$ , over an alge-
braically closed field $k$ with char$(k)=0$ , which admits a three sheeted covering
onto a general curve $C$ of genus $h\geq 1,$ $g\geq(2[(3h+1)/2]+1)([(3h+1)/2]+1)$ .
Then there exists a base-point-free pencil of any degree $d\geq g-[(3h+1)/2]-1$

which is not composed with the given triple covering.

This paper is organized as follows. In \S 1, we prove Theorem A by using the
enumerative methods and computations in $H^{*}(X_{\alpha}, Q)$ of various sub-loci of the
symmetric product $X_{\alpha}$ of the given triple covering $X$ , while we defer proving the
key lemma which are necessary to prove Theorem A. Specifically we compare
the fundamental class of $X_{\alpha}^{1}$ $:=\{D\in X_{\alpha} : \dim|D|\geq 1\}$ with the class of all
irreducible components of $X_{\alpha}^{1}$ whose general elements correspond to pencils on
$X$ with base points. This argument works because the latter components are all
induced from the base curve $C$ and $X_{\alpha}^{1}$ has the expected dimension. In \S 2, we
proceed to prove Lemma 2.1. In proving Lemma 2.1, we need to utilize and
carry out some computations based on the fundamental result of Rick Miranda
about the triple covering of algebraic varieties in general [M]. In the last section
we discuss about the sharpness of our main result and the so-called Castelnuovo-
Severi bound by considering some examples.

1. Existence of base-point-free pencils on triple coverings

The purpose of this section is to prove Theorem A. We begin with the
following dimension theoretic statements about the variety of special linear
systems on an algebraic curve; cf. [CKM] Corollary 3.1.2.

LEMMA 1.1. Let $X$ be an algebraic curve of genus $g$ . Let $n\in N,$ $ g\geq$

$(2n-3)(n-1)$ (and if $n\leq 2$ let $g\geq 2n-1$ ). Assume that $\dim W_{n+1}^{1}(X)<1$ .
Then $W_{d}^{1}(X)$ is equi-dimensional of the minimal possible dimension $\rho(d, g, 1)$ $:=$

$2d-2-g$ for all $d$ such that $g-n<d\leq g$ .

The following lemma is a special case of the Castelnuovo-Severi bound; for
the proof, see [ACGH] p. 366 Exercise C-l or [A], p. 21.

LEMMA 1.2 (Castelnuovo-Severi bound). Let $X$ be a smooth algebraic curve
of genus $g$ which admits a triple covering onto a curve $C$ of genus $h$ . Let
$\pi$ : $X\rightarrow C$ be the triple covering. For any integer $n\leq(g-3h)/2$ , a base-point-
free pencil $g_{n}^{1}$ (possibly incomplete) is composed with $\pi$, or equivalently the
morphism $X\rightarrow P^{1}$ induced by the $g_{n}^{1}$ always factors through $\pi$ .
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PROOF OF THEOREM A. Let $n=[(3h+1)/2]+2$ . Then $n+1=[(3h+1)/2]+$
$3\leq(g-3h)/2$ by the numerical hypothesis on the genus $g$ of $X$ . Assume that
there exists a $g_{n+1}^{1}$ on $X$ . By Lemma 1.2, it follows that every $g_{n+1}^{1}$ is composed
with $\pi$ and

(A.1) $W_{n+1}^{1}(X)=\pi^{*}W_{m}^{1}(C)+W_{n+1-3m}(X)$ ,

for some $m$ with $n+1-3m\geq 0$ . On the other hand, since $C$ is general

(A.2) $\dim W_{m}^{1}(C)=\dim\pi^{*}W_{m}^{1}(C)=\rho(m, h, 1)$ $:=2m-2-h\geq 0$ .

By setting $u:=n+1-3m(\geq 0)$ and $v:=2m-2-h(\geq 0)$ , we have

$2u+3v=\left\{\begin{array}{l}1 ifhisodd\\0 ifhiseven.\end{array}\right.$

Since $u\geq 0,$ $v\geq 0$ and $\dim W_{n+1}^{1}(X)=u+v$ by (A.1) and (A.2), we have
$\dim W_{n+1}^{1}(X)=0$ . Accordingly by Lemma 1.1, $W_{d}^{1}(X)$ is equi-dimensional of the
minimal possible dimension $\rho(d, g, 1);=2d-2-g$ for all $d$ such that $g-n<$
$d\leq g$ . And it follows that for $d\geq g-[(3h+1)/2],$ $W_{d}^{1}(X)\supsetneq W_{d-1}^{1}(X)+W_{1}(X)$

by dimension count, and hence there exists a base-point-free pencil of degree $d$

on $X$, which may possibly be composed with $\pi$ . Furthermore, for any $ d\geq$

$g-[(3h+1)/2]$ and $m$ with $p(m, h, 1)\geq 0$ (i.e. $m\geq[(h+3)/2]$ ), one has

$\dim W_{d}^{1}(X)-\dim(\pi^{*}W_{m}^{1}(C)+W_{d-3m}(X))$

$=\rho(d, g, 1)-\rho(m, h, 1)-d+3m=d-g+m+h$

$\geq(g-[\frac{3h+1}{2}])-g+[\frac{h+3}{2}]+h$

$=[\frac{h+3}{2}]+h-[\frac{3h+1}{2}]=1$ .

Hence it follows that

(A.3) $W_{d}^{1}(X)\sim\supset\pi^{*}W_{m}^{1}(C)+W_{d-3m}(X)$

and we conclude that there exists a base-point-free complete pencil of any degree
$d\geq g-[(3h+1)/2]$ which is not composed with $\pi$ .

Thus it remains to prove the theorem only for the case $d=g-$

$[(3h+1)/2]-1$ . In order to avoid the unnecessary symbol $[]$ , we consider the
two cases according to the parity of $h$ , the genus of the base curve $C$ .
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(a) $h$ is even: Set $h=2e$ , then $d=g-[(3h+1)/2]-1=g-3e-1$ . The
proof for this case is divided into three steps.

(a-1) Let $\Sigma$ be a component of $W_{g-3e-1}^{1}(X)$ whose general element has a
base point. Then $\Sigma=\Sigma_{\beta}^{1}+W_{g-3e-1-\beta}(X)$ for some $\beta$ with $4\leq\beta\leq g-3e-2$ ,
where $\Sigma_{\beta}^{1}$ is a subvariety of $W_{\beta}^{1}(X)$ whose general element is base-point-free. In
this step we will show that $\beta$ is relatively small compared to $g$ , i.e. $\beta\leq 9e+4$ .

We first note that $\dim\Sigma=\rho(g-3e-1, g, 1)=g-6e-4$, hence $\dim\Sigma_{\beta}^{1}=$

$\beta-3e-3\geq 0$ . Let $L\in\Sigma_{\beta}^{1}$ be a general element. By the standard description of
the Zariski tangent space to the variety $W_{d}^{r}(X)$ of any curve $X$ in general, we
have

$\dim({\rm Im}\mu_{0})^{\perp}=\dim T_{L}(W_{\beta}^{1}(X))\geq\dim\Sigma_{\beta}^{1}=\beta-3e-3$

where $\mu_{0}$ : $H^{0}(X, L)\otimes H^{0}(X,K_{X}\otimes L^{-1})\rightarrow H^{0}(X,K_{X})$ is the usual cup product
map. By the base-point-free pencil trick ([ACGH]), p. 126), we have

$\dim({\rm Im}\mu_{0})^{\perp}=g-\dim({\rm Im}\mu_{0})=g-h^{0}(X, L)h^{1}(X,L)+\dim(Ker\mu_{0})$

$=g-2(g-\beta+1)+h^{0}(X,K_{X}\otimes L^{-2})$

$=h^{0}(X, L^{2})-3\geq\beta-3e-3$ .

Hence $h^{0}(X, L^{2})\geq\beta-3e\geq 3$ which implies $\dim W_{2\beta}^{\beta-3e-1}(X)\geq\beta-3e-3$ . By
reducing to pencils if necessary we have

$\dim W_{\beta+3e+2}^{1}(X)=\dim W_{2\beta-(\beta-3e-2)}^{1}(X)\geq\beta-3e-3+(\beta-3e-2)$

$=2(\beta-3e)-5$ .

