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ON PROPER HELICES AND EXTRINSIC SPHERES
IN PSEUDO-RIEMANNIAN GEOMETRY

By

Hwa Hon SONG, Takahisa KIMURA and Naoyuki KOIKE

Abstract. In this paper, we define the notion of a proper helix of
order d in a pseudo-Riemannian manifold and investigate those
curves in a totally umbilical pseudo-Riemannian submanifold.

Introduction.

In Riemannian geometry, properties of regular curves are well discribed by
the Frenet formula. In [8], K. Sakamoto called a regular curve which has
constant curvatures of osculating order d a helix of order d. Note that a helix of
order one (resp. two) is a geodesic (resp. circle). The research of geodesics,
circles and helices (of order three) in Riemannian submanifold theory, has been
done by K. Nomizu and K. Yano ([3]), H. Nakagawa ([2]), K. Sakamoto ([7])
and other geometricians. Furthermore, K. Sakamoto also has investigated helices
of general order in the theory (cf. [8]). For regular curves in a pseudo-
Riemannian manifold, we can not necessarily define a formula corresponding to
the Frenet formula. Especially, we call a regular curve with a formula
corresponding to the Frenet formula a proper curve. Furthermore, we call a
proper curve which has constant curvatures of osculating order d a proper helix of
order d. N. Abe, Y. Nakanishi and S. Yamaguchi defined general circles and
helices (of order three) in a pseudo-Riemannian manifold. They investigated
those curves in a pseudo-Riemannian submanifold (cf. [T], [3], [4]). We shall
investigate proper helices of general order in a totally umbilical pseudo-
Riemannian submanifold.
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§1. Notations and Basic Equations.

In this paper, the differentiability of all geometric objects will be C”. Let M
be a pseudo-Riemannian submanifold in pseudo-Riemannian manifold M
isometrically immersed by f and denote by g (resp. g) the pseudo-Riemannian
metric of M (resp. M ). For all local formulas and calculations, we may assume f
as an imbedding and thus we shall often identify pe M with f(p)e M. The
tangent space 7,M at p is identified with a subspace f,(T,M) of the tangent space
T,,IT/I-. We put | X|:=v|g(X, X)| for X € T,,IT/I_. We cE:note the tangent bundle of M
by TM and the normal bundle by T°M. Let V and V be the Levi-Civita
connections of M and M, respectively. Then the Gauss formula is given by

(1.1) V,Y=V,Y+B(X,Y),

where X and Y are tangent vector fields of M and B is the second fundamental
form of M. The Weingarten formula is given by

(1.2) V E=-AX+VE,

where X (resp. &) is a tangent (resp. normal) vector field of M and A (resp. V*)
is the shape operator (resp. the normal connection) of M. Clearly A is related to
B as
8(A:X,Y)=2(B(X,Y),5).
The mean curvature vector field H of M is defined by
| ]
H:=— 2 g(e,"e,‘)B(e,'ae,')’
n i=l
where n = dim M and {e,,---,¢,} is an orthonormal frame of M. If the second

fundamental form B satisfies
B(X,Y)=g(X,Y)H

for every tangent vector fields X, Y of M, then M is called a totally umbilical
submanifold. The mean curvature vector field H is said to be parallel if V;H =0
for every tangent vector field X of M. A totally umbilical submanifold with the
parallel mean curvature vector field is called an extrinsic sphere. If the second
fundamental form B vanishes identically, then M is called a totally geodesic
submanifold of M .

Next we shall define the notion of a proper helix of order d in a pseudo-
Riemannian manifold N. Let o:1 — N be a non-null curve in N parametrized by
the arclength s, where I is an open interval of the real line R. We denote the
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tangent vector field of 0 by v,. We assume that O satisfies the following Frenet
formula:

ViV = A,
V”ovl +£()8lllv() = szz

Vo0, +€E,4,V, = 4,0,

Vvovd—z + €4 3E2A2Vus = Ay Yy

\V”ovd—l +&,8,A, v, =0,
where
A=, 0] >

)‘i = "anvi—l + gi—zgi-lli—lviq” >0, @2=i<d-1)
g, =g(v, v (=tl) (0<j<d-1) on 1.

We call such a curve a proper curve of order d, A, the i-th curvature and
Vg»...,V,, the Frenet frame field. Furthermore, if A, (1<i<d-1) are constant
along O, then we call this curve a proper helix of order d.

§2. Proper helices in a totally umbilical pseudo-Riemannian
submanifold.

