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SEMISIMPLE HOPF ALGEBRAS OF DIMENSION $12$

By

Nobuyuki FUKUDA

Abstract. We determine the isomorphic classes of 12-dimensional
semisimple Hopf algebras over an algebraically closed field $k$ whose
characteristic ch $k\neq 2,3$ .

Introduction

Recently the project of classifying semisimple Hopf algebras over an
algebraically closed field is in progress. For example, in [M2, M3, M4, M5]
Masuoka has classified semisimple Hopf algebras of dimensions $2p,$ $p^{2}$ and $p^{3}$

for a prime $p$ in characteristic zero, and found some self-dual Hopf algebras of
dimension $p^{3}$ which are neither commutative nor cocommutative. Apart from
these, little “non-trivial” semisimple Hopf algebras seem to be known. In this
paper we classify all semisimple Hopf algebras of dimension 12. As a con-
clusion, there exists only two (up to isomorphism) Hopf algebras which are
neither commutative nor cocommutative, and these are self-dual. For proving
the results, we take advantage of the methods of [M2] and [M3].

NOTATION. For a Hopf algebra $A$ over a field $k$, we denote by
$\Delta_{A}$ : $A\rightarrow A\otimes A$ , $\Delta_{A}(a)=\sum a_{(1)}\otimes a_{(2)}$ , $\epsilon_{A}$ : $A\rightarrow k$ and $S_{A}$ : $A\rightarrow A$ the
comultiplication, the counit and the antipode of $A$ , respectively. We further
denote by $G(A)$ the group of the group-like elements in $A$ . For a finite group $G$ ,
$kG$ denotes the group-like Hopf algebra of $G$ , and $k^{G}$ means the dual Hopf
algebra $(kG)^{*}$ of $kG$ . $C_{n}$ stands for the cyclic group of order $n$ .

Throughout let $A$ be a semisimple Hopf algebra of dimension 12 over an
algebraically closed field $k$ whose characteristic ch $k\neq 2,3$ . It follows from
[LR, Prop. 4.6] that $A$ is involutory, that is, $S_{A}\circ S_{A}=id_{A}$ . Therefore by
[LR, $Prop.1.3(a)$ ] $A^{*}$ is semisimple, too.
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1. If $A$ is commutative or cocommutative, then $A$ is isomorphic to a group-
like Hopf algebra or its dual. In order to classify all $A\prime s$ that are neither
commutative nor cocommutative, we first show:

LEMMA 1.1. Each of the orders $|G(A)|,$ $|G(A^{*})|$ equals either 3,4 or 12.

PROOF. By the Nichols-Zoeller theorem [NZ, Thm.7], $|G(A)|$ divides $\dim$

$A$ . Further $A^{*}$ is isomorphic to a direct product of some matrix algebras since it
is semisimple. Note that the number of the one-dimensional ideals of $A^{*}$ equals
$|G(A)|$ . By counting dimensions, one sees that $A^{*}$ is isomorphic to one of
following:

$k\times k\times k\times M_{3}(k)$ , $k\times k\times k\times k\times M_{2}(k)\times M_{2}(k)$ ,

where $M_{n}(k)$ is the algebra of all $n\times n$ matrices. Thus it follows that
$|G(A)|=3,4$ or 12. Similarly we have $|G(A^{*})|=3,4$ or 12. $\square $

PROPOSITION 1.2. If $|G(A^{*})|=3$ , then $A$ is cocommutative.

COROLLARY 1.3. If $A$ is neither commutative nor cocommutative, then both
the orders $|G(A)|,$ $|G(A^{*})|$ equal 4.

We devote Sections 2, 3 to the proof of Proposition 1.2. For this, we
suppose in these sections that $|G(A^{*})|=3$ . It follows from Lemma 1.1 that there
exists a subgroup $G$ of $G(A)$ such that $|G|=3$ or 4.

2. First in this section we prove the following proposition by means of the
method of [M2, Sect.1].

PROPOSITION 2.1. Suppose that $|G(A^{*})|=3$ . If $G(A)$ has a subgroup of order
3, then $A$ is cocommutative.