Note that $\beta\leq g-3e-2$ , hence $\beta+3e+2\leq g$ . We now consider the following
two cases:

(1) If $\beta+3e+2=g$ , then by passing to residual series

$\dim W_{\beta+3e+2}^{1}(X)=\dim W_{g-2}(X)=g-2\geq 2(\beta-3e)-5$ ,

hence, $12e\geq g-7$ which contradicts the genus assumption.
(2) If $\beta+3e+2\leq g-1$ , we have

$2(\beta-3e)-5\leq\dim W_{\beta+3e+2}^{1}(X)\leq(\beta+3e+2)-2-1$ ,

hence, $\beta\leq 9e+4$ by H. Martens-Mumford’s theorem; cf. [ACGH] Ch. 4, \S 5.
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(a-2) In this step, we will show that $\Sigma$ is of very special type; specifically,

(A.4) $\Sigma=\pi^{*}\Sigma^{\prime}+W_{g-6e-4}(X)$ ,

where $\Sigma^{\prime}$ is a component of $W_{e+1}^{1}(C)$ .
First note that by the assumption on $h$ and $g$ by step (a-1), we have

$\beta\leq 9e+4\leq(g-3h)/2$ . Hence by Lemma 1.2, every element of $\Sigma_{\beta}^{1}$ is a pull-
back of a $g_{\beta/3}^{1}$ on $C$ , i.e. $\Sigma_{\beta}^{1}=\pi^{*}(\Sigma_{\beta/3}^{1}(C))$ , where $\Sigma_{\beta/3}^{1}(C)$ is a component of
$W_{\beta/3}^{1}(C)$ , i.e.

$\Sigma_{\beta}^{1}\subset W_{\beta}^{1}(X)=\pi^{*}W_{\beta/3}^{1}(C)$

and $W_{\beta}^{1}(X)=\pi^{*}W_{\beta/3}^{1}(C)$ has dimension $\rho(\beta/3, h, 1)=2\cdot(\beta/3)-2-2e$ , since $C$

is general. We also have

$g-6e-4=\dim\Sigma=\dim(\Sigma_{\beta}^{1}+W_{g-3e-1-\beta}(X))$

$\leq\dim(W_{\beta}^{1}(X)+W_{g-3e-1-\beta}(X))$

$=(2\cdot\frac{\beta}{3}-2-2e)+(g-3e-1-\beta)$

$\leq\dim W_{g-3e-1}^{1}(X)=g-6e-4$ .

From this we get $(\beta/3)=e+1$ and every component of $W_{g-3e-1}^{1}(X)$ whose
general element has a base point is of the form $\pi^{*}\Sigma^{\prime}+W_{g-6e-4}(X)$ , where $\Sigma^{\prime}$ is a
component of $W_{e+1}^{1}(C)$ .

(a-3) In this step, we will show that there exists a component of $W_{g-3e-1}^{1}(X)$

which is not of the form (A.4), which will in tum imply that there exists a base-
point-free pencil of degree $g-3e-1$ on $X$ which is not composed with $\pi$ .

By recalling the fact that $C$ is general and the Brill-Noether number
$p(e+1, h, 1)$ is zero, $\Sigma^{\prime}$ is a single point $g_{e+1}^{1}(C)$ of $W_{e+1}^{1}(C)$ and there are
exactly $s:=h!(1/(h-e)!\cdot 1/(h-e+1)!)$ reduced points in $W_{e+1}^{1}(C)$ , which is
Castelnuovo’s count for the number of $g_{d}^{r}\prime s$ when $\rho=0$ ; cf. [ACGH] Theorem
1.3, p. 212.

Let $\tilde{\Sigma}^{\prime}$ be the locus in $C_{e+1}^{1}$ corresponding to $g_{e+1}^{1}(C)=\Sigma^{\prime}$ . We will show in
the second section (Lemma 2.1) that $W_{g-3e-1}^{1}(X)$ is reduced at a general point
of $\pi^{*}(W_{e+1}^{1}(C))+W_{g-6e-4}(X)$ , which in tum says that $X_{g-3e-1}^{1}$ is reduced at a
general point of $\pi^{*}(\tilde{\Sigma}^{\prime})+X_{g-6e-4}$ .

We now recall some of the notations and conventions used in [ACGH],

especially in Chapter VIII. Let $u:X_{d}\rightarrow J(X)$ be the abelian sum map and let $\theta$

be the class of the theta divisor in $J(X)$ . Let $u^{*}$ : $H^{*}(J(X), Q)\rightarrow H^{*}(X_{d}, Q)$ be
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the homomorphism induced by $u$ . By abusing notation, we use the same letter $\theta$

for the class $ u^{*}\theta$ . By fixing a point $P$ on $X$ , one has the map $\iota$ : $X_{d-1}\rightarrow X_{d}$

defined by $\iota(D)=D+P$ . We denote the class of $\iota(X_{d-1})$ in $X_{d}$ by $x$ .
By the steps (a-1) and (a-2), the only components of $W_{g-3e-1}^{1}(X)$ whose

general element has a base point are of the form $\pi^{*}\Sigma^{\prime}+W_{g-6e-4}(X)$ , where $\Sigma^{\prime}$ is
a component of $W_{e^{1}+1}(C)$ .

We denote by $\sigma$ and $\tilde{\sigma}$ the class of $\pi^{*}C_{e^{1}+1}+X_{g-6e-4}$ in $X_{g-3e-1}$ and the class
of $\pi^{*}C_{e+1}^{1}$ in $X_{3e+3}$ respectively. Because $X_{g-3e-1}^{1}$ is of pure and expected
dimension $\rho(g-3e-1, g, 1)+1=g-6e-3$ , the class $x_{g-3e-1}^{1}$ of $X_{g-3e-1}^{1}$ in
$X_{g-3e-1}$ is well known (cf. [ACGH] p. 326), namely

(A.5) $x_{g-3e-1}^{1}=\frac{1}{(3e+1)!(3e+2)!}((3e+1)!\theta^{3e+2}-(3e+2)!x\theta^{3e+1})$ .

Let’s also recall that for a cycle $Z$ in $X_{d}$ , the assignments

$Z\mapsto A_{k}(Z)$ $:=$ { $E\in X_{d+k}$ : $E-D\geq 0$ for some $D\in Z$}

$Z\mapsto B_{k}(Z)$ $:=$ {$E\in X_{d-k}$ : $D-E\geq 0$ for some $D\in Z$}

induoe maps

$A_{k}$ : $H^{2m}(X_{d}, Q)\rightarrow H^{2m}(X_{d+k}, Q)$

$B_{k}$ : $H^{2m}(X_{d}, Q)\rightarrow H^{2m-2k}(X_{d-k}, Q)$

and the so called push-pull formulas for symmetric products hold (cf. [ACGH], $p$ .
367-369).

Note the fact that $X_{g-3e-1}^{1}$ and $\pi^{*}C_{e+1}^{1}+X_{g-6e-4}$ have dimension $g-6e-3$
in $X_{g-3e-1}$ . On the other hand, by the push-pull formulas

$B_{g-6e-4}(x^{g-6e}‘ 3)=(g-6e-3)x$

and

$(\sigma\cdot x^{g-6e-3})_{X_{g- 3e- 1}}=(A_{g-6e-4}(\tilde{\sigma})\cdot x^{g-6e-3})_{X_{g- 3e- 1}}$

$=(\tilde{\sigma}\cdot B_{g-6e-4}(x^{g-6e-3}))_{X_{3e+3}}=(g-6e-3)(\tilde{\sigma}\cdot x)_{X_{3e+3}}$

$=(g-6e-3)s$

by noting the fact that $(\tilde{\sigma}\cdot x)_{X_{3e+3}}=s=h!(1/(h-e)!\cdot 1/(h-e+1)!)$ .
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By (A.5)

$(x_{g-3e-1}^{1}\cdot x^{g-6e-3})_{X_{g- 3e- 1}}$

$=(\frac{1}{(3e+1)!(3e+2)!}(3e+1)!\theta^{3e+2}-(3e+2)!x\theta^{3e+1})\cdot x^{g-6e-3}$

$=\frac{1}{(3e+2)!}x^{g-6e-3}\cdot\theta^{3e+2}-\frac{1}{(3e+1)!}x^{g-6e-2}\cdot\theta^{3e+1}$

$=\frac{1}{(3e+2)!}\cdot\frac{g!}{(g-3e-2)!}-\frac{1}{(3e+1)!}\cdot\frac{g!}{(g-3e-1)!}$

where the last equality comes from the fact that $(x^{d-\alpha}\cdot\theta^{\alpha})_{X_{d}}=g!/(g-\alpha)!$ , which
is a consequence of Poincar\’e’s formula; cf. [ACGH], p. 328.