Let M be a totally umbilical pseudo-Riemannian submanifold in a pseudo-
Riemannian manifold M isometrically immersed by f and O a proper helix of
order d in M. We denote a curve foo in M by &. Assume that G is a proper

helix of order d. Let A Ay, (resp. /Tl,---,IJ_I) be the curvatures of O (resp.
6)and v,,---, v, (resp. ¥y,---, D, ) the Frenet frame field of 0 (resp. 7). For
convenience, let A, =0,v,=0,4;, =0 and 9, =0(i2>d,j2d). Set ¢ :=g(v;,v;) and
£ =2(5,5,)(20). We define Vi H(i20)by Vi"H:=H and V,"H=V,
(V3 "H)(i21). Also, we define B, and B, (i j21,i+ j:even) by

-

B =4 Bu = Il
Bii = AiBiiimrs B,, = I,-B,»_l,;_. (i=2)
2.1 Brs = —€8ABorzs Bos =—EBAuBrz (2D
B.;= _£j£j+12’j+l i1 T l‘;B,v_l_.,_l (i>j=2)
\Bi,j = _EjEjHZ/'HB-i-I,jH + IJB,-_LJ-_, (i>j=2).
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LEMMA 2.1. The vector fields v,(i 20) and z7j(j20) along O are related as

follows:

(Fy) v, =v,,
@iz,

(in—-l) z 2i—|.2j—|’72j—1

Jj=1 j=1

L= o U (2i-1) .
(le) > ﬁz' iV = 2 ﬂZi,ZjUZj +£0Vto H @z1).

PROOF. By using [(1.1), the Frenet formulas and the assumption that M is

totally umbilic, we get
AP, =V, v, =V, v, +eH=Av, +€&H.

Thus we obtain (F). Operating V,o to (F), we get
B].l (_8OEIZIUO + ’Tzﬁz) =B, (€AY, + A,0,) - €,8(H, H)v, + EoVoloH

where we use [(1.1), [(1.2), the Frenet formulas and the assumption that M is

totally umbilic. By noticing {vO}J- -component of this equality, we see that

Iz.B—u’;z = lzﬁl,lv2 + 80V;)H
which implies (F,) by (2.1). Assume that (F,,) holds. Operating V,o to (F,),

we have
— L (2k=1)
v,; — €8V, H,H)v,

K —
Zﬁ k2, ’72 = ﬂszJVD
j= J

‘M

(2k)
+&V, ~H,

where we use [(1.1), and the assumption that M is totally umbilic
Furthermore, by using the Frenet formulas and (2.1), we have
k+] — —
J§ﬁ2k+l 2j- l ﬁ 2k+1,2j~ l 2j-1 80_(V-L(2k ])H H)v +E€ V-L (Zk)
Therefore, by noticing Span {v,}*-component of this equality, we obtain (F)
to (F,,,,) and using the Frenet formulas and (2.1),

T M+

Similarly, by operating -V-,,o

we also have
k+] —
—£0{6, A By, +E(Vs, ““H, H)}v,

—&E Aﬁkﬂl 0+Zﬂ2k+22] 2j =

k+1

1 (2k+D)
+ Zlﬁzmzzjvzj + Vvo H.
i
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Thus, by noticing Span {v,}" -component of this equality, we also have (F,,,,).
Therefore, by the induction, we see that (F;) holds for every i 20. O

Now we define column vectors b,(i =3) and matrices B;(i =1) by

BZj—l,l ﬁZj,Z
B, B.;. .
b, = 21: " » by = 2:1 ) (j22)
B, j-12j-3 B, j2j-2
and
ﬁl‘l 0 0
. Bs, Bss E
B2j—l = : : . 0 ’
ﬂ2j—l.l .sz—l,s "' ﬁZj—l,Zj—l
[32_2 0 0
B, = ﬁ‘.“z ﬁ‘j“‘ 0 G=1).