Throughout this section we suppose that $|G(A^{*})|=3$ , and that $G(A)$ has a
subgroup $G$ of order 3. We fix a generator $g$ of $G(\cong C_{3})$ . Let $H=kG$ .

LEMMA 2.2. The inclusion map $i:H\rightarrow A$ has a Hopf algebra retraction
$\pi$ : $A\rightarrow H$, that is, a Hopf algebra map such that $\pi oi=id_{H}$ .
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PROOF. (Similar to the proof of [M2, Prop.1.2]) by dualizing the inclusion
map $kG(A^{*})\rightarrow A^{*}$ , we obtain the Hopf quotient map $p:A\rightarrow D=k^{G(A^{*})}$ . Let

$B=\{a\in A|\sum a_{(1)}\otimes p(a_{(2)})=a\otimes p(1)\}$ ,

the left coideal subalgebra of the right D-coinvariants. By [Sch, Thm.2.4] we have

$A\cong B\otimes D$ (left B-modules and right D-comodules).

This implies that $\dim B=4$ . If $p(g)=1$ , equivalently $H\subset B$, then $\dim H$ divides
$\dim B$ by the Nichols-Zoeller theorem. This is a contradiction. Therefore
$p(g)\neq 1$ . Since $D\cong kC_{3}$ , one sees easily that $H\cong D$ via $p$ . Thus this lemma
follows. $\square $

We can view $B$ as a quotient coalgebra of $A$ via the isomorphism
$B\cong A/AH^{+},$ $ b-\rangle$ $\overline{b}$, where $H^{+}=Ker\epsilon_{H}$ . By [$R$ , Thm.3], $B$ is a left H-module
algebra with the action

$h\rightarrow b=\sum h_{(1)}bS_{H}(h_{(2)})$ $(h\in H, b\in B)$ ,

and a left H-comodule coalgebra with the coaction

$\rho(b)=(\pi\otimes id_{B})\circ\Delta_{A}(b)$ $(b\in B)$ .

Following [R], we denote by $B\times H$ the biproduct constmcted from $(B, H, \rightarrow, \rho)$ .

LEMMA 2.3 $[R, Thm.3(c)]$ . As a Hopf algebra $A$ is isomorphic to the
biproduct $B\times H$.

PROOF. By Lemma 2.2 this follows directly from [$R$ , Thm.3]. $\square $

LEMMA 2.4. (1) As an algebra $B$ is isomorphic to $k\times k\times k\times k$ .
(2) $B$ is spanned by group-like elements in $B$ .

PROOF. (1) As in the proof of [M2, Lemma 1.4], it follows that $B$ is
semisimple. Since $B$ has the non-trivial (two-sided) ideal $Ker(\epsilon_{A}|_{B}),$ $B$ must not
be isomorphic to the algebra of all $2\times 2$ matrices. Thus Part (1) follows.

(2) Apply Part (1) to $B^{*}$ . $\square $

By lemma 2.4(2), we can write as

$B=k1\oplus kx_{0}\oplus kx_{1}\oplus kx_{2}$ ,
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where $x_{i}$ is a group-like element in $B$ for each $i$ . Let $\omega$ be a primitive 3rd root
of 1. Then we have a symmetric, non-degenerate Hopf pairing $\langle, \rangle$ :
$H\times H\rightarrow k,$ $\langle g^{i}, g^{j}\rangle=\omega^{ij}$ . For each $i$, we denote by $e_{l}(\in H)$ the dual basis of
$g^{i}(\in H^{*})$ with respect to this pairing.