Finally a tedious but straightforward calculation yields

$(x_{g-3e-1}^{1}\cdot x^{g-6e-3})_{X_{g- 3e- 1}}>(\sigma\cdot x^{g-6e-3})_{X_{g- 3e- 1}}$

and this shows that there exists a component in $X_{g-3e-1}^{1}$ other than those of the
form $\pi^{*}(C_{e+1}^{1})+X_{g-6e-4}$ , which is equivalent to the fact that there exists a
component of $W_{g-3e-1}^{1}(X)$ which is not of the form (A.4). And this finishes the
proof of our assertion that there exists a base-point-free pencil of degree $g-$

$3e-1$ on $X$ which is not composed with $\pi$ .
We now proceed to handle the case when $h=2e+1$ . Even though the

method is almost the same, we will present somewhat detailed argument and the
computations for the convenience of the reader.

(b) $h$ is odd: Set $h=2e+1$ , then $d=g-[(3h+1)/2]-1=g-3e-3$ . The
proof for this case is also divided into three steps.

(b-1) Let $\Sigma$ be a component of $W_{g-3e-3}^{1}(X)$ whose general element has a
base point. Then $\Sigma=\Sigma_{\beta}^{1}+W_{g-3e-3-\beta}(X)$ for some $\beta$ with $4\leq\beta\leq g-3e-4$ ,
where $\Sigma_{\beta}^{1}$ is a subvariety of $W_{\beta}^{1}(X)$ whose general element is base-point-free. In
this step we will show that $\beta$ is relatively small compared to $g$ , i.e. $\beta\leq 9e+10$ .

We first note that $\dim\Sigma=\rho(g-3e-3, g, 1)=g-6e-8$ , hence $\dim\Sigma_{\beta}^{1}=$

$\beta-3e-5\geq 0$ . Let $L\in\Sigma_{\beta}^{1}$ be a general element. Again by the description of the
Zariski tangent space to the variety of special linear systems, we have

$\dim({\rm Im}\mu_{0})^{\perp}=\dim T_{L}(W_{\beta}^{1}(X))\geq\dim\Sigma_{\beta}^{1}\geq\beta-3e-5$ .
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By the base-point-free pencil trick, we have

$\dim({\rm Im}\mu_{0})^{\perp}=g-\dim({\rm Im}\mu_{0})=g-h^{0}(X, L)h^{1}(X, L)+\dim(Ker\mu_{0})$

$=g-2(g-\beta+1)+h^{0}(X, K_{X}\otimes L^{-2})$

$=h^{0}(X, L^{2})-3\geq\beta-3e-5$ .

Hence $h^{0}(X, L^{2})\geq\beta-3e-2\geq 3$ which implies $W_{2\beta}^{\beta-3e-3}(X)\geq\beta-3e-5$ . By
reducing to pencils if necessary we have

$\dim W_{\beta+3e+4}^{1}(X)=\dim W_{2\beta-(\beta-3e-4)}^{1}(X)\geq\beta-3e-5+(\beta-3e-4)$

$=2(\beta-3e)-9$ .

Note that $\beta\leq g-3e-4$ hence $\beta+3e+4\leq g$ . We consider the following
two cases:

(1) If $\beta+3e+4=g$ , then by passing to residual series

$\dim W_{\beta+3e+4}^{1}(X)=\dim W_{g-2}(X)=g-2\geq 2(\beta-3e)-9$ ,

hence 1 $2e\geq g-15$ , contradictory to the genus assumption.
(2) If $\beta+3e+4\leq g-1$ , we have

$2(\beta-3e)-9\leq\dim W_{\beta+3e+4}^{1}(X)\leq(\beta+3e+4)-2-1$ ,

hence, $\beta\leq 9e+10$ by H. Martens-Mumford’s theorem.
(b-2) In this step, we will show that $\Sigma$ is of very special type; specifically,

(A.6) $\Sigma=\pi^{*}\Sigma^{\prime}+W_{g-6e-9}(X)$ ,

where $\Sigma^{\prime}$ is a component of $W_{e+2}^{1}(C)$ .
First note that by the assumption on $h$ and $g$ and by step (b-1), we have

$\beta\leq 9e+10\leq(g-3h)/2$ . Hence by Lemma 1.2, every element of $\Sigma_{\beta}^{1}$ is a pull-
back of a $g_{\beta/3}^{1}$ on $C$, i.e. $\Sigma_{\beta}^{1}=\pi^{*}(\Sigma_{\beta/3}^{1}(C))$ , where $\Sigma_{\beta/3}^{1}(C)$ is a component of
$W_{\beta/3}^{1}(C)$ ,

$\Sigma_{\beta}^{1}\subset W_{\beta}^{1}(X)=\pi^{*}W_{\beta/3}^{1}(C)$

and $W_{\beta}^{1}(X)=\pi^{*}W_{\beta/3}^{1}(C)$ has dimension $\rho(\beta/3, h, 1)=2\cdot(\beta/3)-2-(2e+1)$
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since $C$ is general. We also have

$g-6e-8=\dim\Sigma=\dim(\Sigma_{\beta}^{1}+W_{g-3e-3-\beta}(X))$

$\leq\dim(W_{\beta}^{1}(X)+W_{g-3e-3-\beta}(X))$

$=(2\cdot\frac{\beta}{3}-2-2e-1)+(g-3e-3-\beta)$

$\leq\dim W_{g-3e-3}^{1}(X)=g-6e-8$

From this we get $\beta/3=e+2$ and every component of $W_{g-3e-3}^{1}(X)$ whose general
element has a base point is of the form $\pi^{*}\Sigma^{\prime}+W_{g-6e-9}(X)$ , where $\Sigma^{\prime}$ is a
component of $W_{e+2}^{1}(C)$ .

(b-3) In this step, we will show that there exists a component of $W_{g-3e-3}^{1}(X)$

which is not of the form (A.6), which will in tum imply that there exists a base-
point-free pencil of degree $g-3e-3$ on $X$ which is not composed with $\pi$ .

Since $C$ is general and the Brill-Noether number $p(e+2, h, 1)=1>0$,
$W_{e+2}^{1}(C)$ is irreducible of dimension 1 which follows from Gieseker’s theorem by
Fulton and Lazarsfeld’s connectedness theorem together with Brill-Noether
theorem by Griffiths-Harris; cf. [ACGH] p. 214. Hence we have

$\Sigma^{\prime}=W_{e+2}^{1}(C)$ and $\Sigma=\pi^{*}W_{e+1}^{1}(C)+W_{g-6e-9}(X)$ .

By Lemma 2.1, $W_{g^{1}-3e-3}(X)$ is reduced at a general point of $\Sigma$ , which in tum says
that $X_{g-3e-3}^{1}$ is reduced at a general point of $\pi^{*}C_{e+2}^{1}+X_{g-6e-9}$ .

We denote $\sigma$ and $\tilde{\sigma}$ by the class of $\pi^{*}C_{e+2}^{1}+X_{g-6e-9}$ in $X_{g-3e-3}$ and the class
of $\pi^{*}C_{e+2}^{1}$ in $X_{3e+6}$ respectively. Because $X_{g-3e-3}^{1}$ is of pure and expected
dimension $\rho(g-3e-3, g, 1)+1=g-6e-7$ , the fundamental class $x_{g-3e-3}^{1}$ of
$X_{g-3e-3}^{1}$ in $X_{g-3e-3}$ is

(A.7) $x_{g-3e-3}^{1}=\frac{1}{(3e+3)!(3e+4)!}((3e+3)!\theta^{3e+4}-(3e+4)!x\theta^{3e+3})$ .

