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SEMISIMPLE HOPF ALGEBRAS OF DIMENSION 12

By

Nobuyuki FukuDA

Abstract. We determine the isomorphic classes of 12-dimensional
semisimple Hopf algebras over an algebraically closed field k whose
characteristic ch k # 2,3.

Introduction

Recently the project of classifying semisimple Hopf algebras over an
algebraically closed field is in progress. For example, in [M2, M3, M4, MS5]
Masuoka has classified semisimple Hopf algebras of dimensions 2p, p?> and p?
for a prime p in characteristic zero, and found some self-dual Hopf algebras of
dimension p* which are neither commutative nor cocommutative. Apart from
these, little “non-trivial” semisimple Hopf algebras seem to be known. In this
paper we classify all semisimple Hopf algebras of dimension 12. As a con-
clusion, there exists only two (up to isomorphism) Hopf algebras which are
neither commutative nor cocommutative, and these are self-dual. For proving
the results, we take advantage of the methods of [M2] and [M3]

NotaTiION. For a Hopf algebra A4 over a field k, we denote by
Ay:A—>AR®A, Aygla)=> an®ap, e4:A—k and S4:4—> A4 the
comultiplication, the counit and the antipode of 4, respectively. We further
denote by G(A4) the group of the group-like elements in A. For a finite group G,
kG denotes the group-like Hopf algebra of G, and k¢ means the dual Hopf
algebra (kG)" of kG. C, stands for the cyclic group of order n.

Throughout let 4 be a semisimple Hopf algebra of dimension 12 over an
algebraically closed field k& whose characteristic ch k # 2,3. It follows from
[LR, Prop. 4.6] that A4 is involutory, that is, S4 oS4 = id4. Therefore by
[LR, Prop.1.3(a)] A* is semisimple, too.
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1. If A is commutative or cocommutative, then A4 is isomorphic to a group-
like Hopf algebra or its dual. In order to classify all A4’s that are neither
commutative nor cocommutative, we first show:

LeMMA 1.1. Each of the orders |G(A)|, |G(A*)| equals either 3,4 or 12.

ProoF. By the Nichols-Zoeller theorem [NZ, Thm.7], |G(4)| divides dim
A. Further 4* is isomorphic to a direct product of some matrix algebras since it
is semisimple. Note that the number of the one-dimensional ideals of 4* equals
|G(4)|. By counting dimensions, one sees that 4* is isomorphic to one of
following:

12 times

e N—
kxkxkxMsk), kxkxkxkxMy/k)x Myk), kx---xk,

where M,(k) is the algebra of all nxn matrices. Thus it follows that
|G(A4)| = 3,4 or 12. Similarly we have |G(4*)| = 3,4 or 12. O

PropPoSITION 1.2. If |G(A*)| = 3, then A is cocommutative.

COROLLARY 1.3. If A is neither commutative nor cocommutative, then both
the orders |G(A)|, |G(A*)| equal 4.

We devote Sections 2, 3 to the proof of Proposition 1.2, For this, we
suppose in these sections that |G(A4*)| = 3. It follows from Lemma 1.1 that there
exists a subgroup G of G(A4) such that |G| =3 or 4.

2. First in this section we prove the following proposition by means of the
method of [M2, Sect.1].

PROPOSITION 2.1. Suppose that |G(A*)| = 3. If G(A) has a subgroup of order
3, then A is cocommutative.

Throughout this section we suppose that |G(4*)| = 3, and that G(4) has a
subgroup G of order 3. We fix a generator g of G(=~ C3). Let H = kG.

LEMMA 2.2. The inclusion map i: H — A has a Hopf algebra retraction
n: A — H, that is, a Hopf algebra map such that noi = idy.



Semisimple Hopf algebras of dimension 12 45

ProOOF. (Similar to the proof of [M2, Prop.1.2]) by dualizing the inclusion
map kG(A*) — A*, we obtain the Hopf quotient map p: 4 — D = k64", Let

B={acl} ay ®plap) =a®py},
the left coideal subalgebra of the right D-coinvariants. By [Sch, Thm.2.4] we have
A~B®D (left B-modules and right D-comodules).