LEMMA 2.5. Suppose that $A$ is not cocommutative.
(1) The H-module algebra $action\rightarrow onB$ is determined by

$g\rightarrow 1=1$ , $g\rightarrow x_{0}=x_{1}$ , $g\rightarrow x_{1}=x_{2}$ , $g\rightarrow x_{2}=x_{0}$

for a suitable indexing.
(2) The H-comodule coalgebra coaction $\rho$ of $B$ is determined by

$\rho(1)=1\otimes 1$ , $\rho(x_{i})=e_{-i}\otimes x_{0}+e_{-i+1}\otimes x_{1}+e_{-i+2}\otimes x_{2}$ $(i=0,1,2)$

for a suitable choice of $\omega=\langle g, g\rangle$ .
(3) We have

$\left\{\begin{array}{l}\frac{x_{0}}{x_{1}}+\omega\frac{x_{1}}{x_{2}}+\omega^{2}\frac{x_{2}}{x_{0}}=0\\\frac{x_{0}}{x_{2}}+\omega\frac{x_{2}}{x_{l}}+\omega^{2}\frac{x_{1}}{x_{0}}=0.\end{array}\right.$

(4) We have

$\Delta_{B}(x_{0}^{2})=\frac{1}{3}\sum_{0\leq i,j\leq 2}\omega^{-ij}x_{0}x_{i}\otimes x_{0}x_{j}$ .

PROOF. Since $B$ and $H$ is commutative (resp. cocommutative), it follows
from [$R$ , Prop.1] that, if the $action\rightarrow$ (resp. the coaction $\rho$ ) is trivial, $A$ is
commutative (resp. cocommutative). Thus $both\rightarrow and\rho$ must be non-trivial.

(1) By [$R$ , Thm. 1], the automorphism $g^{-}:$ $B\rightarrow B$ of order 3 is a coalgebra
map fixing 1. Thus Part (1) follows.

(2) Since $B$ is a left $H(=H^{*})$ -comodule coalgebra, $B$ is a right H-module
coalgebra with the action

$b\leftarrow h=\sum\langle h, b_{H}\rangle b_{B}$ $(b\in B, h\in H)$ ,

where $\rho(b)=\sum b_{H}\otimes b_{B}$ . Note that the $automorphism\leftarrow g$ of $B$ is a coalgebra
map of order 3 which fixes 1. As in Part (1)

$,$

$\leftarrow can$ be determined. Part (2)

follows, if one sees that the $e_{i}$ with respect to the pairing $\langle g, g\rangle=\omega$ equals the
$e_{-i}$ with respect to the pairing $\langle g, g\rangle=\omega^{-1}$ .
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(3) Note that there exists a convolution-inverse $S_{B}$ of $id_{B}$ by [$R$ , Prop.2]. As
in the proof of [M2, Lemma 1.6(3)], we have

$\sum S_{H}(b_{(2)H})\rightarrow(S_{B}(b_{(2)B})b_{(1)})=\epsilon_{B}(b)$ $(b\in B)$ .

Put $b=x_{0}$ in the above equation. One can verify that

$e_{2}\rightarrow\frac{x_{0}}{x_{1}}+e_{1}\rightarrow\frac{x_{0}}{x_{2}}=0$ . (2.6)

Apply $e_{2}\rightarrow(resp. e_{1}\rightarrow)$ to the equation (2.6), we obtain the upper (resp. lower)
equation in Part (3).

(4) From [$R$ , Thm.l(b)], one sees that

$\Delta_{B}(bb^{\prime})=\sum b_{(1)}(b_{(2)H}\rightarrow b_{(1)}^{\prime})\otimes b_{(2)B}b_{(2)}^{\prime}$ $(b, b^{\prime}\in B)$ .

Put $b=b^{\prime}=x_{0}$ , we obtain the equation in Part (4). $\square $

Now we are ready to prove Proposition 2.1

PROOF OF PROPOSITION 2.1. Suppose that $A$ is not cocommutative. We will
prove that this supposition leads to a contradiction.

