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1. Introduction

Throughout this paper $G,Z(G)$ and $C$ denote a finite group, the center of $G$

and the field of complex numbers respectively. For a finite set $S$ , we denote the
number of elements in $S$ by $|S|$ .

Let $Irr(G)$ be the full set of irreducible C-characters of $G$ and $X(G)$ be the
character ring of $G$ . If $R$ is any subring of $C$ , we write $RX(G)$ to denote the R-
algebra of R-linear combinations of irreducible C-characters of $G$ .

Suppose $G$ and $H$ are finite groups. Weidman showed that if $X(G)$ is
isomorphic to $X(H)$ , then $G$ and $H$ have the same character table.

In addition Saksonov proved the following theorem, which is a strengthened
version of Weidman’s theorem.

THEOREM 1.1. (Saksonov) Suppose $R$ is the ring of all algebraic integers
and there exists an R-algebra $ isomorphism\phi$ from $RX(G)$ onto $RX(H)$ . If
$Irr(G)=\{\chi_{1}, \cdots , \chi_{h}\}$ and $Irr(H)=\{\psi_{1}, \cdots , \psi_{h}\}$ , then the following holds:

(i) The character tables of $G$ and $H$ are the same.
(ii) $\phi(\chi_{j})=\epsilon_{l}\psi_{j}$ , $(i=1, \cdots,h)$ where the $\epsilon_{j}$ are roots of unity and $i\rightarrow i^{\prime}$ is a

permutation.

From now on we assume that $R$ is the ring of all algebraic integers. Then in
this paper we intend to prove the following theorem.

THEOREM 1.2. Suppose $G$ and $H$ are finite groups. Then we have
(i) If $u$ is a central element in $G$ and $\tau_{u}$ : $RX(G)\rightarrow RX(G)$ is the map defined

by $\chi\rightarrow(\chi(u)/\chi(1))\chi$ where $\chi\in Irr(G)$ and 1 is the identity element of $G$ , then
$\tau_{u}$ is an R-automorphism of $RX(G)$ . Furthermore the map $u\rightarrow\tau_{u}$ is a group
isomorphism of $Z(G)$ onto a subgroup $T=\{\tau_{u}|u\in Z(G)\}$ of $Aut(RX(G))$ .
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(ii) Every R-isomorphism $\phi:RX(G)\rightarrow RX(H)$ is the composition of an R-
isomorphism $\theta$ that maps $Irr(G)$ onto $Irr(H)$ with an automorphism of $RX(H)$

of the form $\tau_{u}$ for some element $u$ in $Z(H)$ .
(iii) The full group $A=Aut(RX(G))$ is the product of the subgroup $T$ of part

(i) above, which is normal, with the subgroup $P$ consisting of those automorphisms
that map $Irr(G)$ onto $Jrr(G)$ .

2. Proof of Theorem 1.2

In order to prove Theorem 1.2 we prove a basic lemma conceming the roots
of unity which appear in Saksonov’s Theorem.

LEMMA 2.1. Suppose for each character $\chi$ in $Irr(G)$ , there is a root of
unity $\epsilon(\chi)$ such that each product $\epsilon(\chi)\chi\epsilon(\psi)\psi for\chi,$ $\psi$ in $Irr(G)$ is a non-
negative integer linear combination of $\epsilon(\xi)\xi$ , as $\xi$ runs over $Irr(G)$ . Then there
exists $u$ in $Z(G)$ such that $\epsilon(\chi)=\chi(u)/\chi(1)$ for every character $\chi$ in $Irr(G)$ .

PROOF. If we are given $\chi$ and $\psi$ in $lrr(G)$ , then we assume that

$\chi\psi=\sum_{\xi\in lrr(GI}m_{\xi}\xi$ and $\epsilon(\chi)\chi\epsilon(\psi)\psi=\sum_{\xi\in lrrtG)}n_{\xi}\epsilon(\xi)\xi$

where the coefficients $m_{\xi}$ and $n_{\xi}$ are non-negative integers. Then it follows
easily that $m_{\xi}=n_{\xi}$ for all characters $\xi$ in $Irr(G)$ and thus the map
$\phi:\chi\rightarrow\epsilon(\chi)\chi$ defines an automorphism of the algebra $CX(G)$ . In particular the
$map\phi$ permutes the primitive idempotents of this C-algebra (See the proof of
Lemma 2.3 in [3]) and so it carries the characteristic class function of the
identity to the characteristic class function of some other conjugacy class, say the
class $K$ . Therefore we have