ﬁZj,Z ﬁ2j,4 ﬁ2j,2j

Also, we define formal column vectors V(i >1) and H,(i >0) whose components
are vector fields along 0 by

= s V= (=21

and
H V. H
Vi,,mH Vto(”H .
H, = : , H,., = ) (j20).

j 2j+1

1@2p (2j+1
Vo, H V.. Y #
Similarly, we define b,(i 23),B;(i21) and V(i 21) in terms of B,; and 7, instead
of B, and v,. Note that B;(i<d-1)B,(i<d —1) are nonsingular by (2.1). By
using these notations, (F,) is expresses as follows:
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(2.2) bV, + B = bV ,+B v +eVs H. (i23)

III ifYi

Moreover, the systems (F),(F),--,(F,_)i21) and (F),(F,),-,(F;)(i=1) are
expressed as

B, \V, =B, V, +¢&H,,,,
B,V, =B,V, +¢,H,,_
respectively. Thus we have
(2.3) BV.=BV, +¢,H,,, (i=1).
From [(2.2) and [(2.3), we have
(MF) —-B,5,+B,v,=(bB,B._,~'b)V,,
+&,(bBLH, -V, ""H)  (3<i<d+)).

ll I

LEMMA 2.2. The inequality d<d <d+r holds, where r is the codimension
ofMin M.

PROOF. Suppose d >d . Then we have v; #0 and ¥, =0. Hence, it follows
from (MFJ)that

B, .v;=(b.B:' B,  ~'b.)V,

d"d-2"d-2

ve,(b,B\H, ~V:""H).

d d-2

Since v is linearly independent of vi(isz—2) and V”lomH(iSJ—l), we have
ﬁ‘;‘gv‘7 =0.From (2.1) and d>d, 'BJ.J =14, ---/1‘7 # 0 is deduced. Therefore, we
have v, =0. This contradicts d > d . Thus we have d=d. The remaining part is

trivial. O

LEMMA 2.3. (i) If d =d(23), then V;,“""H="b,B, ,"H,_, holds.
d-2 d-3
i) If d =d+1(d22), then Vi'"H ’ ='b, B, 'H,_, holds.

PROOF. (i) By the assumption, v, =0 and 7, =0 holds. Substituting these to
(MF,), we have
(’b_dEJ_—IZBd—Z =6V, + 80(’5454—-[2}]1/—3 - V;L,,({I_”H) =0.

By noticing the tangential component and the normal component of this equality,
we have
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,b_dEII_JZ :[ded—?_—l
and
(d-1) T e
Vjo H= ded_'sz_3.
These imply

Vi H=b,B,,"H,_,.

(ii) By the assumption, v,,, =0 and #,, =0 holds. Substituting these to
(MF,,,), we have

(’b—dHEd_—lle-l ='b, )V, + 80('b—,/+1E[,__l|Hd_2 -V, (d)H) 0.

By noticing the tangential component and the normal component of this equality,
we have

and

These imply
szfo(d)H =,bd+le—l-lHd—2‘ U

Since 'b,,,\B,,_ "(ISZi—ISd—l) is the solution of the equation (x,,--,

! 5
x,)B,,_, ='b,,,,, by Cramér formula, we have

t
b2i+|B2i—1

(24) |le Il(f)21+ll(l|’ e ,) ..

’P2i+l,i(a'l"“’2'2i))’

where P, ;(A,--,A,)(1<j<i) is the determinant replaced the j-th row of |B,._.|
by 'b,,,,. Similarly, we have

tb2iB2i‘2 |B2 |(P2,1(/11’ "v/lzi-l)""
i-2

(2.5) "'91)2,‘,.'-1(}'1’""/121—1))
2<L2i-2<d-1),

B, (A, Ay DA< j<i-1) is the determinant replaced the j-th row of
|B,, ,| by 'b,,. Then we have the following lemma.

where

LEMMA 2.4. (i) The polynomial B, (A,,---,A,,)) (1< j<i) is a homogeneous
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polynomial of degree (i*+2i—2j+2) and P, (A, Ay )1Sj<i=1). is a
homogeneous polynomial of degree (i* +i—2j).
(ii) The polynomial P, (A, -, A,;) is expressed as follows:

P2i+l,I(A'l"“’2’2i) =—§& "'82:‘12/14 '”}’ZilBZil'

PROOF. (i) By (2.1), we see that B, ; is a homogeneous polynomial of degree i
with variables A,,---,A,. Hence the conclusion is directly deduced from the
definitions of P,,, ;(4,,-:-,A,;) and B, ;(4,,:-",4,.,).

2i#l.j

(ii) Define B;,(j>k21,j+k:even) by
. {0 (G>k=1)
Gl VY R (G>k>1).