From lemma 2.4(1), $B$ is isomorphic as an algebra to $k\times k\times k\times k$ . Let $e$

be the unique primitive idempotent such that $\epsilon_{A}(e)=1$ . We can assume that
$e=(1,0,0,0)$ . Put $u_{0}=(0,1,0,0),$ $u_{1}=(0,0,1,0),$ $u_{2}=(0,0,0,1)$ . Since the non-
trivial action $g\rightarrow ofg$ is an algebra automorphism of $B$, the $action\rightarrow is$

determined by

$g\rightarrow e=e$ , $g\rightarrow u_{0}=u_{1}$ , $g^{-}u_{1}=u_{2}$ , $g^{-}u_{2}=u_{0}$

for a suitable indexing. Note that $\epsilon_{A}(x_{0})=1$ , and that $x_{0}$ is a unit in $B$ . We can
put $x_{0}=(1, c_{0}, c_{1}, c_{2})$ , where $c_{i}\neq 0$ for each $i$. From Lemma 2.5(1) and the
equations in Lemma 2.5(3), we have

$\left\{\begin{array}{l}\underline{co}_{+\omega^{\underline{C_{l}}}+\omega^{2^{\underline{C_{2}}}}=0}\\c_{1} c_{2} c_{0}\\\underline{co}_{+\omega^{\underline{C_{2}}}+\omega^{2^{C}\underline{]}}=0}.\\c_{2} c_{l} c_{0}\end{array}\right.$ (2.7)

These equations imply that $c_{0}^{3}=c_{1}^{3}=c_{2}^{3}$ . Hence $x_{j}\prime s$ are described as
$x_{0}=(1, c, \lambda c,\mu c)$ , $x_{1}=(1, \mu c, c, \lambda c)$ , $x_{2}=(1, \lambda c, \mu c, c)$ ,

where $c(\in k)$ is non-zero, and $\lambda,$
$\mu$ are 3rd roots of 1. But it cannot happen that

$\mu=\lambda^{-1}$ , for $x_{0},$ $x_{1},$ $x_{2}$ are linearly independent. If $(\lambda, \mu)=(1, \omega)$ or $(\omega, 1)$ , it
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contradicts the equation (2.7). We show a contradiction in the other cases, to

complete the proof. Suppose that $(\lambda, \mu)=(\omega, \omega),$ $(1, \omega^{2})$ or $(\omega^{2},1)$ . Since $x_{0}^{2}\in B$,

we write as $x_{0}^{2}=\alpha 1+\beta x_{0}+\gamma x_{1}+\delta x_{2}(\alpha, \beta, \gamma, \delta\in k)$ . Then

$\Delta_{B}(x_{0}^{2})=\alpha(1\otimes 1)+\beta(x_{0}\otimes x_{0})+\gamma(x_{1}\otimes x_{1})+\delta(x_{2}\otimes x_{2})$ . (2.8)

By comparing the coefficients of $u_{i}\otimes u_{i}(i=0,1,2)$ in the right-hand side of the
equation (2.8) and that in Lemma 2.5(4), we have

$\left(\begin{array}{lll}1 & \mu^{2} & \lambda^{2}\\\lambda^{2} & 1 & \mu^{2}\\\mu^{2} & \lambda^{2} & 1\end{array}\right)\left(\begin{array}{l}\beta\\\gamma\\\delta\end{array}\right)=t\left(\begin{array}{l}1\\1\\1\end{array}\right)$ ,

where $t=F^{1}((1+\lambda+\mu)c^{4}-\alpha)$ . This equation shows that $\beta=\gamma=\delta$ . Then it is
seen easily that $\Delta_{B}(x_{0}^{2})=\Delta_{B}(g\rightarrow x_{0}^{2})=\Delta_{B}(x_{1}^{2})$ , so that $l_{0}=x_{1}^{2}$ . In the case
$(\lambda, \mu)=(1, \omega^{2})$ or $(\omega^{2},1)$ (resp. $(\omega,$ $\omega)$ ), one can verify that $c^{2}=\omega c^{2}$ (resp.
$c^{2}=\omega^{2}c^{2})$ , which gives a contradiction to the fact that $c\neq 0$ . $\square $

3. Next in this section we prove the following proposition, to complete the
proof of Proposition 1.2. For this, we adopt the method of [M3].

PROPOSITION 3.1. Suppose that $|G(A^{*})|=3$ . If $G(A)$ has a subgroup of order
3, then $A$ is cocommutative.