Note the fact that $X_{g-3e-3}^{1}$ and $\pi^{*}C_{e+2}^{1}+X_{g-6e-9}$ have dimension $g-6e-7$
in $X_{g-3e-3}$ . Hence, as in the even genus case, we have

$B_{g-6e-9}(x^{g-6e-7})=\left(\begin{array}{lll}g & -6e & -7\\g & -6e & -9\end{array}\right)x^{2}$
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and

$(\sigma\cdot x^{g-6e-7})_{X_{g- 3e- 3}}=(A_{g-6e-9}(\tilde{\sigma})\cdot x^{g-6e-7})_{X_{g- 3e- 3}}$

$=(\tilde{\sigma}\cdot B_{g-6e-9}(x^{g-6e-7}))_{X_{3\ell+6}}=\left(\begin{array}{lll}g & -6e & -7\\g & -6e & -9\end{array}\right)(\tilde{\sigma}\cdot x^{2})_{X_{3e+6}}$

$=\left(\begin{array}{lll}g & -6e & -7\\g & -6e & -9\end{array}\right)(c_{e+2}^{1}\cdot x^{2})_{C_{e+2}}$

$=\left(\begin{array}{lll}g & -6e & -7\\g & -6e & -9\end{array}\right)(\frac{(2e+1)!}{e!(e+1)!}-\frac{(2e+1)!}{(e-1)!(e+2)!})$

where the last equality comes from Poincar\’e’s formula, the fact that $C$ is general
and the class $c_{e+2}^{1}$ of $C_{e+2}^{1}$ in $C_{e+2}$ is

$c_{e+2}^{1}=\frac{\Psi}{e!}-\frac{x\theta^{e-1}}{(e-1)!}$ .

On the other hand, by (A.7) and Poincar\’e’s formula

$(x_{g-3e-3}^{1}\cdot x^{g-6e-7})_{X_{g- 3e- 3}}$

$=\frac{1}{(3e+3)!(3e+4)!}((3e+3)!\theta^{3e+4}-(3e+4)!x\theta^{3e+3})\cdot x^{g-6e-7}$

$=\frac{g!(g-6e-7)}{(3e+4)!(g-3e-3)!}$ .

Finally a tedious but strightforward calculation yields

$(x_{g-3e-3}^{1}\cdot x^{g-6e-7})_{X_{g- 3e- 3}}>(\sigma\cdot x^{g-6e-7})_{X_{g- 3e- 3}}$

and this shows that there exists a component in $X_{g-3e-3}^{1}$ other than those of the
form $\pi^{*}(C_{e+2}^{1})+X_{g-6e-9}$ , which is equivalent to the fact that there exists a
component of $W_{g-3e-3}^{1}(X)$ which is not of the form (A.6). Whence this finishes
the proof of our assertion that there exists a base-point-free pencil of degree
$g-3e-3$ on $X$ which is not composed with $\pi$ . $\square $

2. The proof of Lemma 2.1

In this section, our aim is to prove the following key lemma.

LEMMA 2.1. Assume that $C$ is a general curve of genus $h$ .
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(i) Assume $h=2e$ and $g>6h+4$ . Then a general element $\mathscr{L}$ of
$\pi^{*}(W_{e+1}^{1}(C))+W_{g-6e-4}(X)$ is a reduced point of $W_{g-3e-1}^{1}(X)$ .

(ii) Assume $h=2e+1$ and $g>6h+7$ . Then a general element $\mathscr{L}$ of
$\pi^{*}(W_{e+2}^{1}(C))+W_{g-6e-9}(X)$ is a reduced point of $W_{g-3e-3}^{1}(X)$ .

Assume that $\pi$ : $X\rightarrow C$ is a finite morphism of degree $n$ . Because $\mathcal{O}_{C}\rightarrow$

$\pi_{*}\mathcal{O}_{X}$ is an algebra homomorphism, the trace map gives a splitting. Hence we
have $\pi_{*}\mathcal{O}_{X}=\mathcal{O}_{C}\oplus \mathscr{E}$ where $\mathscr{E}$ is defined by

$\mathscr{E}=$ { $a\in\pi_{*}(\mathcal{O}_{X})|a^{n}+c_{1}a^{n-2}+\cdots+c_{n-2}a+c_{n-1}=0$ and $c_{1},$
$\ldots,$

$c_{n-1}\in \mathcal{O}_{C}$ }.

This $\mathscr{E}$ is clearly a locally free sheaf of rank $n-1$ .

REMARK 2.2. For the rest of this section, we assume, again, that $n=3$ , i.e.
a triple covering. Therefore $\pi$ is a finite separable morphism of degree 3 and 8
is a locally free $\mathcal{O}_{C}$-module of rank 2. As $\pi_{*}(\mathcal{O}_{X})$ is a commutative $\mathcal{O}_{C}$-algebra,
we have a map defined by the multiplication,

$\pi_{*}(\mathcal{O}_{X})\otimes_{\mathcal{O}_{C}}\pi_{*}(\mathcal{O}_{X})\rightarrow\pi_{*}(\mathcal{O}_{X})$ .

Hence the multiplication induces $\mathcal{O}_{C}$-module homomorphisms

$\phi_{1}$ : $S^{2}\mathscr{E}\rightarrow \mathcal{O}_{C}$ and $\phi_{2}$ : $S^{2}\mathscr{E}\rightarrow \mathscr{E}$ .

Furthermore, the algebra stmcture on $\pi_{*}(\mathcal{O}_{X})=\mathcal{O}_{C}\oplus \mathscr{E}$ is written as follows:

(2.A) $(a,b)\cdot(a^{\prime}, b^{\prime})=(aa^{\prime}+\phi_{1}(bb^{\prime}), ab’+a^{\prime}b+\phi_{2}(bb^{\prime}))$ ,

where $a,$
$a^{\prime}\in \mathcal{O}_{C}$ and $b,$ $b^{\prime}\in \mathscr{E}$ . Locally, $\phi_{2}$ is written as the following form [M]:

$\phi_{2}(z^{2})=az+bw$ , $\phi_{2}(zw)=-dz-aw$ , $\phi_{2}(w^{2})=cz+dw$

where $z,$
$w\in \mathscr{E}$ is a local frame of $\mathscr{E}$ and $a,$ $b,$ $c,$

$d\in \mathcal{O}_{C}$ . Such a map $\phi_{2}$ is
called a triple covering homomorphism due to R. Miranda. We denote by
$TCHom_{\mathcal{O}_{C}}(S^{2}\mathscr{E}, \mathscr{E})$ the set of all triple covering homomorphisms on $\mathscr{E}$ and there
is a functorial homomorphism

$F:TCHom_{\mathcal{O}_{C}}(S^{2}\mathscr{E}, \mathscr{E})\rightarrow Hom_{\mathcal{O}_{C}}(S^{2}\mathscr{E}, \mathcal{O}_{C})$

such that $\phi_{2}\in TCHom_{\mathcal{O}_{C}}(S^{2}\mathscr{E}, \mathscr{E})$ and $\phi_{1}=F(\phi_{2})$ gives an $\mathcal{O}_{C}$ -algebra stmcture
on $\mathcal{O}_{C}\oplus \mathscr{E}$ by the relation (2.A) [M], p. 1131 Proposition 3.5.