$(1/|G|)\sum_{\chi\in lrr(G)}\epsilon(\chi)\chi(1)\chi=(1/|C_{G}(v)|)\sum_{\chi\in/rr(G)}\overline{\chi(v)}\chi$

where $v$ is an element in $K$ . It follows that for each irreducible character $\chi$ in
$Irr(G)$ we have $\chi(1)\epsilon(\chi)=|K|\chi(u)$ where $u=v^{-1}$ . Applying this where $\chi$ is the
principal character yields that $|K|$ is a root of unity and so $u$ is a central element
in $G$ . Thus for every character $\chi$ in $Irr(G),$ $\epsilon(\chi)=\chi(u)/\chi(1)$ for some element
$u$ in $Z(G)$ , as claimed. Q.E.D.

PROOF $0F$ THEOREM 1.2. (i) Suppose $u$ is a central element in $G$ . Then for
each character $\chi$ in $Irr(G)$ we denote by $\epsilon(\chi)$ and $T(\chi)$ the root of unity given
by $\chi(u)/\chi(1)$ and the irreducible matrix representation of $G$ which affords $\chi$

respectively. We assume further that for $\chi,\psi$ in $Irr(G),$ $\chi\psi=\sum_{\xi\in lrr(G)}m_{\xi}\xi$ where
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the $m_{\xi}$ are non-negative integers. Then we show $\epsilon(\xi)=\epsilon(\chi)\epsilon(\psi)$ for $m_{\xi}\neq 0$ .
Indeed $T(\chi)(u)=diag(\epsilon(\chi), \cdots , \epsilon(\chi))$ and $T(\psi)(u)=diag(\epsilon(\psi), \cdots , \epsilon(\psi))$ which

have diagonals of lengths $\chi(1)$ and $\psi(1)$ respectively. Hence

$T(\chi)(u)\otimes T(\psi)(u)=diag(\epsilon(\chi)\epsilon(\psi), \cdots , \epsilon(\chi)\epsilon(\psi))$

where $T(\chi)\otimes T(\psi)$ is the Kronecker product of $T(\chi)$ and $T(\psi)$ . Since
$T(\chi)\otimes T(\psi)$ is the representation of $G$ which affords $\chi\psi$ , we have $\epsilon(\xi)=\epsilon(\chi)$

$\epsilon(\psi)$ for $m_{\xi}\neq 0$ , as claimed. Therefore we have $\epsilon(\chi)\chi\epsilon(\psi)\psi=\Sigma_{\xi\in lrr(G)}m_{\xi}\epsilon(\xi)\xi$ .
Thus the map $\tau_{u}$ defined by $\chi\rightarrow\epsilon(\chi)\chi$ is an R-automorphism of $RX(G)$ .
The fact that $Z(G)\cong T$ is easy to prove and so we omit its proof.
(ii) Now we can easily observe that Saksonov’s result guarantees that the

image of $Irr(G)$ under $\phi$ satisfies the hypotheses of Lemma 2.1 for $H$ . Hence we
may write $\phi(\chi_{j})=\epsilon(\psi_{j},)\psi_{j},,$ $\epsilon(\psi_{j},)=\psi_{i},(u)/\psi_{j},(1)$ for some element $u$ in $Z(H)$ ,

$(i=1, \cdots,h)$ where $Irr(G)=\{\chi_{1}, \cdots,\chi_{h}\},$ $Irr(H)=\{\psi_{1}, \cdots,\psi_{h}\}$ and $i\rightarrow i$ ‘ is a
permutation.

Therefore the map $\tau_{u}$ defined by $\psi\rightarrow\epsilon(\psi)\psi$ is an R-automorphism of
$RX(H)$ from fact (i) above. If we put $\theta=\tau_{u}^{-1}\phi$ , then $\theta(\chi_{j})=\tau_{u}^{-1}(\phi(\chi_{i}))=\psi_{j}$ , ,

$(i=1, \cdots,h)$ and so $\theta$ maps $Irr(G)$ onto $Irr(H)$ . Hence we have $\phi=\tau_{u}\theta$ , as
required.

(iii) Fact (iii) follows since fact (ii) tells us that $A=TP$ and it is clear from
fact (ii) that $A$ induces a permutation action on $Irr(G)$ and $T$ is the kernel of this
action. This completes the proof of the theorem. Q.E.D.
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