This implies that dim B = 4. If p(g) = 1, equivalently H < B, then dim H divides
dim B by the Nichols-Zoeller theorem. This is a contradiction. Therefore
p(g) # 1. Since D = kC;, one sees easily that H =~ D via p. Thus this lemma
follows. O

We can view B as a quotient coalgebra of 4 via the isomorphism
B~ A/AH*, b+ b, where H* = Ker e5. By [R, Thm.3], B is a left H-module
algebra with the action

h—b=> hubSu(ha) (heH,beB),
and a left H-comodule coalgebra with the coaction
p(b) = (@ idg) o Ay(b) (b€ B).
Following [R], we denote by B x H the biproduct constructed from (B, H, —, p).

Lemma 2.3 [R, Thm.3(c)]. A4s a Hopf algebra A is isomorphic to the
biproduct B x H.

PROOF. By this follows directly from [R, Thm.3]. 0

LemMMmA 2.4. (1) As an algebra B is isomorphic to k x k x k x k.
(2) B is spanned by group-like elements in B.

PROOF. (1) As in the proof of [M2, Lemma 1.4], it follows that B is
semisimple. Since B has the non-trivial (two-sided) ideal Ker(e4|z), B must not
be isomorphic to the algebra of all 2 x 2 matrices. Thus Part (1) follows.

(2) Apply Part (1) to B*. O

By lemma 2.4(2), we can write as

B=kl ®kxy® kx; @ kx;,
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where x; is a group-like element in B for each i. Let w be a primitive 3rd root
of 1. Then we have a symmetric, non-degenerate Hopf pairing < ,):
H x H — k,{¢',¢’> = w¥. For each i, we denote by e;(e€ H) the dual basis of
g'(e H*) with respect to this pairing.

LEMMA 2.5. Suppose that A is not cocommutative.
(1) The H-module algebra action — on B is determined by

g—1=1 g—xg=x1, g—=x1=X2, g—X2=2Xo

for a suitable indexing.
(2) The H-comodule coalgebra coaction p of B is determined by

p(N=1®1, px)=e-i@x0+e_ix1@x1+e_i2@x2 (i=0,1,2)

for a suitable choice of w = <{g,g).

(3) We have
b
X1 X2 X0
L A L
X2 X1 X0
(4) We have

1 .
AB(X(Z)) == Z o Ixox; ® X0X;.

0<i,j<2

Proof. Since B and H is commutative (resp. cocommutative), it follows
from [R, Prop.1] that, if the action — (resp. the coaction p) is trivial, 4 is
commutative (resp. cocommutative). Thus both — and p must be non-trivial.

(1) By [R, Thm.1], the automorphism g — : B — B of order 3 is a coalgebra
map fixing 1. Thus Part (1) follows.

(2) Since B is a left H(= H*)-comodule coalgebra, B is a right H-module
coalgebra with the action

b—h=>_ <hbudbp (beB,heH),

where p(b) = > by ® bp. Note that the automorphism — g of B is a coalgebra
map of order 3 which fixes 1. As in Part (1), — can be determined. Part (2)
follows, if one sees that the e; with respect to the pairing {g,g)> = w equals the

e_; with respect to the pairing <g,¢9)> = 0~ !.
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(3) Note that there exists a convolution-inverse Sp of idg by [R, Prop.2]. As
in the proof of [M2, Lemma 1.6(3)], we have

Z Su(bayu) — (Sa(b2)s)b(1)) = er(b) (b€ B).

Put b = x( in the above equation. One can verify that

ez_\ _xﬁ.{_el_é—xﬂzo. (2.6)
X1 X2
Apply e; — (resp. e; —) to the equation [2.6), we obtain the upper (resp. lower)
equation in Part (3).
(4) From [R, Thm.1(b)], one sees that

AB(bbl) = Z b(l) (b(Z)H — bzl)) ® b(Z)Bbzz) (b, b € B)

Put b = b’ = xy, we obtain the equation in Part (4). O

Now we are ready to prove [Proposition 2.1

ProorF OF ProOPOSITION 2.1. Suppose that 4 is not cocommutative. We will
prove that this supposition leads to a contradiction.