Throughout this section we suppose that $|G(A^{*})|=3$ , and that $G(A)$ has a
subgroup $G$ of order 4. As in Section 2, we obtain a Hopf quotient map
$\pi:A\rightarrow k^{G(A^{*})}(\cong kC_{3})$ . We can regard $k^{G}=kG\subset A$ , for $G$ is an abelian group.

LEMMA 3.2. The short sequence

$1\rightarrow k^{G}\rightarrow iA\rightarrow\pi kC_{3}\rightarrow 1$

of Hopf algebras is exact [Ml, Def.1.3], where $i$ is the inclusion map.

PROOF. We claim that $\pi(x)=1$ for any $x\in G(k^{G})$ . 0therwise, the order of
$\pi(x)$ equals 2 or 4, for $|G(k^{G})|=4$ . This contradicts that $\pi(x)\in G(kC_{3})(=C_{3})$ .
Hence the condition (in [Ml, Lemma 1.2]) that

$k^{G}=\{a\in A|\sum a_{(1)}\otimes\pi(a_{(2)})=a\otimes\pi(1)\}$

holds. In other words, the sequenoe is exact. $\square $
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Let $K=k^{G},$ $H=kC_{3}$ . Now we obtain a Hopf algebra extension

$1\rightarrow K\rightarrow iA\rightarrow\pi H\rightarrow 1$ . (3.3)

As mentioned in [M3, Sect.1], such an extension has a section, that is, a unit and
counit-preserving convolution-invertible integral $\phi:H\rightarrow A$ and a retraction, that
is, a unit and counit-preserving convolution-invertible cointegral $\gamma$ : $A\rightarrow K$ .
Furthermore there is a 1–1 correspondence between all sections and all
retractions. Then $\phi$ causes a left H-module algebra action on $K$

$\rightarrow:H\otimes K\rightarrow K$ , $i(h-c)=\sum\phi(H_{(1)})i(c)\phi^{-1}(h_{(2)})$ $(h\in H, c\in K)$ ,

and $\gamma$ causes a right K-comodule coalgebra coaction of $H$

$\rho$ : $H\rightarrow H\otimes K$ , $\rho(\pi(a))=\sum\pi(a_{(2)})\otimes\gamma^{-1}(a_{(1)})\gamma(a_{(3)})$ $(a\in A)$ .

Since $H$ is commutative and $K$ is cocommutative, such an $action\rightarrow and$ a
coaction $\rho$ are independent of the choice of $\phi$ and $\rho$ . (See [M3, Sect.1].) Then $A$ is
isomorphic to the bicrossed product with the $action\rightarrow and$ the coaction $\rho[H$ ,
Sect.3]. (We need not know the cocycle and the dual cocycle.) In terms of [P], $A$

is as an algebra crossed product $K*C_{3}$ with the $action\rightarrow$ and $A^{*}$ is as an
algebra $H^{*}*G$ with the action $\rho^{*}$ . Notice that $A$ has the K-basis $\{1, \phi(g), \phi(g^{2})\}$ ,
and that $A^{*}$ has the $H^{*}$ -basis $\{\gamma^{*}(x)|x\in G\}$ .

LEMMA 3.4. Suppose that the Hopf algebra extension (3.3) causes a pair
$(\rightarrow, \rho)$ described above.

(1) $G\cong C_{2}\times C_{2}$ .
(2) The right K-comodule coalgebra coaction $\rho$ of $H$ is trivial.
(3) The left H-module algebra $action\rightarrow onK$ is determined by

$g^{-}e_{ij}=e_{j-i,i}$ ,

where $g$ is a generator of $C_{3}$ , and $e_{ij}(\in K)$ is a dual basis of $s^{i}t^{j}$

$(\in kG=k(\langle s\rangle\times\langle t\rangle))$ for each $i,$ $j$ .