Also for the triple covering $\pi$ : $X\rightarrow C$ there is a functorial isomorphism

$Hom_{\mathcal{O}_{X}}(\pi^{*}\pi_{*}(\mathcal{O}_{X}), \mathcal{O}_{X})\cong Hom_{\mathcal{O}_{C}}(\pi_{*}(\mathcal{O}_{X}), \pi_{*}(\mathcal{O}_{X}))$ .
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We take an element $\sigma\in Hom_{\mathcal{O}_{X}}(\pi^{*}\pi_{*}(\mathcal{O}_{X}), \mathcal{O}_{X})$ which corresponds to the identity
map: $\pi_{*}(\mathcal{O}_{X})\rightarrow\pi_{*}(\mathcal{O}_{X})$ . Since $\pi_{*}(\mathcal{O}_{X})=\mathcal{O}_{C}\oplus \mathscr{E}$ , we can write $\sigma=(\sigma_{1},\sigma_{2})$ where
$\sigma_{1}$ : $\mathcal{O}_{X}\rightarrow \mathcal{O}_{X}$ and $\sigma_{2}$ : $\pi^{*}\mathscr{E}\rightarrow \mathcal{O}_{X}$ . Because $\sigma$ is an $\mathcal{O}_{X}$ -algebra homomorphism,
$\sigma_{1}$ is the identity map. As for $\sigma_{2}$ , we have the following result.

LEMMA 2.3. The image of $\sigma_{2}$ is an invertible sheaf.

PROOF. Let $U=Spec(A)$ be an affine open subset and let $\pi^{-1}(U)=$

$Spec(B)$ ; note that $\pi$ is a finite morphism therefore is an affine morphism. Let
$\Gamma(U, \mathscr{E})=M$ . The morphism $\sigma_{2}$ on $\pi^{-1}(U)$ is written as follows:

$M\bigotimes_{\Vert l}$
AB $\rightarrow\nearrow^{2}\tau\sigma B$

$M\otimes_{A}(A\oplus M)$

where $\tau=\mu\oplus(\phi_{1}, \phi_{2}),$ $\mu:M\otimes_{A}A\rightarrow B$ is a multiplication map, $\phi_{2}$ is the triple
covering homomorphism corresponding to the A-algebra structure of $B$ and $\phi_{1}$

is the homomorphism defined in Remark 2.2. Clearly $\mu$ is a non-zero map,
therefore $\sigma_{2}$ is not a zero map either and it follows that ${\rm Im}(\sigma_{2})$ is an invertible
sheaf. $\square $

In general, one knows that to give a morphism of $X$ to the projective
bundle $P(\mathscr{E})$ over $C$ is equivalent to give an invertible sheaf $\mathscr{L}$ on $X$ and a
surjective homomorphism $\pi^{*}\mathscr{E}\rightarrow \mathscr{L}$ ; cf. [H], p. 162 Proposition 7.12. Hence by
Lemma 2.3, we have a morphism $f$ : $X\rightarrow P(\mathscr{E})$ such that the following diagram
commutes.

$X\rightarrow^{f}P(\mathscr{E})$

$\backslash \pi O\swarrow\varphi$

$C$

With these preparations we now prove the following lemma.

LEMMA 2.4. $f$ is an embedding.

PROOF. Let $U=Spec(A)$ be an affine open subset of $C$ . Let $Z=\pi^{-1}(U)=$

$Spec(B)$ , $\Gamma(U, \pi_{*}(\mathcal{O}_{X}))=A\oplus As_{1}\oplus As_{2}$ and $Z_{i}=\{P\in Z|s_{i}(P)\neq 0\},$ $i=1,2$ .
Because $\pi$ is a finite morphism, $Z$ is an affine open set and hence $Z_{i}$ is also an
affine open set for $i=1,2$ . Moreover $Z_{i}=Spec(B_{s_{i}})$ . Therefore $B_{s_{i}}$ is generated
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by 1, $s_{j}/s_{i}$ where $j\neq i$ . By a criterion for a morphism to a projective space to be
an embedding ([H] p. 151 Proposition 7.2), $f|_{\pi^{-1}(U)}$ is an embedding for every
affine open set $U\subset C$ and hence $f$ is an embedding. $\square $

We now consider the ruled surface $\varphi$ : $P(\mathscr{E})\rightarrow C$ . Let $C_{0}$ be a divisor on
$P(\mathscr{E})$ such that $\varphi_{*}(\mathcal{O}_{P(d)}(C_{0}))=\mathscr{E}$ . Let $\overline{C}$ be a minimal section of $\varphi$ : $P(\mathscr{E})\rightarrow C$,
$\overline{\mathscr{E}}=\varphi_{*}(\mathcal{O}_{P(d)}(\overline{C}))$ and $\delta=-(\overline{C}^{2})$ . Then there exist an exact sequence

(2.B) $0\rightarrow \mathcal{O}_{C}\rightarrow\overline{\mathscr{E}}\rightarrow\wedge^{2}\overline{\mathscr{E}}\rightarrow 0$

and an isomorphism $\mathscr{E}\cong\overline{\mathscr{E}}\otimes 0_{C}^{\mathscr{M}}$ for some line bundle $\mathscr{M}$ on $C$ .
We now take an invertible sheaf $\mathscr{M}$ such that $\mathscr{E}\cong\overline{\mathscr{E}}\otimes \mathscr{M}$ and let $n=\deg(\mathscr{M})$ .

We then have $C_{0}\sim\overline{C}+\pi^{*}(\mathscr{M})$ (linearly equivalent). Therefore $C_{0}\equiv\overline{C}+nF$

(where $\equiv$ means numerical equivalence and $F$ is a fibre of $\varphi$ ) and $(C_{0}^{2})=$

$2n-\delta=\deg(\wedge^{2}\mathscr{E})$ . One also knows the following numerical equivalence;

(2.C) $K_{P(d)}\equiv-2C_{0}+((2h-2)+\deg(\wedge^{2}\mathscr{E}))F$ ,

see [H], p. 372 Proposition 2.8 and p. 374 Corollary 2.11.
By (2.C), we have the following:

LEMMA 2.5. We have $n=((C_{0}^{2})+\delta)/2=(\delta-g+3h-2)/2$ and we also
have

$f(X)\equiv 3C_{0}-2\deg(\wedge^{2}\mathscr{E})F\equiv 3\overline{C}+\frac{3\delta+g-3h+2}{2}F$

for numerical equivalence.

PROOF. By the Riemann-Hurwitz relation ([H], p. 127 Exercise 5.16), we
have

$2g-2=3(2h-2)+\deg(\wedge^{2}\mathscr{E}^{\otimes-2})$

and hence

$\deg(\wedge^{2}\mathscr{E})=\frac{3(2h-2)-(2g-2)}{2}$

As $C_{0}\equiv\overline{C}+nF$ , we have $n=(\delta-g+3h-2)/2$ because $(C_{0}^{2})=2n-\delta=$

$\deg(\wedge^{2}\mathscr{E})$ . By Lemma 2.4, $f$ : $X\rightarrow P(\mathscr{E})$ is an embedding and $\pi:X\rightarrow C$ is a finite
morphism of degree 3. Therefore we have $f(X)\sim 3C_{0}+\varphi^{*}(T)$ for some divisor
$T$ on $C$ and $2g-2=(K_{P(d)}+f(X)).f(X)$ by the adjunction formula. Hence
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$\deg(T)=-2\deg(\wedge^{2}\mathscr{E})$ by (2.C) and we have

$f(X)\equiv 3C_{0}-2\deg(\wedge^{2}\mathscr{E})F$

$\equiv 3(\overline{C}+\frac{\delta-g+3h-2}{2}F)-2(\frac{3(2h-2)-(2g-2)}{2})F$

$\equiv 3\overline{C}+\frac{3\delta+g-3h+2}{2}$ F. $\square $

PROPOSITION 2.6. There is an exact sequence

$0\rightarrow \mathscr{M}\rightarrow \mathscr{E}\rightarrow \mathscr{L}\rightarrow 0$ ,

where $\deg(\mathscr{M})=-(g-3h)/2-(2-\delta)/2$ and $\deg(\mathscr{L})=-(g-3h)/2-(2+\delta)/2$ .

$PR\infty F$ . Since $\mathscr{E}\cong\overline{\mathscr{E}}\otimes \mathscr{M}$, one has $\wedge^{2}\mathscr{E}\cong\wedge^{2}\overline{\mathscr{E}}\otimes \mathscr{M}^{\otimes 2}$ and $\deg(\wedge^{2}\overline{\mathscr{E}})=$

$-\delta$ . Again by the Riemann-Hurwitz relation,

$\deg(\wedge^{2}\mathscr{E})=\frac{3(2h-2)-(2g-2)}{2}$ .