From lemma 2.4(1), B is isomorphic as an algebra to k x k x k x k. Let e
be the unique primitive idempotent such that ¢4(e) = 1. We can assume that
e=(1,0,0,0). Put up = (0,1,0,0), 2; = (0,0,1,0), u, = (0,0,0, 1). Since the non-
trivial action g — of g is an algebra automorphism of B, the action — is
determined by

g —e=e, g — Uy = up, g — uy = up, g— Uy =14y

for a suitable indexing. Note that ¢4(xo) = 1, and that x; is a unit in B. We can
put xo = (1,¢co,c1,c2), where ¢; # 0 for each i. From [Lemma 2.5(1) and the
equations in Lemma 2.5(3), we have

Co C1 Cy
—t+o—+w®==0

C1 [5) Co (2 7)
()] (4] 7 €1 )
—4w—4+w —=0.

(5) 5 o

These equations imply that ¢ = ¢} = c3. Hence x;’s are described as
X0 = (I,C,AC,MC), X1 = (l,ﬂ.C,C,/lC), X2 = (I,AC,[JC,C),

where ¢(e k) is non-zero, and A, u are 3rd roots of 1. But it cannot happen that
p=A"1 for x, x1, xp are linearly independent. If (4,u) = (1,w) or (w,1), it
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contradicts the equation (2.7). We show a contradiction in the other cases, to
complete the proof. Suppose that (4, 4) = (w, @), (1,@?) or (w?,1). Since xj € B,
we write as x3 = al + Bxo + yx; + 0x2 (a, B,7,0 € k). Then

Ap(x3) = a(1 ® 1) + B(xo ® x0) + y(x1 ® x1) + 0(x2 ® x2). (2.8)

By comparing the coefficients of u; ® ;(i = 0,1,2) in the right-hand side of the
equation and that in Lemma 2.5(4), we have

1 w2 2\ /B 1
'u2 12 1 0 1

where =% ((1+ A+ p)c* — o). This equation shows that B =y = 4. Then it is
seen easily that Ap(x3) = Ap(g — x2) = Ap(x?), so that xj =x}. In the case
(A, p) = (1,w?) or (w?,1) (resp. (w,w)), one can verify that ¢ = wc? (resp.
2 = w?c?), which gives a contradiction to the fact that ¢ # 0. 0

3. Next in this section we prove the following proposition, to complete the
proof of [Proposition 1.2l For this, we adopt the method of [M3].

PROPOSITION 3.1. Suppose that |G(A*)| = 3. If G(A) has a subgroup of order
3, then A is cocommutative.

Throughout this section we suppose that |G(4*)| = 3, and that G(A4) has a
subgroup G of order 4. As in Section 2, we obtain a Hopf quotient map
n: A — k%4) (= kC;). We can regard k¢ = kG < 4, for G is an abelian group.

LEMMA 3.2. Thé short sequence
15k 5 45kC -1

of Hopf algebras is exact [M1, Def.1.3], where i is the inclusion map.

ProoF. We claim that n(x) = 1 for any x € G(k®). Otherwise, the order of
n(x) equals 2 or 4, for |G(k®)| = 4. This contradicts that n(x) € G(kCs)(= C3).
Hence the condition (in [M1, Lemma 1.2]) that

kG = {a € A| Z aq) @ n(ap) =a® n(l)}

holds. In other words, the sequence is exact. O
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Let K = k®, H = kC;. Now we obtain a Hopf algebra extension

15K545H 1. (3.3)

As mentioned in [M3, Sect.1], such an extension has a section, that is, a unit and
counit-preserving convolution-invertible integral ¢ : H — 4 and a retraction, that
is, a unit and counit-preserving convolution-invertible cointegral y: 4 — K.
Furthermore there is a 1 —1 correspondence between all sections and all
retractions. Then ¢ causes a left H-module algebra action on K

—~H®K—K, ih—c)=)Y_ ¢(Hy)ic)¢ ' (he) (heH, ceKk),

and y causes a right K-comodule coalgebra coaction of H

p:H—-H®K, p(n(a)=>_ nag)®y ' (ay)r(ag) (ac4).