PROOF. Since $(H, K,\rightarrow, \rho)$ is a abelian matched pair of hopf algebras by
[$H$ , Prop.3.8], it follows by [M3, Lemma 1.2] that the pair $(\rightarrow, \rho)$ is corre-
sponding to a pair $(\triangleright, \triangleleft)$ which makes $(G, C_{3})$ a matched pair of groups, where
$\triangleright:G\times C_{3}\rightarrow C_{3},$ $\triangleleft:G\times C_{3}\rightarrow G$ are group actions. The correspondence is as
follows:

$(y\rightarrow f)(x)=f(x\triangleleft y)$ , $\rho(y)=\sum_{x\in G}(x\triangleright y)\otimes e_{x}$ ,
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where $x\in G,$ $y\in C_{3},$ $f\in K$ and $e_{x}(\in K)$ is a dual basis of $x(\in kG)$ . So in order to
determine the pair $(-, \rho)$ , we will determine the corresponding pair $(\triangleright, \triangleleft)$ .
Denote by $C_{3}\mathbb{N}G$ the group constructed from a matched pair $(G, C_{3}, \triangleright, \triangleleft)$ . (See

[$\Gamma$, Def.2.3].) It follows from [Sz, Page 112] that either $G$ or $C_{3}$ must be a normal
subgroup of $C_{3}\mathbb{N}G$ . Then one sees easily that either $\triangleright$ or $\triangleleft$ is trivial. $If\triangleleft$ is
trivial, $equivalently\rightarrow is$ so, then $A$ is isomorphic to the twisted group ring $K$‘ $[C_{3}]$

[$P$, Page 4]. Since a twisted group ring of cyclic group over a commutative ring is
commutative, $\triangleleft$ must be non-trivial. Further it is seen easily that $\triangleleft$ is always
trivial in the case $G\cong C_{4}$ . This observation shows that $G\cong C_{2}\times C_{2}$ , and $that\triangleright$

is trivial. Then $\triangleleft g:G\rightarrow G$ is a group automorphism of order 3. Such a group
action $\triangleleft$ is determined by

$s\triangleleft g=t$ , $t\triangleleft g=st$

for a suitable choice of generators $s,$
$t$ of $G$. The $action\rightarrow corresponding$ to this

group action $\triangleleft$ is as in Part (2). $\square $

Now we will prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. Notation as above. Let $\gamma$ : $A\rightarrow K$ be a
retraction of the extension (3.3). Note that the coaction $\rho$ is trivial. As in the
proof of [M3, Lemma 2.11(1)], we can choose a retraction $\gamma$ satisfying

$\gamma^{*}(d)=\gamma^{*}(t^{2})=1$ .

Note that $\phi(g)c=(g\rightarrow c)\phi(g)$ for any $c\in K$ . Then as in the proof of [M3,

Lemma $2.11(2)(3)$], we have for $\xi=1$ or $-1$

$\Delta_{A}(\overline{g})=\sum_{0\leq i,j,r,s\leq 1}\xi^{jr}e_{ij}\overline{g}\otimes e_{rs}\overline{g}$
,

where $\phi$ : $H\rightarrow A$ is the section corresponding to $\gamma$ , and $\overline{g}=\phi(g)$ . A straight-
forward calculation using the above equation shows

$\Delta_{A}(\overline{g}^{3})=\sum_{i,j,r,s}\xi^{ir+j(r+s)}e_{ij}\overline{g}^{3}\otimes e_{rs}\overline{g}^{3}$
.

Since $\overline{g}^{3}\in K$, we write as $\overline{g}^{3}=\sum c_{ij}e_{ij}$ for $C_{ij}\in k$ . By comparing the coefficients
of $e_{01}\otimes e_{10},$ $e_{10}\otimes e_{01}$ in $\Delta_{A}(\overline{g}^{3})$ , one verifies that

$c_{11}=\xi c_{01}c_{10}$ , $c_{11}=c_{10}c_{01}$ .