Therefore we have $\deg(\mathscr{M})=-(g-3h)/2-(2-\delta)/2$ . By tensoring $\mathscr{M}$ to the
exact sequence (2.B) and taking $\mathscr{L}=\wedge^{2}\overline{\mathscr{E}}\otimes \mathscr{M}$ , we have the exact sequence

$0\rightarrow \mathscr{M}\rightarrow \mathscr{E}\rightarrow \mathscr{L}\rightarrow 0$

and $\deg(\mathscr{L})=-(g-3h)/2-(2+\delta)/2$ . $\square $

LEMMA 2.7. $-h\leq\delta\leq(g-3h+2)/3$ .

PROOF. If $\delta\leq 0$ , then $-h\leq\delta$ by a theorem of Nagata; [N] p. 191 Theorem
1. Therefore we may assume that $\delta\geq 0$ . As $f(X)\equiv 3\overline{C}+(3\delta+g-3h+2)/2F$

by Lemma 2.5 and $f(X)$ is irreducible, we have $3\delta\leq(3\delta+g-3h+2)/2$ by [H]
p.382 Proposition 2.20. Therefore we have $\delta\leq(g-3h+2)/3$ $\square $

PROPOSITION 2.8. $\deg(\mathscr{M})\leq(-g+3h-2)/3$ and $\deg(\mathscr{L})\leq(-g+4h-2)/2$ .

PROOF. By Proposition 2.6, we have the exact sequence

$0\rightarrow \mathscr{M}\rightarrow \mathscr{E}\rightarrow \mathscr{L}\rightarrow 0$

such that $\deg(\mathscr{M})=-((g-3h)/2+(2-\delta)/2)$ and $\deg(\mathscr{L})=-((g-3h)/2+$
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$(2+\delta)/2)$ . Therefore we have

$\deg(\mathscr{M})=-(\frac{g-3h}{2}+\frac{2-\delta}{2})=-\frac{g-3h+2}{2}+\frac{\delta}{2}$

$\leq-\frac{g-3h+2}{2}+\frac{g-3h+2}{6}$ by Lemma 2.7

$=\frac{-2g+6h-4}{6}=\frac{-g+3h-2}{3}$

and

$\deg(\mathscr{L})=-(\frac{g-3h}{2}+\frac{2+\delta}{2})=-\frac{g-3h+2}{2}-\frac{\delta}{2}$

$\leq-\frac{g-3h+2}{2}+\frac{h}{2}$ by Lemma 2.7

$=\frac{-g+4h-2}{2}$ . $\square $

With all these preparations we now start to prove Lemma 2.1.

PROOF OF LEMMA 2.1. We will only provide the proof of the case $h=2e$

because the odd genus case can be done in the same way.
Let $\mathscr{N}=\mathcal{O}_{X}(\pi^{*}(D)+\Delta)$ be a general element of a component of

$\pi^{*}(W_{e+1}^{1}(C))+W_{g-6e-4}(X)$ , where $\mathcal{O}_{X}(\Delta)\in W_{g-6e-4}(X)$ is general and $\mathcal{O}_{C}(D)\in$

$W_{e+1}^{1}(C)$ . Since $C$ is general, $\mathcal{O}_{C}(D)$ is a base-point-free pencil by the Brill-
Noether theorem for general curves. Hence we deduce that $\mathcal{O}_{X}(\pi^{*}(D))$ is also
base-point-free and the base locus of $\mathscr{N}$ is just $\Delta$ by the general choice of $\Delta$ .
Since every component of $\pi^{*}(W_{e+1}^{1}(C))+W_{g-6e-4}(X)$ has the expected dimen-
sion, to show the reducedness at $\mathscr{N}$ it is sufficient to show the injectivity of the
Brill-Noether map $\Gamma(X, \mathscr{N})\otimes\Gamma(X, \omega_{X}\otimes \mathscr{N}^{\otimes-1})\rightarrow\Gamma(X, \omega_{X})$ by the descrip-
tion of the Zariski tangent space to the variety $W_{d}^{r}(X)$ . Hence by the base-point-
pencil trick, it will be enough to show that $\Gamma(X, \omega_{X}\otimes \mathscr{N}^{\otimes-2}\otimes \mathcal{O}_{X}(\Delta))=0$ .

Note that

$\Gamma(X, \omega_{X}\otimes \mathscr{N}^{\otimes-2}\otimes \mathcal{O}_{X}(\Delta))\cong\Gamma(X, \omega_{X}\otimes\pi^{*}(\mathcal{O}_{C}(-D)^{\otimes 2})\otimes \mathcal{O}_{X}(-\Delta))$ .

We will show that

$\dim_{k}(\Gamma(X, \omega_{X}\otimes\pi^{*}(\mathcal{O}_{C}(-D)^{\otimes-2})))\leq g-6e-4$ ,

which will imply $\Gamma(X,\omega_{X}\otimes \mathscr{N}^{\otimes-2}\otimes \mathcal{O}_{X}(\Delta))=0$ by the general choice of $\Delta$ .
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On the other hand, since $C$ is a general curve $\mathcal{O}_{C}(D)$ is a reduced point of
$W_{e+1}^{1}(C)$ (cf. [ACGH] p. 214) and hence by the base-point-free pencil trick again,
we have

$\dim_{k}(\Gamma(C, \mathcal{O}_{C}(D)^{\otimes 2}))=3$ .

Since $\pi^{*}(\mathcal{O}_{X})\cong \mathcal{O}_{C}\oplus \mathscr{E}$ , we have

$\pi_{*}(\pi^{*}\mathcal{O}_{C}(D)^{\otimes 2})\cong \mathcal{O}_{C}(2D)\oplus(\mathscr{E}\otimes \mathcal{O}_{C}(2D))$ .

Moreover we have the exact sequence

$0\rightarrow \mathscr{M}\otimes \mathcal{O}_{C}(2D)\rightarrow \mathscr{E}\otimes \mathcal{O}_{C}(2D)\rightarrow \mathscr{L}\otimes \mathcal{O}_{C}(2D)\rightarrow 0$

and

$\deg(\mathscr{M})\leq\frac{-g+3h-2}{3}$ and $\deg(\mathscr{L})\leq\frac{-g+4h-2}{2}$

by Proposition 2.6 and Proposition 2.8. Therefore we have

$\deg(\mathscr{M}\otimes \mathcal{O}_{C}(2D))\leq\frac{-g+6h+4}{3}<0$

and

$\deg(\mathscr{L}\otimes \mathcal{O}_{C}(2D))\leq\frac{-g+6h+2}{2}<0$

by the assumption on $g$ and $h$ . Therefore we have $\Gamma(C, \mathscr{E}\otimes \mathcal{O}_{C}(2D))=0$ . This
implies $\dim_{k}(\Gamma(X, \pi^{*}(\mathcal{O}_{C}(2D))))=3$ and this finishes the proof of Lemma 2.1 by
the Riemann-Roch theorem. $\square $

REMARK 2.9. (i) One may show the result of Lemma 2.1 (with a slightly
weaker bound on g) in the following way. Here we sketch an altemative
argument for $h=2e+1$ only; the $h=2e$ case is similar. $W_{e+2}^{1}(C)$ is reduced at a
general point $\mathscr{L}$ , hence $h^{0}(C, 2\mathscr{L})=4$ . Suppose $\pi^{*}\mathscr{L}$ is a non-reduced point on
$\pi^{*}(W_{e+2}^{1}(C))=W_{3e+6}^{1}(X)$ . Then $h^{0}(X, 2\pi^{*}\mathscr{L})\geq 5$ and since $\pi^{*}|2\mathscr{L}|\subsetneq|2\pi^{*}\mathscr{L}|$ , it
follows that $|2\pi^{*}\mathscr{L}|$ is not composed with $\pi$ . Thus $X$ has a base-point-free $g_{x}^{1}$

with $x\leq 6e+9$ not composed with $\pi$ by subtracting 3 generically chosen points
on $X$ . And this is contradictory to Lemma 1.2 if $g\geq 18e+21$ . Hence $W_{3e+6}^{1}(X)^{-}$

is reduced at a general point $\pi^{*}\mathscr{L}$ . Finally, one can assert that $\pi^{*}\mathscr{L}\otimes \mathcal{O}_{X}(\Delta)$ is
a reduced point of $W_{g-3e-3}^{1}(X)$ where $\mathcal{O}_{X}(\Delta)\in W_{g-6e-9}$ is general, by invoking a
result of Coppens [C], Corollary 8.
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(ii) On the other hand, one may recognize the importance of the method
(i.e. utilizing the Rick Miranda’s triple covering result) adopted in the proof of
Lemma 2.1 as follows:

(1) For $d\geq g-[(3h+1)/2]-1,$ $W_{d}^{1}(X)$ has expected dimension and hence
the enumerative method works to prove the existence of a base-point-free pencil
which is not composed with the triple covering. On the other hand, for the
degree outside this range $W_{d}^{1}(X)$ does not have the expected dimension and one
should find a totally different way to investigate the problem. This constitutes a
part of our forthcoming paper where the methods we used in Lemma 2.1 play
some role in the paper.