Then, from (2.1), we have

(bj.k) Bj.k = _£k8k+llk+lﬂj—l,k+l +B6,0 (G>k>2).
Also, we define a matrix C; of type (2,) and a matrix D; of type (j,2)(j=1) by
C. = [ﬁ2j+3.l ﬂ2j+3,3 ﬁ2j+3.2j—1 )

i

ﬁ21+5,1 ﬂ2j+5.3 ﬁ2j+5.2j—|

and
0 0

Dj = 0 0r
ﬁ2j+l,2j+l 0

Furthermore, we define matrices Aj and Aj(jz 1) by

B, B
Al = (ﬂ?;.l )’ AZ = (ﬁll B3'3 ’
5.1 5.3
A, D,
A= c ﬁ2j—l.2j—3 ﬁzj-l.zj—l (j=z3)
2 \B B
2j+1.2-3 2 j+1.2 j-1

and

. . B, Bss
A =(Byy) A '—(ﬁs,l Bs.s),

A, D

Jj-2

Aj = C (ﬁZj—l,Zj—B ﬁzj—l,Zj—l) (j=23).

i~2
! ﬂ2j+l‘2j-3 ﬁ2j+l.2j—l
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From the definition of P, ,(4,,*,4,,), we have
Py Ay 4y) = (D74, |
' A D;,
= (-1’ C., (ﬁ21—1.21—3 ﬁzj—l,zj—nl.

ﬁz_,'ﬂ,z -3 B, j+1,2j-1

Substituting (b,,,,,,.,) to this equality and using the linearity of the determinant
for the final column, we have ‘

P2j+1.1(ll""”121)
Aj_2 Dj_2 A
= (-1’ Cc., [sz—n.zm 0 J +|A,~|

a ﬁ2j+l.2j—-3 _£2j—182j2'2jﬂ2j,2j
== {_Ezj—lesz'Zjﬁ%.Zlej—l | + |Aj ‘}

= €2j—l£2ja'2jﬁ2j,2jP2j—l.l (’lx LR /’sz—z )+ (—l)j—l IAj' (J22).

(2.6)

Next we shall show |Aj|=0(j2 1). Clearly we have |/§j‘=|,é3,,|=0. Assume that
[4,

=0 for every j<k. Substituting (b, 211> (Dr14324-1 )’B2k+l,2k+l = ;sz+1ﬁ2k,2k

and B2k+3,2k+1 = }’2k+lﬂ2k+2.2k to

Ak 1 Dk—l

= ﬁ2k+l,2k——l ﬁ2k+l.2k+l
Ck-—l

ﬂ2k+3.2k-] B2k+3.2k+l

A

Ak+l

and adding M multiple of the final column to the k-th column, we obtain

2’2k+]
Ak 1 Dk~l

= ﬁ2k+l.2k—l »82k+1.2k+1 .
Ciai

ﬁ2k+3,2k—l ﬂ2k+3.2k+]

A

Ak+l

Expanding this determinant with respect to the final column and using the
assumption of the induction, we obtain

A D,

k-2
)Akﬂ - _B2k+l,2k+l [BZk—l,l Tt ﬂZk—I,Zk—-S ] (ﬁZk—l.Zk—3 BZk—l‘Zk—l j

ﬁ2k+3,l ﬂ2k+3‘2k—5 B2k+3,2k—3 ﬂ2k+3.2k—l

+ ﬂ2k+3,2k+1 A, |
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A s D, ,

2 k-2
= _ﬁvm - [B?_k—l,l ﬁlk—l,lk-ﬁ j (ﬁZkl‘Zkﬂ sz—l,zk-l J
ﬁ2k+3.l ﬂ2k+3.2k—5

By repeating the same process, we can obtain

ﬁ2k+3,2k—3 ﬂ2k+3,2k—]

A, D,

= (=D B,:Bss - Bririzin B, ] ( Bss Aﬁs,s )
ﬁ2k+3,l ﬁ2k+3,3 ﬁ2k+3.5

Bs. Bss Y

= (—l)k_2 ﬂ7_7ﬁ9,9 "'ﬂzkn.zm ﬁS.l B5.3 Aﬂs.s

Baiis ﬁ2k+3.3 ﬁ2k+3.5
ﬁ},l ﬂ3.3

Briors Pauss

ﬁ2k+3,l

|Ak+|

= (—I)H ﬁs,sﬁm T ﬁ2k+l,2k+l

= (-1 ﬁmﬂs.s ) "ﬁ2k+1,2k+|
=0.
Thus, by the induction, we can conclude |AI| =0 every j=1. Substituting
|Ajl=0 to [(2.6), we have
P2j+1,|(l|""’lzj) = ng—-I£2j/l2jﬁ2j.2jP2j—l.l(ll ""’2'21-2) (J 22).
After all we can obtain |
P2i+|.1(l|""”12i)
=636, €, 4 A¢ - AyiBaaBos + PriziPri (A, 4,)

=—&§, "'821}"214 "'Aziﬁz.zﬂ‘z,xx "'Bz:‘.zl'
= —§&, "'82,‘122'4 ”'2’2i'B2i|' O

Also, we have the following lemma.