These yield that $\xi=1$ , so that $\overline{g}\in G(A)$ . Then we can check easily that $A\cong kD$ ,
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where $D=(C_{2}\times C_{2})\lambda C_{3}$ is the unique (up to isomorphism) semi-direct product.
In particular $A$ is cocommutative. $\square $

4. Finally we find all $A\prime s$ that are neither commutative nor cocommutative,
to complete the classification. By the Corollary 1.3, we may suppose that
$|G(A)|=|G(A^{*})|=4$ . Let $G=G(A),$ $H=kG$ . As in Section 2, the inclusion
map $i:H\rightarrow A$ has a Hopf algebra retraction $\pi:A\rightarrow H$ . Let $B=$

$\{a\in A|\sum a_{(1)}\otimes\pi(a_{(2)})=a\otimes\pi(1)\}$ . By the same argument as in Section 2, $B$ is
a H-module algebra with a non-trivial $action\rightarrow and$ a H-comodule coalgebra
with a non-trivial coaction $\rho$ . Further we have

$A\cong B\times H$ (as Hopf algebras),

$B=k1\oplus kx+\oplus kx_{-}$ ,

where $ x\pm$ are group-like elements in $B$ .
Denote by $\mathfrak{S}_{3}$ the symmetric group of degree 3. Let $\sigma$ be the cyclic

permutation (123), and $\tau$ the transposition (12). We denote by $\iota$ the inner
automorphism inn $(\tau)$ . Notice that $sgn$ , the signature map of $\mathfrak{S}_{3}$ , is the unique
non-trivial group-like element in $k^{\mathfrak{S}_{3}}$ .

DEFINITION 4.1. Denote by $A_{+}$ (resp. $A_{-}$ ) the $k^{S_{3}}$ -ring generated by $z$ with
relations:

$z^{2}=1$ (resp. $sgn$), $zc=\iota^{*}(c)z$ $(c\in k^{\mathfrak{S}_{3}})$ .

Given $ A\pm$ a coalgebra stmcture such that the subalgebra $k^{S_{3}}$ is a sub-
coalgebra, and that $z$ is group-like, then $ A\pm$ are bialgebras. Furthermore $A+$

(resp. $A_{-}$ ) becomes a Hopf algebra with the antipodes $S$ determined by

$S(z)=z$ (resp. $(sgn)z$), $S(c)=S_{k^{\mathfrak{S}_{3}}}(c)$ $(c\in k^{\mathfrak{S}_{3}})$ .

We point out that $ A\pm$ are semisimple. Indeed $ A\pm\cong k\times k\times$

$k\times k\times M_{2}(k)\times M_{2}(k)$ . It is seen easily that $G(A_{+})\cong C_{2}\times C_{2}$ , and that
$G(A_{-})\cong C_{4}$ .

REMARK 4.2. (1) As an algebra $A_{+}^{*}$ is isomorphic to $A_{-}^{*}$ . In fact, these are
the $k\mathfrak{S}_{3}$ -rings generated by $v$ with relations:

$v^{2}=v$ , $av=va$ $(a\in k\mathfrak{S}_{3})$ .

On the other hand, the coalgebra stmctures $\Delta,$ $\epsilon$, and the antipode $S$ of $A_{+}^{*}$ (resp.
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$A_{-}^{*})$ are determined by

$\Delta(\sigma)=\sigma v\otimes\sigma+\sigma(1-v)\otimes\sigma^{2}$ , $\epsilon(\sigma)=1$ ,

$\Delta(\tau)=\tau\otimes\tau$ (resp. $\tau v\otimes\tau+\tau(1-v)\otimes\tau(2v-1)$ ), $\epsilon(\tau)=1$ ,

$\Delta(v)=v\otimes v+(1-v)\otimes(1-v)$ , $\epsilon(v)=1$ ,

$S(\sigma)=\sigma(1-v)+0^{2}v$ ,

$ S(\tau)=\tau$ (resp. $\tau(2v-1)$ ), $S(v)=v$ .