(2) The reducedness result we proved in Lemma 2.1 has somewhat better
bound (of the genus $g$ of the curve $X$ with respect to the genus $h$ of the base
curve $C$) than the one we outlined in (i) above; $g\geq 12e+14$ vs. $g\geq 18e+21$

for $h=2e+1$ and $g\geq 12e+5$ vs. $g\geq 18e+6$ for $h=2e$ .

3. Examples

In this section, we shall give examples of cyclic triple coverings of curves.
One example suggests that there is a possibility of an improvement of our
bounds given in Section 1. Another assures that the Castelnuovo-Severi bound
is not sharp in some sense, i.e. the bound of degree of base-point-free pencils,
which is not composed with the triple covering projection, is greater than the
Castelnuovo-Severi bound. Both examples are given by cyclic triple coverings.
We begin with the following remark about cyclic triple coverings.

REMARK 3.1. Let $C$ be a curve of genus $h$ and $X$ be a cyclic triple covering
of $C$ . Let $X$ be of genus $g$ and let $\sigma$ be the automorphism of $X$ of order 3 so
that $ X/\langle\sigma\rangle$ is equivalent to $C$ . Let $\pi$ be the projection map of $X$ to $C$ . Since the
order of $\sigma$ is prime, every fixed point of $\sigma$ is a total ramification point of $\pi$ and
they are all. By the Riemann-Hurwitz formula, there are $g-3h+2$ fixed points,
$P_{1},$

$\ldots,$
$P_{g-3h+2}\in X$, of $\sigma$ .

Since the order of $\sigma$ is 3, the space $H=H^{1}(X, \mathcal{O}_{X})^{\vee}$ can be decomposed
into the direct sum $H=H_{0}\oplus H_{1}\oplus H_{2}$ , where

$H_{j}=\{\omega\in H : \omega\circ\sigma=\zeta^{j}\omega\}$ , $(j=0,1,2)$ , $\zeta=e^{2\pi\sqrt{-1}/3}$ .

It is known that every $\omega\in H_{0}$ is the pullback $\pi^{*}\omega^{\prime}$ of some $\omega^{\prime}\in H^{1}(C, \mathcal{O}_{C})^{\vee}$

So $\dim H_{0}=h$ and for $\omega\in H_{0}$ , the divisor $(\omega)=2P_{1}+\cdots+2P_{g-3h+2}+$

$\pi^{*}(Q_{1}+\cdots+Q_{2h-2})$ , where $Q_{1}+\cdots+Q_{2h-2}$ is a canonical divisor on $C$ (cf. [L]).
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For a fixed point $P_{i}\in X$ of $\sigma$, one can take a local parameter $z_{j}$ at $P_{i}$ such
that $\sigma$ : $z_{i}\mapsto\zeta z_{i}$ or $\sigma$ : $ z_{i}-\rangle$

$\zeta^{2}z_{i}$ . The exponent of $\zeta$ only depends on $P_{i}$ .
For $\eta\in H_{1}$ , let the Taylor expansion of $\eta$ near $P_{i}$ be given by

$\eta=(a_{0}+a_{1}z_{j}+a_{2}z_{i}^{2}+\cdots)dz_{i}$ .

In case $\sigma:z_{j}-\rangle$ $\zeta z_{i}$ ,

$\eta\circ\sigma=(a_{0}+a_{1}\zeta z_{i}+a_{2}\zeta^{2}z_{i}^{2}+\cdots)\zeta dz_{i}$ .

By the definition of $H_{1},$ $\eta\circ\sigma=\zeta\eta$ , hence we have $a_{j}=0$ if $j\equiv 1,2(mod 3)$ .
Hence, $\eta$ has a zero of order $0$ modulo 3 at $P_{i}$ .

In case $\sigma:z_{i}-\rangle$
$\zeta^{2}z_{i}$ , using a similar argument as above, one obtains that $\eta$

has a zero of order 1 modulo 3 at $P_{i}$ .
Hence, there is an integer $t$ such that for every $\eta\in H_{1}$ , renumbering the

suffixes if necessary,

(3.1.1) $(\eta)=P_{1}+\cdots+P_{t}+\pi^{*}(D_{1})$ ,

where $D_{1}$ is an effective divisor on $C$ which depends only on $\eta$ . Similarly, for
every $\tau\in H_{2}$ ,

(3.1.2) $(\tau)=P_{t+1}+\cdots+P_{g-3h+2}+\pi^{*}(D_{2})$ ,

where $D_{2}$ is an effective divisor on $C$ which depends only on $\tau$ .
Let $k_{j}=\deg D_{j}$ . Since $\eta,$ $\tau\in H,$ $\deg\eta=\deg\tau=2g-2$ . Hence, $t+3k_{1}=$

$g-3h+2-t+3k_{2}=2g-2$ . Since $0\leq t\leq g-3h+2$ ,

$3k_{j}\geq 2g-2-(g-3h+2)=g+3h-4$ .

If $g+3h-4\geq 6h-5$ , i.e. $k_{j}>2h-2$ , then $h^{0}(C, D_{j})=\dim H_{j}=k_{j}-h+1$ . We
may also assume $t\geq g-3h+2-t$, i.e. $2t\geq g-3h+2$ . If it is not the case, we
take $\zeta=e^{4\pi i/3}$ instead of $e^{2\pi i/3}$

EXAMPLE 3.2. Let $X,$ $C,$ $\pi,$ $\sigma,$
$t$ be as above. If $g\geq 3h-1$ , then there exists

a complete base-point-free pencil $g_{n}^{1}$ which is not composed with $\pi$, for some
integer $n\leq\max\{t, g+2-t\}$ .

PROOF. It is enough to show the existence of a linear series $g_{\max\{t,g+2-t\}}^{1}$

which is not composed with $\pi$ .
Take an $\eta\in H_{1}$ . Let the divisor of $\eta$ be

$(\eta)=P_{1}+\cdots+P_{t}+\pi^{*}(Q_{1}+\cdots+Q_{k_{1}})$ ,
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$Q_{1},$
$\ldots,$

$Q_{k_{1}}\in C$ . By (3.1.2), for every $\tau\in H_{2}$ , the divisor of $\tau$ is of the form
$P_{t+1}+\cdots+P_{g-3h+2}+\pi^{*}(D_{2}),$ $\deg D_{2}=k_{2}$ and $h^{0}(D_{2})=k_{2}-h+1$ .

In case $t\leq(g+2)/2$ , we have $2t=g+2-3h+3k_{2}-3k_{1}\leq g+2$ , hence
$k_{2}-h\leq k_{1}$ . So we may assume that

$D_{2}=Q_{1}+\cdots+Q_{k_{2}-h}+Q_{k_{2}-h+1}^{\prime}+\cdots+Q_{k_{2}}^{\prime}$ ,

for $Q_{k_{2}-h+1}^{\prime},$
$\ldots,$

$Q_{k_{2}}^{\prime}\in C$ . Then, $\eta/\tau$ is a meromorphic function on $X$ whose
divisor is

$P_{1}+\cdots+P_{t}+\pi^{*}(Q_{k_{2}-h+1}+\cdots+Q_{k_{1}})$

$-(P_{t+1}+\cdots+P_{g-3h+2})-\pi^{*}(Q_{k_{2}-h+1}^{\prime}+\cdots+Q_{k_{2}}^{\prime})$ .