LEMMA 2.5. (i) The normal vector field Vjom)H(iZI) along O is written

as

; i-1
(Hy,) Vjo(z 'H = ZIQZi,Zj—I(A’I"“’A’Zi—Z) ”tj—|H+A‘lA'2 .“A‘Zi—lvv_:j—lH
j=
+N2i(’1l""’lzi—2)’

where QZ,_zj_,(;{,,---,lz,._, 1< j<i-1) is a homogeneous polynomial of degree
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(2i—=1) and N,;(A,---,A,,,) is a normal vector field-valued polynomial of
degree at most (2i—2),
(ii) The normal vector field Vto(m”H(i > 1) along O is written as

i+ =l
(H2i+1) Vto(z I)H= Zszi"'l'zj(ll,...’A‘Qi-l)Vtth-'-)']A'z "'AziVL H
j=

vw-
+ N2i+l(/ll"”’x"2i—l)’

where Q.,1,;(4,+,4,,)(0< j<i—1) is a homogeneous polynomial of degree 2i
and N, ,(A,,--,A,._,) is a normal vector field-valued polynomial of degree at
most (2i—1).

PROOF. Define a normal bundle-valued (0,)-tensor field T, on M by
T,:=V*H and T,(X,, -, X,):= (VX] T, )Xy, -, X, Xk=22) for X, -,X, eTM,
where V is the connection induced from V and V*. We shall show (H,). By
using the definition of 7, and the Frenet formula, V#om H is rewritten in terms of

T, as follows:

VIJ’-O(,?)H = V;,Lo(Z)(Tl(vO)) = Vé(]}(vo, vo) + AT (2,)
=T,(vy, vy, v)) + A, T, (v, 0,) +2A,T,(V,, v,)
—£,6,A4, Vo H+ LA, Vi H
= 0,0(A)Veo H+ 4,4, V, H+ Ny(4),

where we set Q,,(4,):=—€,6A° and N,(4,):=T,(v,, vy, vo) + AT (v}, vy) +2AT,
(vy,v,). Thus (H,) is shown. Similarly, (H,)(i 2 4) is also shown. O

By using these lemmas, we can prove the following theorem.

THEOREM 2.6. Let M be a totally umbilical pseudo-Riemannian submanifold
in M isometrically immersed by f. Assume that for every proper helix O of
order d in M, G(:= f o0) is a proper helix of order d in M, where d is a positive
integer. Then

(i) ifdis odd, then M is totally geodesic,

(ii) if d is even, then M is an extrinsic sphere.

PROOF. Assume that d=>3. Fix peM. For any orthonormal system
Xy, X,,-+,X,_, of T,M and any positive numbers 4,,---,4,,, there exists a proper
helix 0 of order d through p with the curvatures A,,---,A, ,whose Frenet frame
field v,,v,,---, v, , coincide with X, X,,---,X,_, at p. Since 6(:= fo0) is a proper
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helix of order d in M, by Lemma 2.3, we have
(2.7) Vto(d_”H =Ided~2_lHtl—3'

(i) Let d =2i+1. It follows from [(2.4) and Lemma 2.5 that

(d-1) (2i)
Voo H=Vy H

i-1
= Elei,zk-l(;Ln"" Vvik H+A’IA' /’Lz: 1Vvt¢ ,H
+N2i()'l’“"2’2i—2)
and
lded_z_lH ZPdI_H(A,I, .. V”lo(Zj)H

IBd 2| Jj=0

i-
l {PZH(A'I’ e A’d—l)H+Z]Jd.jﬂ(}“l"“’ld—l)
“[B. P

{Elej,zk—l(l,, . 2/ 2) g 5 H+/1}» /12!_ V.,i'j_ H+N21(A,],...,},2j_2)}}.