(2) $A_{\pm}^{*}$ are both self-dual, that is, $ A_{\pm}^{*}\cong A\pm\cdot$ Let $\omega$ be a primitive 3rd root
of 1, $\zeta_{+}$ a square root of 1, and $\zeta_{-}$ a primitive square root of-l. Denote by
$e_{ij}(\in K^{\mathfrak{S}_{3}})$ the dual basis of $\sigma^{i}\tau^{j}(\in k\mathfrak{S}_{3})$ for each $i,$ $j$ . Then the mapping
$\sigma\leftrightarrow\sum\omega^{j}e_{ij},$ $\tau\mapsto 1/2((1+\zeta_{\pm})+(1-\zeta_{\pm})sgn)z,$ $v\leftrightarrow 1/2(1+sgn)$ gives Hopf
algebra isomorphisms from $A_{\pm}^{*}$ to $ A\pm\cdot$

PROPOSITION 4.3. Suppose that $|G(A)|=|G(A^{*})|=4$ . Then as a Hopf
algebra $A$ is isomorphic to either $A_{+}$ or $A_{-}$ .

PROOF. Case $G\cong C_{4}$ . We fix a generator $g$ of $G$ . By the same way as in
Section 2, the H-module algebra $action\rightarrow onB$ and the H-comodule coalgebra
coaction $\rho$ of $B$ are determined by

$ g\rightarrow x_{\pm}=x\mp$ , $\rho(x_{\pm})=\frac{1}{2}((1+g^{2})\otimes x_{\pm}+(1-g^{2})\otimes x_{\mp})$ .

Since $\rho(B)\subset k\langle g^{2}\rangle\otimes B$, it follows that $ B\otimes k\langle g^{2}\rangle=B\times k\langle g^{2}\rangle$ is a 6-dimen-
sional (semisimple) Hopf subalgebra of $A$ . Denote by $K$ this Hopf subalgebra.
Note that $K$ is commutative and not cocommutative, it follows by [M2,

Thm.1.10] that $K\cong k^{\mathfrak{S}_{3}}$ . It is clear that $A$ is the crossed product $K*C_{2}$ with the
K-basis $\{1, g\}$ such that $g\in G(A)$ , and that $g^{2}$ is the unique non-trivial group-like
element in $K$. We conclude that $A\cong A_{-}$ , if one sees that $\iota^{*}$ is the unique (up to
conjugacy) Hopf algebra automorphism of $k^{\mathfrak{S}_{3}}$ of order 2 with non-trivial
invariants.

Case $G\cong C_{2}\times C_{2}$ . We can choose generators $s,$
$t$ of $G$ so that the $action\rightarrow$

is determined by
$ s\rightarrow x_{\pm}=x\mp$ , $t\rightarrow x_{\pm}=x_{\pm}$ .

The coaction $\rho$ is one of following:
(i) $\rho(x_{\pm})=\frac{1}{2}((1\pm t)\otimes x++(1\mp t)\otimes x_{-})$ .
(ii) $\rho(x_{\pm})=\frac{1}{2}((1\pm s)\otimes x++(1\mp s)\otimes x_{-})$ .
(iii) $\rho(x_{\pm})=\frac{1}{2}((1\pm st)\otimes x++(1\mp st)\otimes x_{-})$ .
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In each case, it follows as in the above case that $B\times\langle t\rangle,$ $ B\times\langle s\rangle$ or $ B\times\langle st\rangle$ is a
6-dimensional Hopf subalgebra of $A$ . Since this Hopf subalgebra must be
commutative or cocommutative by [M2, Thm.1.10] Case (ii) or $(\ddot{\dot{m}})$ cannot
happen. As in Case $G\cong C_{4}$ , we conclude that $A\cong A_{+}$ . $\square $

Now we obtain the classification result.

THEOREM. Let $A$ be $a$ 12-dimensional semisimple Hopf algebra over an
algebraically closed field $k$ whose characteristec $\neq 2$ or 3. Then $A$ is isomorphic
to either

$kG$ , $k^{G}$ , $A+$ or $A_{-}$ ,

where $G$ is a group of order 12 and $ A\pm$ are the mutually non-isomorphic Hopf
algebras defined in Definition 4.1.
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