Since H is commutative and K is cocommutative, such an action — and a
coaction p are independent of the choice of ¢ and p. (See [M3, Sect.1].) Then 4 is
isomorphic to the bicrossed product with the action — and the coaction p [H,
Sect.3]. (We need not know the cocycle and the dual cocycle.) In terms of [P], 4
is as an algebra crossed product K x C3 with the action —, and A4* is as an
algebra H* x G with the action p*. Notice that 4 has the K-basis {1, ¢(g), (%)},
and that 4* has the H*-basis {y*(x)|x € G}.

LeEMMA 3.4. Suppose that the Hopf algebra extension (3.3) causes a pair
(—, p) described above.

(1) G= G x G,

(2) The right K-comodule coalgebra coaction p of H is trivial.

(3) The left H-module algebra action — on K is determined by

g — eij = €j—ij,

where g is a generator of Cs, and ej(€K) is a dual basis of sV
(e kG = k({s)> x {t))) for each i, j.

Proor. Since (H,K,—,p) is a abelian matched pair of hopf algebras by
[H, Prop.3.8], it follows by [M3, Lemma 1.2] that the pair (—,p) is corre-
sponding to a pair (>,<) which makes (G, C3) a matched pair of groups, where
>:Gx C3 — (3, 4: Gx C3 — G are group actions. The correspondence is as
follows:

G—=E =fxay), p0) =D (x>y) ®es,

xeG
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where x € G, y € C3, f € K and e,(e K) is a dual basis of x( € kG). So in order to
determine the pair (—,p), we will determine the corresponding pair (>,<).
Denote by C3 b<t G the group constructed from a matched pair (G, C3,>,<). (See
[T, Def.2.3].) It follows from [Sz, Page 112] that either G or C3 must be a normal
subgroup of C; b« G. Then one sees easily that either > or « is trivial. If « is
trivial, equivalently — is so, then A is isomorphic to the twisted group ring K*[Cs]
[P, Page 4]. Since a twisted group ring of cyclic group over a commutative ring is
commutative, < must be non-trivial. Further it is seen easily that < is always
trivial in the case G =~ C4. This observation shows that G =~ C; x (C,, and that >
is trivial. Then «g: G — G is a group automorphism of order 3. Such a group
action « is determined by

sAg=1t, tdg=st

for a suitable choice of generators s, ¢ of G. The action — corresponding to this
group action <« is as in Part (2). O

Now we will prove Proposition 3.1.

ProoF OF ProrosiTION 3.1. Notation as above. Let y: 4 - K be a
retraction of the extension [3.3). Note that the coaction p is trivial. As in the
proof of [M3, Lemma 2.11(1)], we can choose a retraction y satisfying

P =y () =L

Note that ¢(g)c = (g — c)¢(g) for any ce K. Then as in the proof of [M3,
Lemma 2.11(2)(3)], we have for £ =1 or —1
A@)= )Y, eg®end,
0<i,jr,s<1

where ¢ : H — A is the section corresponding to y, and § = ¢(g). A straight-
forward calculation using the above equation shows

Ay ( gS) — Z fir+j(r+s) e g—3 ® es g3.

Ljrss

Since §° € K, we write as §° = Y_ cje; for Cy € k. By comparing the coefficients
of ep; ® €10, €10 @ egy in Ay(F), one verifies that

ci1 = &cprc10, €11 = C10€01-

These yield that £ = 1, so that § € G(4). Then we can check easily that 4 = kD,
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where D = (C; x C;) X Cs is the unique (up to isomorphism) semi-direct product.
In particular 4 is cocommutative. O

4. Finally we find all A4’s that are neither commutative nor cocommutative,
to complete the classification. By the [Corollary 1.3, we may suppose that
|G(4)| = |G(4*)| =4. Let G = G(A), H=kG. As in Section 2, the inclusion
map i:H —>A has a Hopf algebra retraction n: 4 — H. Let B=
{ae Al ap) @ n(ap)) = a®n(1)}. By the same argument as in Section 2, B is
a H-module algebra with a non-trivial action — and a H-comodule coalgebra
with a non-trivial coaction p. Further we have

A=~ Bx H (as Hopf algebras),
B =kl @kx.+_ Eka_,

where x, are group-like elements in B.