Substituting these equalities to and noticing the point p, we have
i-1
|Bd—2 |{ )Y QZi.2k—l ()’I 27T )“2;—2 )VEL(M,, H+ 11'12 o A2;—1Vj-(3,_, H+ NZi(A’l »T Ty ;in—z )}
k=1

i
(2.8) = Rl‘l(ll"”’)'d—l )H + ZlPd,j+|(/ll""’/ld—|)
j=
i—1
{ZI sz.zk-l(llv""'lzj—z)V;H,,H+11’12 ”'A".’j—lvizi-,H"' sz(;tn”")'zj—z)}

Since the degrees of |B,_ b Ay ) >k21) and Py (A0, 4,02 1D
are i2, (2j—1),and (i*+2i-2j+2), respectively, the left-hand side of (2.8) is a
polynomial of degree (i* +2i—1), the first term P, (A,,---,A4,_)H of the right-
hand side is of degree (i°+2i) and other terms of the right-hand side are of
degree at most (i> +2i—1). Hence, since (2.8) holds for every positive numbers
Ay Ay, we obtain P, (A,,---,A, ) )H=0. From Lemma 2.4-(ii), P, (4,,--,
A,,) #0 holds. Therefore, we see that H=0 at p. By the arbitrarity of pe M,
we see that H =0, that is, M is totally geodesic. In case of d = 1, it is directly
deduced from Lemma 2.1 that so is M.
(ii) Let d = 2i. It follows from [2.5), and Lemma 2.5 that
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le~2 I{;g QZi—l.Zk()‘l"“’A"li—3 )V;u H+ l1’12 "'lzi—zviz,,,zH'*' N2i—|(l|’“.’2'21—3 )}
i-2

(2‘9) — E/J (A'p. "y A’d-| )V;‘jH + zil Pd,j+l (2’1" " Ad—| )
J=

j=1
{Eo Q2j+l.2k ()‘1""’/12/—1 )V;“ H+ /,Ll)'z "'/’szvjh(z,H"' N2j+l(2’l"”’ﬂ’2j—l )}

b Do i (A Ay, )(j >k 20) and P (A, Ayy)
(j=1) are (i*-i), 2j and (i*+i—2j), respectively, both sides of (2.9) are
polynomials of degree (i*+i—2). Hence, since (2.9) holds for every positive

Since the degrees of |B,.,

numbers A,---,A,,._,, terms of degree (i*+i—2) of the both sides are mutually
equal, that is,

i-2
le—z ,{kgb Q2i—l,2k (Z’l ER) )'2,'—3 )Viu H+ 2'1)“2 o lzi—zviz,_z H}

i-2
= Ri,l(ll""’ld—l)viq,H"' ZIRJ,,'H()“]"”’Ad—l)
j=

j-1
{Eo Q2j+l,2k (A'n”"’)“zj-l )V)L(MH + /11/12 “'A’Zjv-;z,-H}’

Furthermore, since this equality holds for every orthonormal system
X0, Xy Xy, of T,M, we see that |B,,|44,---4,,Vy H=0, that is
V;z,'—zH = 0. By the arbitrarity of X,, ,, we see that V*H =0 at p. Furthermore,
from the arbitrarily of pe M,V*H =0 is deduced. Thus M is an extrinsic sphere.
In case of d = 2, it is directly deduced from that so is M. O

In the case where M and M are Riemannian manifolds, this theorem is
written as follows.

COROLLARY 2.7. Let M be a totally umbilical submanifold in a Riemannian
manifold M isometrically immersed by f. Assume that for every helix O of
order d in M, G(:= f o0) is a helix of order d in M , where d is a positive integer.
Then

(1) ifdis odd, then M is totally geodesic,

(i1) if d is even, then M is an extrinsic sphere.

Also, we can prove the following theorem.

THEOREM 2.8. Let M be a totally umbilical pseudo-Riemannian submanifold
in M isometrically immersed by f. Assume that for every proper helix G of order
din M, 6(:= fo0) is a proper helix of order d + 1 in M, where d is a positive
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integer. Then d is odd and M is an extrinsic sphere.