Hence, the linear series $|P_{1}+\cdots+P_{t}+\pi^{*}(Q_{k_{2}-h+1}+\cdots+Q_{k_{1}})|$ is of degree
$t+3(k_{1}-k_{2}+h)=g+2-t$ and is not composed with $\pi$ .

In case $t>(g+2)/2$ , we have $k_{2}-h>k_{1}$ . In this case, we take

$D_{2}=Q_{1}+\cdots+Q_{k_{1}}+Q_{k_{1}+1}^{\prime}+\cdots+Q_{k_{2}}^{\prime}$ ,

Then, the divisor of $\eta/\tau$ is

$P_{1}+\cdots+P_{t}-(P_{t+1}+\cdots+P_{g-3h+2})-\pi^{*}(Q_{k_{1}+1}^{\prime}+\cdots+Q_{k_{2}}^{\prime})$ .

Then, $|P_{1}+\cdots+P_{\iota}|$ is of degree $t$ and is not composed with $\pi$ . This completes
the proof. $\square $

EXAMPLE 3.3. Let $X,$ $C,$ $\pi,$ $\sigma,$
$t$ be as above. Assume that $g\geq 3h-1$ . If

$n<(g-3h+2+t)/3$ , then every $g_{n}^{1}$ is composed with $\pi$ . Furthermore, $ lfg\geq$

$7h-4$ , then for every $C$ and every $t$ such that $(g-3h+2)/2\leq t\leq g-3h+2$ and
$t\equiv 2g-2$ mod 3, there exists a cyclic triple covering $X$ of $C$ on which there exists
a complete base point free linear series $g_{t}^{1}$ not composed with the triple covering.

PROOF. Let $f$ be a meromorphic function on $X$ such that $f\circ\sigma=\zeta f$ ,
$\deg(f)_{\infty}=N_{1}$ and the support of $(f)_{\infty}$ does not contain any $P_{j}$ . Then $f(P_{j})=0$ .
For $\omega\in H_{0},$ $\omega^{\prime}=f\omega$ is a l-form which satisfies $\omega^{\prime}0\sigma=\zeta\omega^{\prime}$ . Hence, the order
of zero of $\omega^{\prime}$ at $P_{j}$ , denoted by $ord_{P_{j}}\omega^{\prime}$ , is

$ord_{P_{j}}\omega^{\prime}\equiv\left\{\begin{array}{l}1 (j=1,\ldots,t)\\0 (j=t+1,\ldots,g-3h+2)\end{array}\right.$ $mod 3$ .
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Hence,

$ord_{P_{j}}f\equiv\{_{1}^{2}$ $(j=t+1,., g-3h+2)(j=1,\ldots,.t)$

.
mod3.

So, $N_{1}=\deg(f)_{\infty}=\deg(f)_{0}\geq g-3h+2+t$ .
Applying a similar argument for a meromorphic function $f$ on $X$ such that

$f\circ\sigma=\zeta^{2}f,$ $\deg(f)_{\infty}=N_{2}$ and the support of $(f)_{\infty}$ does not contain any $P_{j}$ , we
have $N_{2}\geq 2(g-3h+2)-t$ .

Let $f$ be a meromorphic function on $X$ such that $\deg(f)_{\infty}=m$ and
$f\circ\sigma\neq f$ . Considering a linear fraction, if necessary, we may assume neither the
support of $(f)_{\infty}$ nor $(f)_{0}$ contains any $P_{j}$ .

Let $f_{i}=f+\zeta^{2i}fo\sigma+\zeta^{i}f\circ 0^{2},$ $(i=0,1,2)$ . Then $f_{i}o\sigma=\zeta^{i}f_{i},$ $(i=0,1,2)$ and
$3f=f_{0}+f_{1}+f_{2}$ . Since $f(P_{j})\neq 0$ and $f_{i}(P_{j})=0(i=1,2, j=1, \ldots, g-3h+2)$ ,
we have $f_{0}(P_{j})\neq 0$ . Further we may assume neither $f_{1}$ nor $f_{2}$ vanishes iden-
tically. If it is not the case, say $f_{2}$ vanishes identically (denoted by $f_{2}\equiv 0$), one
can consider $F=(1/f)$ instead of $f$ . Again, $F$ can be decomposed as $F=$

$F_{0}+F_{1}+F_{2}$ such that $F\cdot\circ\sigma=\zeta^{i}F_{i}(i=0,1,2)$ . Assume $F_{1}\equiv 0$ , then

$3=3fF=(f_{0}+f_{1})(F_{0}+F_{2})=(f_{0}F_{0}+f_{1}F_{2})+f_{1}F_{0}+f_{0}F_{2}$ .

Here, $(f_{0}F_{0}+f_{1}F_{2})\circ\sigma=f_{0}F_{0}+f_{1}F_{2},$ $f_{1}F_{0}\circ\sigma=\zeta f_{1}F_{0}$ and $f_{0}F_{2}\circ\sigma=\zeta^{2}f_{0}F_{2}$ .
Hence, $f_{1}F_{0}\equiv f_{0}F_{2}\equiv 0$ and $f_{1}\equiv F_{2}\equiv 0$ . A contradiction. In case $F_{2}\equiv 0$ , again
we have a contradiction.

By the definition of $f_{i}$ , we have $(f_{i})_{\infty}\leq(f)_{\infty}+(f\circ\sigma)_{\infty}+$ $(f\circ\sigma^{2})_{\infty}$

$(i=0,1,2)$ . Hence, $\deg(f_{i})_{\infty}\leq 3m$ . This implies that

$3m\geq\max\{g-3h+2+t, 2(g-3h+2)-t\}$ .

As in Example 3.2, we may assume $2t\geq g-3h+2$ . Hence, $m\geq(g-3h+2+t)/3$ .
This implies the first assertion.

Next, we shall show the second assertion. Let $K(C)$ be the meromorphic
function field on $C$ . Since $t\equiv 2g-2mod 3,$ $t-(g-3h+2-t)=2t-g+3h-$
$2\equiv 0mod 3$ . Let $l=(2t-g+3h-2)/3\geq 0$ . Take $ g-3h+2-t+\swarrow$ general
points $P_{t+1},$

$\ldots,$
$P_{g-3h+2},$ $Q_{1},$

$\ldots,$
$Q_{t}$ on $C$ . Since $ g-3h+2-t+3\swarrow=t\geq$

$(g-3h+2)/2\geq 2h-1$ , there is a $y\in K(C)$ such that

$(y)_{\infty}=P_{t+1}+\cdots+P_{g-3h+2}+3(Q_{1}+\cdots+Q_{t})$ .

We may assume the support of the zero divisor of $y$ consists of distinct $t$ points
$P_{1},$

$\ldots,$
$P_{t}\in C$ . Let $x$ be a triple valued function on $C$ satisfying $y=x^{3}$ and let $X$
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be a curve so that $K(X)=K(C)(x)$ . For $P\in C$ , taking a local parameter $z_{P}$ at $P$,
we have an automorphism $\sigma$ of $X$ such that $\sigma:(z_{P}, x(z_{P}))-\rangle$ $(z_{P}, \zeta x(z_{P}))$ . Then
$ X/\langle\sigma\rangle$ is equivalent to $C$ . Thus, $X$ is a cyclic triple covering of $C$ which is
branched over $P_{1},$

$\ldots,$
$P_{g-3h+2}$ .

Since $x\in K(X)$ satisfies $xo\sigma=\zeta x$ , we can divide $P_{1},$
$\ldots,$

$P_{g-3h+2}$ into
$P_{1},$

$\ldots,$
$P_{t}$ and $P_{t+1},$

$\ldots,$
$P_{g-3h+2}$ as desired. It is noted that in this case we have

$g_{t}^{1}$ which is not composed with $\pi$ . It is a better estimate in case $t<(g+2)/2$ .
$\square $
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