Denote by &3 the symmetric group of degree 3. Let o be the cyclic
permutation (123), and t the transposition (12). We denote by : the inner
automorphism inn(t). Notice that sgn, the signature map of &3, is the unique
non-trivial group-like element in k3.

DEFINITION 4.1. Denote by A4, (resp. A_) the k®-ring generated by z with
relations:
22=1 (resp.sgn), zc=1(c)z (cek®).

Given A, a coalgebra structure such that the subalgebra k% is a sub-
coalgebra, and that z is group-like, then 4, are bialgebras. Furthermore 4.
(resp. A_) becomes a Hopf algebra with the antipodes S determined by

S(z) =z (resp. (sgn)z), S(c) = Sie,(c) (c k™).

We point out that A4, are semisimple. Indeed A4, =~k xkx
k x k x My(k) x M(k). It is seen easily that G(4;,) =~ C, x C,, and that
G(A_) = Cy.

REMARK 4.2. (1) As an algebra 47 is isomorphic to 4*. In fact, these are
the kS;-rings generated by v with relations:

¥ =v, av=va (aeckS;).

On the other hand, the coalgebra structures A, ¢, and the antipode S of A% (resp.
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A*) are determined by
Al6)=ov® 0o+ 0(l —v) ®d?, &(o)=1,
A(t) =t @t (resp. w®t+1(1 —v) ®t(2v — 1)), (1) =1,
A@)=v@v+(1-v)®(1—v), &) =1,
S(o) = a(1 — v) + o,
S(t) =t (resp. t1(2v — 1)), S(v) =v.

(2) A% are both self-dual, that is, 4% = A4;. Let 0 be a primitive 3rd root
of 1, {, a square root of 1, and {_ a primitive square root of —1. Denote by
eji(e K®) the dual basis of ¢'t/(e kS;) for each i, j. Then the mapping
c— Y wley, t— 1/2((1+¢1)+ (1 —{4)sgn)z, v 1/2(1 + sgn) gives Hopf
algebra isomorphisms from 4% to 4..

PROPOSITION 4.3. Suppose that |G(A)| =|G(A*)|=4. Then as a Hopf
algebra A is isomorphic to either Ay or A_.

ProOF. Case G =~ C4. We fix a generator g of G. By the same way as in
Section 2, the H-module algebra action — on B and the H-comodule coalgebra
coaction p of B are determined by

g—xiy=xg, plx1)=3((1+¢)@xs+(1—-4g%)®x3).

Since p(B) < k(g*) ® B, it follows that B® k{g*> = B x k{(g*) is a 6-dimen-
sional (semisimple) Hopf subalgebra of 4. Denote by K this Hopf subalgebra.
Note that K is commutative and not cocommutative, it follows by [M2,
Thm.1.10] that K =~ k3. It is clear that A is the crossed product K * C, with the
K-basis {1,g} such that g € G(4), and that g? is the unique non-trivial group-like
element in K. We conclude that 4 =~ A_, if one sees that :* is the unique (up to
conjugacy) Hopf algebra automorphism of k% of order 2 with non-trivial
invariants.

Case G =~ C, x C,. We can choose generators s, ¢ of G so that the action —
is determined by

§— X4 =XF, [—X4 =X4.

The coaction p is one of following:
() plre) =21 £H®x+ (1 F)®x.).
i) p(x+)=3((1£s)®x++(1Fs5)®x).
(iii) p(x1) =3((1 £s) @ x4 + (1 F 51) @ x_).
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In each case, it follows as in the above case that B x {t), B x {s) or Bx {st) is a
6-dimensional Hopf subalgebra of A. Since this Hopf subalgebra must be
commutative or cocommutative by [M2, Thm.1.10] Case (ii) or (iii) cannot
happen. As in Case G =~ C4, we conclude that 4 = 4. O

Now we obtain the classification result.

THEOREM. Let A be a 12-dimensional semisimple Hopf algebra over an
algebraically closed field k whose characteristec # 2 or 3. Then A is isomorphic
to either

kG, kS, Ay or A_,

where G is a group of order 12 and A, are the mutually non-isomorphic Hopf
algebras defined in Definition 4.1.
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