PROOF. Assume that d>2. Fix peM. For any orthonormal system
Xo> X5+, X,, of T .M and any positive numbers 4,,---,4, ,, there exists a proper
helix 0 of order d through p with the curvatures A,,---,4,, whose Frenet frame
field v,,v,---v,_, coincide with X, X,,---,X,, at p. Since o(:= fo0) is a proper
helix of order d + 1 in M, by Lemma 2.3, we have

(2.10) Vvlo(d)H =’ bd+IB¢l—l—|Ha'—2'

Suppose that d is even. Let d = 2i. It follows from [(2.4), and
that

-1
IBd—l I{kZ:] QZi,Zk—l ('11 LR A‘Zi—Z )Viu_, H+ A'IA'Z "'lzi-lv,tz,.,, H+ N2i()’l" T ’12.'-2 )}
i-1
(2.11) = Pd+l.l(a’l"”’ld)H+ 21 Rj+1_j+l('11""”‘{d)
j=

=1
{:;I sz,zk-|()*l"”’lzj-z)v)lrm,H+ A|'12 ”‘A'Zj—lV;“qH_*— sz(}“l»"'s’lzj—z)}-

Since (2.11) holds for every positive numbers A,,---,4,,,, by noticing the term of
the highest degree, we have P, ,(4,,---,4,)H=0. From Lemma 2.4-(ii),
P, ,(4,,---,4,)# 0 holds. Therefore, we obtain H = 0 at p. By the arbitrarity of
peM, we see that H=0, that is, M is totally geodesic. This implies d =d .
Thus a contradiction results. Therefore, d is odd. Let d = 2i + 1. It follows from

(2.9), and that
i-1
IBd-l I{/Eb sz.zk('ll ’.“’A’Zi—l )V;“ H+ ’1112 "'Aziv,\l(z,- H+N,,, (A’I ’“"A’Zi-l )}

i-1
(2.12) = Rm.l(’ll"””ld)v,t,H"' ZIPJH,/‘H(A‘”“‘JM)
j=
-1
{:g()Q2j+l,2k(3’l"“’12j—l )V;2‘H+l,12 “'2'2jVJA:3,H+N2j+l(a'l’“"2'2j—l)}'

Since (2.12) holds for every positive numbers A,,---,4,,,, by noticing terms of the
highest degree, we have

i~
IBd—l I{Eo Q2i+l,2k ('11 LR 2’2i—| )V)l(“ H+ l112 o A‘Zivizi H}

i-l
= d+1,|(’1|""”1d)v)l((,H+ _ZIRIH.jH(A’I’“"A’d)
j=

j-1
{E) Q2j+l.2k (;Ll* B ’121—| )V)l(“ H+ A’IAZ ---/'szV;le}.
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Furthermore, since this equality holds for every orthonormal system
Xy, Xs,..., X,; of T,M, we see that |B, |AA,---A,, Vi, H=0, thatis, Vy H=0.
By the arbitrarity of X,,, we see that V'H =0 at p. Furthermore, from the
arbitrarity of pe M,V'H =0 is deduced. Thus M is an extrinsic sphere. In case

of d = 1, it is directly deduced from that so is M. O

In the case where M and M are Riemannian manifolds, this theorem is
written as follows.

COROLLARY 2.9. Let M be a totally umbilical submanifold in a Riemannian
manifold M isometrically immersed by f. Assume that for every helix O of order
din M, 6(:= fo0) is a helix of order d + 1 in M, where d is a positive integer.
Then d is odd and M is an extrinsic sphere.

§3. Proper helices in an extrinsic sphere.

Let M be an extrinsic sphere in a pseudo-Riemannian manifold M
isometrically immersed by f and O a proper helix of order d in M. We put
G:=foo. Assume that & is a proper curve of order d. Let
Avseees Ay (resp. A,,-++,A- ) be the curvatures of o(resp. ), vy, -+, v, (resp. ¥,

., U;_)the Frenet frame field of o(resp.&). For convenience, let 4, =0,v, =0,
A;=0and 7, =0(i=d,j=d). Set ¢ :=g(v,,v;)and § :=g(7,,5,)(i 20). Also, we
define B, and B, ;(i>j=1,i+ j:even) as (2.1).

LEMMA 3.1. The curve G is a proper helix in M and the vector fields
V(i20) and v,(j 20) along O are related as follows:

(E),) 1‘}0 =v0,
(F) ﬁmﬁlzﬂl’lv]*’goH’

i — i
(F)ih) Zlﬁzi—l,zj—lvzj‘—l = _ZlﬂZi—l,2j—lv2j—l (i22),
= =

(F) ZlB2i,2jz72j = Z]:Bzi,zjvzj (iz1).
j= j=

PROOF. From [(I.1)], the Frenet formulas and the assumption that M is totally
umbilic, we get

D, =V, Uy =Ve v+ H=AY, +€,H.

Thus we obtain (F). Furthermore, from this equality, we get
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EAN =g A’ +g(H, H).
Since M is an extrinsic sphere, g(H,H) is constant. Therefore, /T, is constant.
Operating _V,,o to (F), we get
B|,1(_8OE|I|UO + Izﬁz)= Bl.l(_goglllvo + szz)— Eog(H’H)vo

where we use [(1.1), (1.2)], the Frenet formulas and the assumption that M is an
extrinsic sphere. By noticing Span {v,}" -component of this equality, we see that

AB, 0y = A, B0y,
which implies (F)) by (2.1). Furthermore, from this equality, we get

EZZEBI%I = gzliﬁlz‘l’
which implies that Zz is constant. Assume that (F;,) holds and Z,.(l <i<2k) are
constant. Since f,,, (resp.B,,,;)1<i<k) are polynomials with variables

Ayyeeey Ay (resp. A,,-++, Ay, ), these are constant along O . Hence, operating Vs, to

(F},) , we have

u M

ﬂklj Y9 2] zB2k2j vy 2/’

where we use and the assumption that M is an extrinsic sphere. Applying the
Frenet formulas and (2.1) to this equality, we obtain (F,,,). Furthermore, from
(K1), we get

k+1 k+1

2821 Iﬁ2k+121 1 2821 lﬁ2k+|21 M

that is,

=~

(3.1) E21<+1)§22k+1.2k+| %lf:'z, lﬁ2k+l 2j-1 J§§ j- lﬂ2k+l 2j-1°

Since B,,,,,;,,(1<j<k+1) are polynomials with variables A4,,--,4,,,, and
[_32,(+,‘2j_,(15i$k) are polynomials with variables I,,---,Iz,(, these are constant
along 0, that is, the right-hand side of [(3.1) is constant along G . Also, the left-
hand side of [(3.1) is equal to &,,,A?A}---A%,,. Therefore, we see that A, is
constant. Since f,,,,,, (resp. B 2j-)1<j<k+1) are polynomials with
variables A,,---,4,,,,(resp. /1,, . 2M) these are constant along O . Hence,

operating —V_oo to (Fy,,,),we have
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k+1 —

ZlﬁZkH,Zj—lV”o 2j-1 Z.Bzm 2j- 1 vy V2j-1”

i=

where we use and the assumption that M is an extrinsic sphere. Applying the
Frenet formulas and (2.1) to this equality, we obtain (F},,,). Furthermore, from
(Fis2)» We get

k+1 — k+1

Zez,ﬁzmz 2j 2821ﬁ2k+2 2j°

that is,

k+1 k

(32) E2k+2ﬁ22k+2,2k+2 2'E"21ﬂ2k+221 EE ﬁ2k+22/

Since By,,,,(1<jSk+1) are polynomials with variables 4,,---,4,,,, and
ﬁ2k+2 2, (ISi<k) are polynomials with variables /'Ll, . 2.2k+,, these are constant
along O, that is, the right-hand side of [3.2) is constant along O . Also, the left-
hand side of is equal to EZHZZZ/T;---I%HZ. Therefore, we see that A,,,, is
constant. Thus, by the induction, we see that (F’)(i >0) hold and Aj (j=21) are

constant (i.e., O is a proper helix). O
By using this lemma, we can prove the following theorem.

THEOREM 3.2. Let M be an extrinsic sphere in a pseudo-Riemannian manifold
M isometrically immersed by f and O a proper helix of order d in M such that
O(:= fo0) is a proper curve in M , where d is a positive integer. Then

(1) ifdis odd, then G is a proper helix of order d or d + 1,

(ii) if d is even, then G is a proper helix of order d.

PROOF. Let v,(0<i<d-1)(resp. ¥,(0<i<d—1)) the Frenet frame field of
o(resp.0) and, for convenience, v,=0(i>d) and 17,.=O(i267). According
to CLemma 3.1, G is a proper helix, &, € Span {v,,v,,--,v,,}(i20) and
Uy, € Span {v,,v,,:+,v,,,,, H}(i 20). The conclusion is directly deduced from
these facts. ([

In the case where M and M are Riemannian manifolds, this theorem is
written as follows.

COROLLARY 3.3. Let M be an extrinsic sphere in a Riemannian manifold M
isometrically immersed by f and O a helix of order d in M, where d is a positive
integer. Then
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(1) ifdis odd, then foo is a helix of order d or d + 1,
(ii) if d is even, then foo is a helix of order d.
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